电磁场与电磁波课后习题及答案六章习题解答

合集下载

电磁场与电磁波课后答案_郭辉萍版1-6章

电磁场与电磁波课后答案_郭辉萍版1-6章

第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:⑴矢量A 的单位矢量A a ; ⑵矢量A 和B 的夹角AB θ; ⑶A ·B 和A ⨯B⑷A ·(B ⨯C )和(A ⨯B )·C ;⑸A ⨯(B ⨯C )和(A ⨯B )⨯C解:⑴A a =A A=149A++=(x a +2y a -3z a )/14⑵cos AB θ=A ·B /A BAB θ=135.5o⑶A ·B =-11, A ⨯B =-10x a -y a -4z a ⑷A ·(B ⨯C )=-42(A ⨯B )·C =-42⑸A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。

解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。

解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A =x a 32x +y a (3y+z )+z a (3z -x)⑵验证散度定理。

电磁场与电磁波课后习题及答案六章习题解答

电磁场与电磁波课后习题及答案六章习题解答

第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。

滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。

设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。

设、、,求回路中的感应电动势。

解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。

故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。

讨论这两种情况下导线内的电场强度E。

解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。

故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。

一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。

设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。

解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。

流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。

解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。

解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。

电磁场与电磁波课后习题及答案六章习题解答

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题 6.1图所示。

滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰g g B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。

设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解 介质棒内距轴线距离为r 处的感应电场为00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()(P r r r a e r σεεωε==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。

设0.2a m=、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。

解 由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。

电磁场与电磁波(第四版)课后答案-第六章习题

电磁场与电磁波(第四版)课后答案-第六章习题
E v 1 x ˆ E 1 x y ˆ E 1 y x ˆ j 2 0 0 s i n z e j 9 0 o y ˆ j 4 0 0 s i n z .
同样
H1x
HxHrx
1200ejz1200ejz
0
0
1400cosz 0
H1yHyHry10100ejz90o100ejz90o10200ej90ocos z
v
v
(4) E 2 z xˆEtme j2z
v

E e j2z im
2 2 1.12
v 1 2
E2 z xˆ1.12 2.4e j10.54 z
v
E2 z,t
xˆ 2.68 cos
5 10.8 t 10.54 z
(4)
解:(1)
11100 r1r13.33rad/m 200 r2r210.54rad/m
.
(2)
1
1 1
0
r1 r1
1 2
0
60
2
2 2
0
r2 75.9 r2
2 1 0.117 2 1
(3)电场方向为ex方向
v E1
z
v Ei
z
v Er
z
v xˆEim
e j1z e j1z
t z 90o
1
0
xˆ200cost
z
yˆ100sin
t
z
A/
m
(2)均匀平面波垂直入射到理想导体平面上会产生全反射, 反射波的电场为
Erx 100ej z90o
Ery 200ejz
.
即z<0区域内的反射波电场为
E v r x ˆ E r x y ˆ E r y x ˆ 1 0 0 e jz 9 0 o y ˆ 2 0 0 e jz

电磁场与电磁波课后标准答案-郭辉萍版1-6章

电磁场与电磁波课后标准答案-郭辉萍版1-6章

第一章习题解答1.2给定三个矢量A ,B ,C :A =x a +2y a -3z aB = -4y a +z aC =5x a -2za 求:⑴矢量A 的单位矢量A a ;⑵矢量A 和B 的夹角AB;⑶A ·B 和A B⑷A ·(B C )和(A B )·C ;⑸A (BC )和(AB )C解:⑴A a =A A=149A =(x a +2y a -3z a )/14⑵cosAB=A ·B /A BAB=135.5o⑶A ·B =11, A B =10x a y a 4za ⑷A ·(BC )=42 (A B )·C =42 ⑸A(B C )=55x a 44ya 11za (AB )C =2xa 40y a +5za 1.3有一个二维矢量场F(r)=x a (y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。

解:由dx/(y)=dy/x,得2x +2y =c 1.6求数量场=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2z )=c则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。

解:由=xa x+ya y+za z=12x 3yx a +182x 2y y a +ze z a 得=24x a +72y a +za 1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S:⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A =x a 32x +y a (3y+z )+z a (3z x)⑵验证散度定理。

解:⑴?s d A =A dS ?曲+A d S ?xoz+A dS ?yoz +A dS ?上+A dS?下A d S ?曲=232(3cos3sin sin )z d d 曲=156.4A dS ?xoz=(3)yz dxdz xoz= 6A dS ?yoz=23x dydz yoz=0A dS ?上+A dS ?下=(6cos )d d 上+cos d d 下=272?s d A =193⑵dV A V?=(66)Vx dV =6(cos1)Vd d dz =193即:ss d A =dVA V?1.13 求矢量A =x a x+y a x 2y 沿圆周2x +2y =2a 的线积分,再求A 对此圆周所包围的表面积分,验证斯托克斯定理。

电磁场与电磁波课后习题解答全

电磁场与电磁波课后习题解答全

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c += 即只要满足3b+8c=1就可以使向量和向量垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=- 可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221a b +=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3) )()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r 的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a )所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223yz A x yze xy e =+ 而 A A A A rot ⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y xe x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

