高中数学教案全套

合集下载

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】高中数学课教案篇一一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】二元二次方程与圆的一般方程及标准圆方程的`关系。

三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。

2、提问已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学教案篇二教材分析:前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。

教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。

教学目标:(一)知识与技能1.掌握数量积的定义、重要性质及运算律;2.能应用数量积的重要性质及运算律解决问题;3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。

(二)过程与方法以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。

(三)情感、态度与价值观创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。

高中数学教案(精选17篇)

高中数学教案(精选17篇)

高中数学教案(精选17篇)高中数学教案 1各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。

下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。

一、教材分析(一)教材的地位和作用“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。

同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

(二)教学内容本节内容分2课时学习。

本课时通过二次函数的图象探索一元二次不等式的解集。

通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

二、教学目标分析根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、重难点分析一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。

本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。

关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。

高中数学必修全套教案

高中数学必修全套教案

高中数学必修全套教案教学内容:高中数学必修内容教学目标:学生掌握高中数学必修知识,提高数学思维能力和解题能力。

教学方法:理论教学与实践结合,启发式教学。

教学过程:第一课:集合与常用逻辑运算1. 导入:用实例引导学生了解集合的概念和常用逻辑运算。

2. 讲解:讲解集合的基本概念、表示法及常用逻辑运算。

3. 练习:让学生完成相关练习题,加深对集合和逻辑运算的理解。

第二课:函数与函数的相关性质1. 导入:通过实例引导学生了解函数的概念和相关性质。

2. 讲解:讲解函数的定义、性质和相关定理。

3. 实践:让学生完成实际问题的运用,提高解题能力。

第三课:导数与微分1. 导入:通过例题引导学生了解导数和微分的概念。

2. 讲解:讲解导数的定义、性质以及微分的计算方法。

3. 拓展:引导学生应用导数和微分解决实际问题,提高数学思维。

第四课:不定积分与定积分1. 导入:通过例题引导学生了解不定积分和定积分的概念。

2. 讲解:讲解不定积分和定积分的定义、性质及计算方法。

3. 练习:让学生完成相关练习题,巩固所学知识。

第五课:平面向量1. 导入:通过实例引导学生了解平面向量的概念和基本性质。

2. 讲解:讲解平面向量的定义、运算规则及相关定理。

3. 拓展:引导学生应用平面向量解决几何问题,提高解题能力。

教学评估:定期进行小测验和月考,及时发现学生的问题并提出解决方法。

教学反馈:及时总结教学过程,调整教学方法和学生目标,提高教学效果。

教学总结:通过不断的实践和实践,学生将掌握高中数学必修知识,提高数学思维能力和解题能力。

愿学生通过努力学习,取得优异的成绩。

优秀高中数学教案模板(优秀11篇)

优秀高中数学教案模板(优秀11篇)

优秀高中数学教案模板(优秀11篇)优秀高中数学教案模板篇一教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。

(2)进一步理解曲线的方程和方程的曲线。

(3)初步掌握求曲线方程的方法。

(4)通过本节内容的教学,培养学生分析问题和转化的能力。

教学重点、难点:求曲线的方程。

教学用具:计算机。

教学方法:启发引导法,讨论法。

教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线。

学生思考并回答。

教师强调。

2.坐标法和解析几何的意义、基本问题。

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。

解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程。

(2)通过方程,研究平面曲线的性质。

事实上,在前边所学的直线方程的理论中也有这样两个基本问题。

而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。

本节课就初步研究曲线方程的求法。

【问题】如何根据已知条件,求出曲线的方程。

【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。

首先由学生分析:根据直线方程的知识,运用点斜式即可解决。

解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决。

可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解。

设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解。

(2)以这个方程的解为坐标的点都是曲线上的点。

设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上。

综合(1)、(2),①是所求直线的方程。

高中数学教案【6篇】

高中数学教案【6篇】

高中数学教案【6篇】篇一:中学数学优秀教案篇一教学目标:1、理解并驾驭曲线在某一点处的切线的概念;2、理解并驾驭曲线在一点处的切线的斜率的定义以及切线方程的求法;3、理解切线概念实际背景,培育学生解决实际问题的实力和培育学生转化问题的实力及数形结合思想。

