第6章 时变电磁场(6).

合集下载

6电磁场与电磁波-第六章图片

6电磁场与电磁波-第六章图片

第三节
电磁场的基本方程 ——麦克斯韦方程组
麦克斯韦在引入位 移电流假说的基础上, 总结前人研究成果, 将揭示电、磁场基本 性质的几个方程结合 在一起,构成了麦克 斯韦方程组。
一、麦克斯韦方程组的积分形式
(推广的安培环路定律) (传导电流产生磁场 且变化电场也能产生磁场) (法拉第电磁感应定律)
(变化的磁场产生电场) (磁通连续性定律,磁感应线闭合) (高斯定理,反映电荷 以发散方式产生电场)
第六章 时变电磁场
静态场:场大小不随时间发生改变(静电场,恒定磁场)
特性:电场和磁场相互独立,互不影响。 时变场:场的大小不随时间发生改变。 特性:电场和磁场相互激励,从而形成不可分隔的统 一的整体,称为电磁场。 本章主要内容: 电磁场的基本方程——麦克斯韦方程组 电磁场边界条件 电磁场的能流和能流定律 电磁场波动方程
小 结
1.麦克斯韦方程组可以写为不同的形式,非限定 的形式可用于任何媒质;而限定形式的麦克斯 韦方程可求解实际的工程问题。 2. 麦克斯韦方程组表明了电磁场和它们的源之间 的关系:除了真实电流外,变化的电场(位移 电流)也产生磁场;除了电荷外,变化的磁场 也是电场的源。
3. 静场只是时变场的一种特殊情况。
b) 当线圈以w旋转时,穿过线圈的磁通的变化既有 因磁场随时间变化的,还有因线圈自身转动引起的, 此时线圈面的法向n为时间的函数,α= wt,故:
则:
也可用下式计算感应电动势: 动生电动势
感生电动势
式中第一项与线圈静止时相同,第二项为:
故:
第二节 位移电流
一、安培环路定律的局限性
C
S2
l
S1
I
2、E 的边界条件
结论:E 切向连续。

电磁场原理(第二版)6章

电磁场原理(第二版)6章

• 式(6.1.5)和式(6.1.6)称为电磁波动方程,它们是波 动方程的一般形式,它们支配着无源、线性、均 匀各向同性导电媒质中电磁场的行为,是研究电 磁波问题的基础。 • 从数学上来看,H和E满足相同形式的方程,在直
角坐标系下,若用ψ(r,t)来表示电场E或磁场H的一 个分量,有方程
• 6.1.2 平面电磁波及基本性质 • 对于电磁波传播过程中的某一时刻 t ,电磁场中 E 或 H 具有相同相位的点构成的空间曲面称为等相 面,又称为波阵面。如果电磁波的等相面或波阵 面为平面,则这种电磁波称为平面电磁波。如果 在平面电磁波波阵面上的每一点处,电场 E 均相 同,磁场 H 也均相同,则这样的平面电磁波称为 均匀平面电磁波。
称为理想介质的波阻抗,单位
为欧姆,上两式均称为波的欧姆定律。 • 4)对于入射波,根据空间任意点在某一时刻 的电磁波电磁场能量密度的假设,再考虑 波的欧姆定律,有 • 相应的坡印延矢量为
• 上式表明,在理想介质中电磁波能量流动 的方向与波传播的方向一致。又坡印廷矢 量的值表示单位时间内穿过与波传播方向 相垂直的单位面积内的电磁能量,即等于 电磁能量密度ω′和能流速率ve的乘积
负方向行进的波的电场分量和磁场分量,称 为反射波。 • 2)波的传播速率 • 是一常数,它仅与媒质参数有关。 • 3)将 代入式(6.1.15)得
• 将上式对时间积分,并略去积分常数,得
• 同理可得 • (6.2.5)和(6.2.6)分别表示了入射波和反射波 中电场和磁场之间的关系。令
• 其中
• 上两式就是无限大理想介质中电磁场随时 间作正弦变化时的稳态解。此时的电场和 磁场既是时间的周期函数,又是空间坐标 的周期函数。 • 相位因子 (ωt-βx+φ) 的物理意义 ( 为方便计, 取φ =0): • 1)t=0 时,相位因子为 -βx , x=0 处的相位为 零,这时电场和磁场都处在零值。 • 2)在t时刻,波的零值点移到ωt-βx=0处,即