电磁场与电磁波课后答案_郭辉萍版1-6章

电磁场与电磁波课后答案_郭辉萍版1-6章

第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:错误!未找到引用源。

矢量A 的单位矢量A a ; 错误!未找到引用源。

矢量A 和B 的夹角AB θ; 错误!未找到引用源。

A ·B 和A ⨯B错误!未找到引用源。

A ·(B ⨯C )和(A ⨯B )·C ;错误!未找到引用源。

A ⨯(B ⨯C )和(A ⨯B )⨯C解:错误!未找到引用源。

A a =A A=(x a +2y a -3z a ) 错误!未找到引用源。

cos AB θ=A ·B /A BAB θ=135.5o错误!未找到引用源。

A ·B =-11, A ⨯B =-10x a -y a -4z a 错误!未找到引用源。

A ·(B ⨯C )=-42(A ⨯B )·C =-42错误!未找到引用源。

A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。

解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。

解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。

1 电磁场与电磁波课后习题答案第六章

1 电磁场与电磁波课后习题答案第六章

6.2 自由空间中一均匀平面波的磁场强度为)cos()(0x wt H a a H z y π-+= m A /求:(1)波的传播方向;(2)波长和频率;(3)电场强度; (4)瞬时坡印廷矢量。

解:)cos()(0x wt H a a H z y π-+= m A /(1) 波沿+x 方向传播(2) 由题意得:k=π rad/m , 波长m k 22==πλ , 频率Hz c f 8105.1⨯==λ (3))cos(120)(0x wt H a a a H E z y x ππη--=⨯= m v /(4))(cos 24020x wt H a H E S x ππ-=⨯= 2/m w 6.3无耗媒质的相对介电常数4=r ε,相对磁导率1=r μ,一平面电磁波沿+z 方向传播,其电场强度的表达式为)106cos(80z t E a E y β-⨯=求:(1)电磁波的相速;(2)波阻抗和β;(3)磁场强度的瞬时表达式;(4)平均坡印廷矢量。

解:(1)s m cv r r p /105.118⨯===εμμε(2))(6000Ω===πεεμμεμηrr , m r a d c w w r r /4===εμμεβ (3))4106cos(60180z t E a E a H x z -⨯-=⨯=πηm A / (4)π120]Re[2120*E a H E S z av =⨯= 2/m w6.4一均匀平面波从海水表面(x=0)沿+x 方向向海水中传播。

在x=0处,电场强度为m v t a E y /)10cos(1007π =,若海水的80=r ε,1=r μ,m s /4=γ。

求:(1)衰减常数、相位常数、波阻抗、相位速度、波长、趋肤深度;(2)写出海水中的电场强度表达式;(3)电场强度的振幅衰减到表面值的1%时,波传播的距离;(4)当x=0.8m 时,电场和磁场得表达式;(5)如果电磁波的频率变为f=50kHz ,重复(3)的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同样,对式(2)两边取旋度,得

(6)
将式(1)和式(4)代入式(6),得
此即E满足的波动方程。
对于正弦时变场,可采用复数形式的麦克斯韦方程表示
(7)
(8)
(9)
(10)
对式(7)两边取旋度,得
利用矢量恒等式

(11)
将式(8)和式(9)代入式(11),得
此即H满足的微分方程,称为非齐次亥姆霍兹方程。
解如题6.12图所示,设第2区为理想导体( )。在分界面上取闭合路径 。对该闭合路径应用麦克斯韦第一方程可得
(1)
因为 为有限值,故上式中
而(1)式中的另一项
为闭合路径所包围的传导电流。取N为闭合路径所围面积的单位矢量(其指向与闭合路径的绕行方向成右手螺旋关系),则有

故式(1)可表示为
(2)
应用矢量运算公式 ,式(2)变为
变为

故麦克斯韦第四方程 变为
则在非均匀媒质中,用E和B表示的麦克斯韦方程组为
6.11写出在空气和 的理想磁介质之间分界面上的边界条件。
解空气和理想导体分界面的边界条件为
根据电磁对偶原理,采用以下对偶形式
即可得到空气和理想磁介质分界面上的边界条件
式中,Jms为表面磁流密度。
6.12提出推导 的详细步骤。
解(1)在直角坐标中
(2)在圆柱坐标中
(3)在球坐标系中
6.8已知在空气中 ,求 和 。
提示:将E代入直角坐标中的波方程,可求得 。
解电场E应满足波动方程
将已知的 代入方程,得
式中
故得



将上式对时间t积分,得
6.9已知自由空间中球面波的电场为
求H和k。
解可以和前题一样将E代入波动方程来确定k,也可以直接由麦克斯韦方程求与E相伴的磁场H。而此磁场又要产生与之相伴的电场,同样据麦克斯韦方程求得。将两个电场比较,即可确定k的值。两种方法本质上是一样的。
式中