教学重点:理解并驾驭曲线在一点处的切线的斜率的定义以及切线方程的求法。

教学难点:用无限靠近、局部以直代曲的思想理解某一点处切线的斜率。

教学过程:一、问题情境1、问题情境。

如何精确地刻画曲线上某一点处的改变趋势呢?假如将点P旁边的曲线放大,那么就会发觉,曲线在点P旁边看上去有点像是直线。

假如将点P旁边的曲线再放大,那么就会发觉,曲线在点P旁边看上去几乎成了直线。

事实上,假如接着放大,那么曲线在点P旁边将靠近一条确定的直线,该直线是经过点P的全部直线中最靠近曲线的一条直线。

因此,在点P旁边我们可以用这条直线来代替曲线,也就是说,点P旁边,曲线可以看出直线(即在很小的范围内以直代曲)。

2、探究活动。

如图所示,直线l1,l2为经过曲线上一点P的两条直线,(1)试推断哪一条直线在点P旁边更加靠近曲线;(2)在点P旁边能作出一条比l1,l2更加靠近曲线的直线l3吗?(3)在点P旁边能作出一条比l1,l2,l3更加靠近曲线的直线吗?二、建构数学切线定义:如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。

随着点Q沿曲线C向点P运动,割线PQ在点P旁边靠近曲线C,当点Q无限靠近点P时,直线PQ 最终就成为经过点P处最靠近曲线的直线l,这条直线l也称为曲线在点P处的切线。

这种方法叫割线靠近切线。

思索:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?三、数学运用例1 试求在点(2,4)处的切线斜率。

解法一分析:设P(2,4),Q(xQ,f(xQ)),则割线PQ的斜率为:当Q沿曲线靠近点P时,割线PQ靠近点P处的切线,从而割线斜率靠近切线斜率;当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。

高中数学教案(15篇)

高中数学教案(15篇)

高中数学教案(15篇)高中数学教案1教学目标1.了解映射的概念,象与原象的概念,和一一映射的概念.(1)明确映射是特殊的对应即由集合,集合和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;(2)能准确使用数学符号表示映射,把握映射与一一映射的区别;(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.2.在概念形成过程中,培养学生的观察,比较和归纳的能力.3.通过映射概念的学习,逐步提高学生对知识的探究能力.教学建议教材分析(1)知识结构映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.(2)重点,难点分析本节的教学重点和难点是映射和一一映射概念的形成与认识.①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多.其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.教法建议(1)在映射概念引入时,可先从学生熟悉的对应入手,选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.教学设计方案2.1映射教学目标(1)了解映射的概念,象与原象及一一映射的概念.(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.(3)通过映射概念的学习,逐步提高学生的探究能力.教学重点难点::映射概念的形成与认识.教学用具:实物投影仪教学方法:启发讨论式教学过程:一、引入在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.二、新课在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)我们今天要研究的是一类特殊的对应,特殊在什么地方呢?提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)提问2:能用自己的语言描述一下这几个对应的共性吗?经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)高中数学教案2教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.(2)进一步理解曲线的方程和方程的曲线.(3)初步掌握求曲线方程的方法.(4)通过本节内容的教学,培养学生分析问题和转化的能力.教学重点、难点:求曲线的方程.教学用具:计算机.教学方法:启发引导法,讨论法.教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线.学生思考并回答.教师强调.2.坐标法和解析几何的意义、基本问题.对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,研究平面曲线的性质.事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.【问题】如何根据已知条件,求出曲线的方程.【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.首先由学生分析:根据直线方程的知识,运用点斜式即可解决.解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上.综合(1)、(2),①是所求直线的方程.至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:解法二:设是线段的垂直平分线上任意一点,也就是点属于集合由两点间的距离公式,点所适合的条件可表示为将上式两边平方,整理得果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.让我们用这个方法试解如下问题:例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.求解过程略.【概括总结】通过学生讨论,师生共同总结:分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;(2)写出适合条件的点的集合;(3)用坐标表示条件,列出方程;(4)化方程为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.下面再看一个问题:例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合由距离公式,点适合的条件可表示为①将①式移项后再两边平方,得化简得由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.【练习巩固】题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.根据条件,代入坐标可得化简得①由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为【小结】师生共同总结:(1)解析几何研究研究问题的方法是什么?(2)如何求曲线的方程?(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?【作业】课本第72页练习1,2,3;高中数学教案3[学习目标](1)会用坐标法及距离公式证明Cα+β;(2)会用替代法、诱导公式、同角三角函数关系式,由C α+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