电磁场与电磁波课后习题及答案六章习题解答

电磁场与电磁波课后习题及答案六章习题解答

第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。

滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。

设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。

设、、,求回路中的感应电动势。

解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。

故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。

讨论这两种情况下导线内的电场强度E。

解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。

故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。

一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。

设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。

解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。

流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。

解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。

解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。

《电磁学》第6章 第6.5 磁场的能量和能量密度(1学时)

《电磁学》第6章 第6.5 磁场的能量和能量密度(1学时)

《电磁学》第六章 §6.5 磁场的能量和能量密度
公式说明: 上面的磁场能量密度公式,虽然由从螺线管中均匀磁场 的特例导出的,但它是适用于各种类型磁场的普遍公式;
第 4页
在任何磁场中,某一点的磁场能量密度,只与该点的磁感 应强度以及磁介质的性质有关, 这也说明了磁能定域于磁场。
wm 各向异性介质中,
B1
I1 B1 , H1; I 2 B2 , H 2
总磁场:
I1
I2
H H1 H 2 , B B1 B2
1 1 B HdV ( B1 B2 ) ( H1 H 2 )dV V V 2 2 1 1 B1 H1 B2 H 2 )dV ( B1 H 2 B2 H1 )dV 2 V 2
第11页
本节作业: pp.436
6.5-3、6.5-6
《电磁学》第六章 §6.5 磁场的能量和能量密度
比较
计算有横截面积的导体回路的自感系数之方法:
第10页
磁能法:
1 1 Wm LI 2 B Hdv 2 2 V
1 L 2 B Hdv I V
平均磁链法(复杂,适合于没有截面积的线电流和面电流情况):
(1)
,式中 1 id ,对磁通积分。 L
公式应用【2】计算自感、互感系数(磁能法)
(1)求自感 L 若空间磁场仅由单一载流回路激发,仅存自感磁能
第 7页
1 2 1 Wm LI B HdV 2 2 V
(2)求互感 M
L
1 I2

V
B HdV
若空间磁场由多个载流回路激发,存在互感磁能
W互 MI1 I 2 0 H1 H 2dV

6- 电磁感应 电磁场(带答案)

6- 电磁感应 电磁场(带答案)

增加,求空间涡旋电场的分布.
解:取绕行正方向为顺时针方向,作为感生电动势和涡旋电场的标定正方向,磁
通量的标定正方向则垂直纸面向里.
在 r<R 的区域,作半径为 r 的圆形回路,由
i
L Ei dl
S
B
dS
t
O R
B
5
并考虑到在圆形回路的各点上, Ei 的大小相等,方向沿圆周的切线.而在圆形回路内是匀强磁场,且 B 与 dS

,内部的磁能密度为

答案:µ0nI
0n2I 2 / 2
6-T 自感磁能 6、自感系数 L =0.3 H 的螺线管中通以 I =8 A 的电流时,螺线管存储的磁场能量 W = . 答案:9.6J
6-T 动生电动势势 二、选择题
6-X 电磁感应现象
1
1、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是( )
6-S 磁场能量 自感
5、一无限长同轴电缆是由两个半径分别为 R1 和 R2 的同轴圆筒状导体构成的,其间充满磁导率为μ的磁 介质,在内、外圆筒通有方向相反的电流 I.求单位长度电缆的磁场能量和自感系数.
解:对于这样的同轴电缆,磁场只存在于两圆筒状导体之间的磁介质内,由安培环路定理可求得磁场强
度的大小为
A IA r
L, .R
B IB r
R
(A) 两线圈的轴线互相平行。
(B)两线圈的轴线成 45°角。
K
(C) 两线圈的轴线互相垂直。
(D)两线圈的轴线成 30°角。
答案:C
6-X 感生电场
10、在感生电场中,电磁感应定律可写成 E K
L
dl
d dt
,式中 EK

电磁场与电磁波第六章

电磁场与电磁波第六章
R// ER 0 E I0 ET 0 EI0
1 H R 0 H R 0 1 cos 1 2 cos 2 1 H I 0 H I 0 1 cos 1 2 cos 2