6.4有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。讨论这两种情况下导线内的电场强度E。
解设导线材料的电导率为 ,横截面积为S,则导线的电阻为
而环形线圈的电感为L,故电压方程为
当U=U0时,电流i也为直流, 。故
此时导线内的切向电场为
当U=U(t)时, ,故
解对于海水,H的微分方程为
即把海水视为等效介电常数为 的电介质。代入给定的参数,得
对于铜,传导电流的幅度为 ,位移电流的幅度 。故位移电流与传导电流的幅度之比为
可见,即使在微波频率下,铜中的位移电流也是可以忽略不计的。故对于铜,H的微分方程为
6.15计算题6.13中的能流密度矢量和平均能流密度矢量。
解介质棒内距轴线距离为r处的感应电场为
故介质棒内的极化强度为
极化电荷体密度为
极化电荷面密度为
则介质体积内和表面上同单位长度的极化电荷分别为
6.3平行双线传输线与一矩形回路共面,如题6.3图所示。设 、 、 ,求回路中的感应电动势。
解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。故回路中的感应电动势为
试推导 m和 的微分方程。
解无源空间的麦克斯韦方程组为
(1)
(2)
(3)
(4)
据矢量恒等式 和式(4),知D可表示为一个矢量的旋度,故令
(5)
将式(5)代入式(1),得

(6)
根据矢量恒等式 和式(6),知 可表示为一个标量的梯度,故令
(7)
将式(5)和式(7)代入式(2),得
(8)

故式(8)变为
另外,在x=0的表面上,电流密度为
在x=a的表面上,电流密度则为
6.14海水的电导率 ,在频率f=1GHz时的相对介电常数 。如果把海水视为一等效的电介质,写出H的微分方程。对于良导体,例如铜, ,比较在f=1GHz时的位移电流和传导电流的幅度。可以看出,即使在微波频率下,良导体中的位移电流也是可以忽略的。写出H的微分方程。

(1)
又由


(2)
按库仑规范,令 ,将其代入式(1)和式(2)得
(3)
(4)
式(3)和式(4)就是采用库仑规范时,电磁场A和 所满足的微分方程。
6.18设电场强度和磁场强度分别为
证明其坡印廷矢量的平均值为
解坡印廷矢量的瞬时值为
故平均坡印廷矢量为
6.19证明在无源空间( ),可以引入一个矢量位Am和标量位 ,定义为
(9)
又将式(7)代入式(3),得

(10)

将它代入式(9)和式(10),即得Am和 的微分方程
6.20给定标量位 及矢量位 ,式中 。(1)试证明: ;(2)B、H、E和D;(3)证明上述结果满足自由空间中的麦克斯韦方程。
解(1)


(2)

(3)这是无源自由空间的零场,自然满足麦克斯韦方程。
解瞬时能流密度矢量为
为求平均能流密度矢量,先将电磁场各个分量写成复数形式
故平均能流密度矢量为
6.16写出存在电荷 J的无损耗媒质中E和H的波动方程。
解存在外加源 和J时,麦克斯韦方程组为
(1)
(2)
(3)
(4)
对式(1)两边取旋度,得


(5)
将式(2)和式(3)代入式(5),得
这就是H的波动方程,是二阶非齐次方程。
第六章 时变电磁场
6.1有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 之中,如题6.1图所示。滑片的位置由 确定,轨道终端接有电阻 ,试求电流i.
解穿过导体回路abcda的磁通为
故感应电流为
6.2一根半径为a的长圆柱形介质棒放入均匀磁场 中与z轴平行。设棒以角速度 绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
同样,对式(8)两边取旋度,得

(12)
将式(7)和式(10)代入式(12),得
此即E满足的微分方程,亦称非齐次亥姆霍兹方程。
6.17在应用电磁位时,如果不采用洛伦兹条件,而采用所谓的库仑规范,令 ,试导出A和 所满足的微分方程。
解将电磁矢量位A的关系式
和电磁标量位 的关系式
代入麦克斯韦第一方程

利用矢量恒等式

求解此微分方程就可得到 。
6.5一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。设外加电压为 ,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。
解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即
故电容器两极板间的位移电流密度为
故得
(3)
由于理想导体的电导率 ,故必有 ,故式(3)变为
6.13在由理想导电壁( )限定的区域 内存在一个由以下各式表示的电磁场:
这个电磁场满足的边界条件如何?导电壁上的电流密度的值如何?
解如题6.13图所示,应用理想导体的边界条件可以出
在x=0处,
在x=a处,
上述结果表明,在理想导体的表面,不存在电场的切向分量Ey和磁场的法向分量Hx。

式中, 是长为l的圆柱形电容器的电容。
流过电容器的传导电流为
可见
6.6由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。
解点电荷q产生的电场满足麦克斯韦方程

由 得
据散度定理,上式即为
利用球对称性,得
故得点电荷的电场表示式
由于 ,可取 ,则得
即得泊松方程
6.7试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。


将上式对时间t积分,得
(1)
将式(1)代入

将上式对时间t积分,得
(2)
将已知的
与式(2)比较,可得
含 项的Er分量应略去,且 ,即
将 代入式(1),得
6.10试推导在线性、无损耗、各向同性的非均匀媒质中用E和B表示麦克斯韦方程。
解注意到非均匀媒质的参数 是空间坐标的函数,因此

因此,麦克斯韦第一方程
相关文档
最新文档