高中数学教案设计(精选12篇)

高中数学教案设计(精选12篇)

高中数学教案设计(精选12篇)高中数学教学设计篇一一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。

因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。

所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。

因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。

在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。

为此本节内容在三角函数中占有非常重要的地位。

三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

高中数学教案(15篇)

高中数学教案(15篇)

《高中数学教案》第一篇:集合与函数一、教学目标1. 理解集合的概念,掌握集合的基本运算。

2. 理解函数的概念,掌握函数的基本性质。

3. 培养学生分析问题和解决问题的能力。

二、教学内容1. 集合的概念、表示方法及基本运算。

2. 函数的概念、表示方法及基本性质。

3. 函数与集合的关系。

三、教学重点与难点1. 重点:集合的概念、基本运算及函数的概念、基本性质。

2. 难点:集合与函数的关系,函数的性质。

四、教学过程1. 导入新课:通过生活中的实例,引导学生理解集合和函数的概念。

2. 讲解新课:详细讲解集合和函数的概念、表示方法及基本运算。

3. 课堂练习:通过实例分析,让学生掌握集合和函数的基本性质。

五、教学反思1. 通过本节课的学习,学生对集合和函数的概念有了初步的认识。

2. 学生在解决实际问题时,能够运用集合和函数的知识。

3. 在教学过程中,发现部分学生对集合与函数的关系理解不够深刻,需要加强引导和练习。

第二篇:不等式一、教学目标1. 理解不等式的概念,掌握不等式的解法。

2. 培养学生分析问题和解决问题的能力。

二、教学内容1. 不等式的概念及基本性质。

2. 一元一次不等式的解法。

3. 一元二次不等式的解法。

三、教学重点与难点1. 重点:不等式的概念、基本性质及一元一次不等式的解法。

2. 难点:一元二次不等式的解法。

四、教学过程1. 导入新课:通过生活中的实例,引导学生理解不等式的概念。

2. 讲解新课:详细讲解不等式的概念、基本性质及一元一次不等式的解法。

3. 课堂练习:通过实例分析,让学生掌握一元二次不等式的解法。

五、教学反思1. 通过本节课的学习,学生对不等式的概念有了初步的认识。

2. 学生在解决实际问题时,能够运用不等式的知识。

3. 在教学过程中,发现部分学生对一元二次不等式的解法掌握不够,需要加强引导和练习。

第三篇:数列一、教学目标1. 理解数列的概念,掌握数列的通项公式。

2. 培养学生分析问题和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学教案全套【篇一:人教a版高中数学必修1全套教案】课题:1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本p2-p3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:课本p3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征(1)确定性:设a是一个给定的集合,x是某一个具体对象,则或者是a的元素,或者不是a的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样5. 元素与集合的关系;(1)如果a是集合a的元素,就说a属于(belong to)a,记作a∈a(2)如果a不是集合a的元素,就说a不属于(not belong to)a,记作a?a(或a a 6. 常用数集及其记法非负整数集(或自然数集),记作n正整数集,记作n*或n+;整数集,记作z有理数集,记作q实数集,记作r(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;例1.(课本例1)思考2,引入描述法说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-32},{(x,y)|y=x2+1},{直角三角形},?;例2.(课本例2)说明:(课本p5最后一段)思考3:(课本p6思考)强调:描述法表示集合应注意集合的代表元素{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。

下列写法{实数集},{r}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本p6练习)三、归纳小结本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

四、作业布置书面作业:习题1.1,第1- 4题课题:1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用venn图表达集合间的关系;(4)了解与空集的含义。