(6-1-23)
T//
2 H T0 1 H I 0

2 2 cos 1 1 cos 1 2 cos 2
(6-1-1)
其中
k1 1 1 , k 2 2 2
入射波、反射波、折射波的电场矢量分别为
E I E I 0e j kI r , E R E R0e j kR r , ET ET 0 e j kT r
(6-1-2)
介质 1 中的总电场是入射波与反射波的叠加,即 E1= EI+ ER; 介质 2 中的仅为折射波,E2= ET 。 下面,根据电磁场的边界条件,由入射波的 kI和 EI0、HI0 来确定反射波和折射波的 kR、kT 以及 ER0、HR0、ET0、HT0。
第六章 平面电磁波的反射与折射
6.1.1 反射、折射定律
首先来确定反射波和折射波的波矢量方向。 由交界面 z = 0 处两侧的切向分量连续的边界条件和式
(6-1-2),可得
j (k Ix x k Ix y ) j ( k Rx x k Ry y ) j ( k Tx x k Ty y )
只考虑 E 和 H 的切向分量边界条件即可。
6.1 电磁波的反射、折射规律
设介质 1 和介质 2 的交界面
为无穷大平面,界面法向沿 z 方 向,平面电磁波以入射角I 由介 质 1 射向介质 2,如图所示。
第六章 平面电磁波的反射与折射
入射波、反射波、折射波的波矢量分别为
k I ekI k1 , k R ekR k1 , kT ekT k 2

电磁场与电磁波——第六章 6-3 导电煤质

电磁场与电磁波——第六章 6-3 导电煤质
距离后振幅由|E1|衰减为|E2|, 则 | E2 || E1 | eal
al 1n E1 E2
(Np)
工程上又常用dB来计算衰减量, 其定义为
al 10 lg P1 20lg E1 (dB)
P2
E2
当|E1|/|E2|=e=2.718, 衰减量为1Np, 或20lg 2.718 3=8.686dB, 故
β称为相位常数, α称为衰减常数。 两边平方后有
2 2 j
j
2 a2 2 上式两边的实部和虚部应分别相等, 即 2a
由上二方程解得
1/ 2
2
1
2
1
1/ 2
2
1
2
1
6.3.3 平面波在导电媒质中的传播特性
采用等效复介电常数 e 后, 平面波在导电媒质中的场表达式
和传播参数可仿照理想介质情况来得出。 在无源区, 设其时谐电
磁场的电场复矢量为 E exEx , Ex的波动方程为:
2 Ex
2
kc Ex
0
kc
e
( j )
对于沿+z方向传播的波, 解的形式 E ex E0e jkcz
传播常数 jKc j
电场复数表达式
E exE0e z exE0eze jz
同相。此时磁场强度复矢量为
磁场强度复矢量为
H
ey
E0
e
e jkcz
ey
E0
e
eaze j ze j
其瞬时值为
H (t) ey
E0
e
eaz
cos(t z )
磁场滞后电场, 二者不再同相。
导电媒质中的平面波
磁场强度的方向与电场强度相垂直, 并都垂直于传播方向Zˆ , 因此导电媒质中的平面波是横电磁波。这个性质与理想介质中 的平面电磁波是相同的。

电磁场与电磁波(第三版)课后答案第6章

电磁场与电磁波(第三版)课后答案第6章

第六章时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。

滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰ B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。

设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。

设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E xm E xm e

i x
7
E xm E xm e


i x
E xm e it E xm e i x e it E xm e i (t x )
E xm [cos( t x ) i sin(t x )]
i (t x ) it Re E xm e Re E xm e E xm cos(t x )
j e ( r ) Em (r ) Em (r ) e
15
例6-7 P225
将下列场量的复数和瞬时值表达式互换。
(设对t的变化以余弦为基准。)
(1) E ay Eym cos(t x ) az Ezm sin(t x ) (2) H a x H 0 sin( x) sin( kz t ) a

i (t x ) E x r ,t E xm cos(t x ) Re[ E xm e ] Re[ E xm e it ]