教学重点:子集与空集的概念;用venn图表达集合间的关系。

教学难点:弄清元素与子集、属于与包含之间的区别;教学过程:五、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 n;(2;(3)-1.5 r2、类比实数的大小关系,如57,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)六、新课教学(一)集合与集合之间的“包含”关系;a={1,2,3},b={1,2,3,4}集合a是集合b的部分元素构成的集合,我们说集合b包含集合a;如果集合a的任何一个元素都是集合b的元素,我们说这两个集合有包含关系,称集合a是集合b的子集(subset)。

记作:a?b(或b?a)读作:a包含于(is contained in)b,或b包含(contains)a当集合a不包含于集合b时,记作a b用a?b(或b?a)(二)a?b且b?a,则a?b中的元素是一样的,因此a?bab即 a?b?? b?a?练习结论:任何一个集合是它本身的子集(三)真子集的概念若集合a?b,存在元素x?b且x?a,则称集合a是集合b的真子集(proper subset)。

记作:a b(或b a)读作:a真包含于b(或b真包含a)举例(由学生举例,共同辨析)(四)空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set),记作:?规定:空集是任何集合的子集,是任何非空集合的真子集。

(五)结论:1a?a 2a?b,且b?c,则a?c ○○(六)例题(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。

(2)化简集合a={x|x-32},b={x|x?5},并表示a、b的关系;(七)课堂练习(八)归纳小结,强化思想两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;(九)作业布置1、书面作业:习题1.1 第5题2、提高作业:1 已知集合a?{x|a?x?5},b?{x|x≥2},且满足a?b,求实数a○的取值范围。

2 设集合a?{○四边形},b?{平行四边形},c?{矩形},d?{正方形},试用venn图表示它们之间的关系。

课题:1.3集合的基本运算教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课型:新授课教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;教学过程:七、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(p9思考题),引入并集概念。

八、新课教学1. 并集一般地,由所有属于集合a或属于集合b的元素所组成的集合,称为集合a与b的并集(union)记作:a∪b读作:“a并b”即: a∪b={x|x∈a,或x∈b}venn图表示:(重复元素只看成一个元素)。

例题(p9-10例4、例5)问题:在上图中我们除了研究集合a与b的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合a与b的交集。

2. 交集一般地,由属于集合a且属于集合b的元素所组成的集合,叫做集合a与b的交集(intersection)。

记作:a∩b 读作:“a交b”即: a∩b={x|∈a,且x∈b}交集的venn图表示说明:两个集合求交集,结果还是一个集合,是由集合a与b的公共元素组成的集合。

例题(p9-10例6、例7)拓展:求下列各图中集合a与b的并集与交集a集3. 补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(universe),通常记作u。

补集:对于全集u的一个子集a,由全集u中所有不属于集合a的所有元素组成的集合称为集合a相对于全集u的补集(complementary set),简称为集合a的补集,记作:cua 即:cua={x|x∈u且x∈a}补集的venn图表示说明:补集的概念必须要有全集的限制例题(p12例8、例9)4. 求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,去揭示、挖掘题设条件,结合venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

5. 集合基本运算的一些结论:a∩b?a,a∩b?b,a∩a=a,a∩?=?,a∩b=b∩aa?a∪b,b?a∪b,a∪a=a,a∪?=a,a∪b=b∪a (cua)∪a=u,(cua)∩a=?若a∩b=a,则a?b,反之也成立若a∪b=b,则a?b,反之也成立若x∈(a∩b),则x∈a且x∈b若x∈(a∪b),则x∈a,或x∈b6. 课堂练习(1)设a={奇数}、b={偶数},则a∩z=a,b∩z=b,a∩b=?(2)设a={奇数}、b={偶数},则a∪z=z,b∪z=z,a∪b=z(3)集合a?{n|nm?1?z},b?{m|?z},则a?b?__________225(4)集合a?{x|?4?x?2},b?{x|?1?x?3},c?{x|x?0,或x?} 2那么a?b?c?_______________,a?b?c?_____________;九、归纳小结(略)【篇二:高中数学选修1-1全套教案】第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。

教学设想:通过学生的参与,激发学生学习数学的兴趣。

(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.2(4)若x=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

相关文档
最新文档