8
i (t x ) it E x r ,t E xm cos(t x ) Re[ E xm e ] Re[ E xm e ]
2
§6.6 时谐变电磁场
一、时谐变电磁场量的复数表示法 二、麦克斯韦方程组的复数形式 三、能量密度、坡印廷定理和 坡印廷矢量的复数表示法 四、达朗贝尔方程及其特解的复数形式
3
§6.6 时谐变电磁场
一、时谐变电磁场量的复数表示法 二、麦克斯韦方程组的复数形式 三、能量密度、坡印廷定理和 坡印廷矢量的复数表示法 四、达朗贝尔方程及其特解的复数形式
4
一、时谐变电磁场量的复数表示法
1、欧拉公式
e cos i sin
容易验证:
i
e e e i1 e i (1 2 ) e i 2 e
i1
i 2
i (1 2 )
5
复数z0的三角形式和指数形式: 三角形式:
z x iy r (cos i sin )
实际中,通常测得的是正弦量的有效值,
以 E (r ) 表示正弦量的有效值,则 j e ( r ) E (r ) E (r )e
式中
(即平方的周期平均值)
所以最大值表示复矢量和有效值表示复矢量之间的 关系为
E m (r ) E (r ) 2

9

E m ax E xm a y E ym az E zm

jt E (r , t ) Re[E m e ]
(6-34)

(6-35)
E m 称为 E (r , t )的复振幅矢量。 E (r , t )叫瞬时值。
单位复数:
z cos i sin
z x iy re
i
指数形式:
6
jt E (r , t ) Re[E m e ]
(6-35)
E (r , t ):瞬时值。 E m : E (r , t )的复振幅矢量。
E m a x E xm a y E ym az E zm
i (t y ) E y r ,t E ym cos(t y ) Re[ E yme ] Re[ E ym e it ]
E z r ,t E zm cos(t z ) Re[ E zm e i (t z ) ] Re[ E zm e it ]
第六章 时变电磁场
§6.1 法拉第电磁感应定律 与麦克斯韦第二方程 §6.2 位移电流和全电流定律 §6.3 麦克斯韦方程组 §6.4 分界面上的边界条件 §6.5 坡印亭定理和坡印亭矢量 §6.6 时谐变电磁场 §6.7 波动方程 §6.8 时变场的标量位和矢量位
★ 复数表示法
j t 1 d t j
Em (r ) 2E (r )
14
有的书刊将正弦电磁场表示为 则瞬时矢量与复矢量的关系为
E(r , t ) பைடு நூலகம் Em (r ) cos( t e )
j t E (r , t ) Re[Em (r )e ]
无论何种表示方法,
复矢量仅为空间函数,与时间无关。而且, 只有频率相同的正弦量之间才能使用复矢量的 方法进行运算。
它是正弦时间函数的振幅。为角频率。
ψe (r ) 为正弦函数的初始相位,它可能是空间的函数。
具有这种变化规律的时变电磁场称为正弦电磁场,
或者称为时谐电磁场。
11
正弦电磁场在实际中获得广泛的应用。
由傅里叶变换的数学方法得知:
任一周期性或非周期性的时间函数在一定条件下均可
分解为很多正弦函数之和。
而略去时间相位t。那么,对于电场强度可用一个
表示为 (r 与时间无关的复矢量 E ) m
原来的瞬时矢量和复矢量的关系为
j e ( r ) Em (r ) Em (r ) e
13
j t E (r , t ) Im[Em (r ) e ]

Re[]表示取 []中的实部, Im[] 表示取 []中的虚部。
10
★ 正弦电磁场 现在我们讨论一种特殊的时变电磁场: 其场强的方向与时间无关,但
其大小随时间的变化规律为正弦函数,即
式中,
E(r , t ) Em (r ) sin(ω t ψe (r ))
Em (r ) 仅为空间函数,
因此,我们着重讨论正弦电磁场是具有实际意义的。
12
正弦电磁场是由随时间按正弦变化的时变电荷 与电流产生的。因为场与源随时间的变化规律是相 同的,所以正弦电磁场的场和源具有相同的频率。
当场的方向与时间无关时,对于这些相同频率
的正弦量之间的运算可以采用复数方法,
即仅须考虑正弦量的振幅和空间相位 e (r ),
相关文档
最新文档