北京市清华大学2020届高三中学生标准学术能力诊断性测试(11月) 数学(理)试卷(有答案)

合集下载

(完整word)北京市清华大学2020届高三地理11月中学生标准学术能力诊断性测试试题(扫描版)

(完整word)北京市清华大学2020届高三地理11月中学生标准学术能力诊断性测试试题(扫描版)

北京市清华大学2020届高三地理11月中学生标准学术能力诊断性测试试题(扫描版)一*逸择1那 本蛊其35小虬 毎小观4分*共14•分。

在毎小厲给出的四个选项中*只有一项是符 合題H 要求IW" 焉斷是西澳土和亚州首舟*也星澡大利亚鮎四丸贼市.弦特旳地理住亶和壬候臬空,伐 其號的业兴虚,经济岌逍。

圏1为旳斯地理位垃團,犯此兗成1-3也・ L 珀斯的气候类型是 入热带沙漠气帳 C.温帘海洋性P 悭 人旳斯風向变化较大的乖节为 A.春季 乩見季 B. D. D.冬季 乩珀斯傑曼中国游客晋眯*區观足②噸节相反. £海运便利・ c. <D®®①时间相似,无需倒时達 ③环境优美,眾游资源丰富 A.①②③ B.①②④ 40 旅游价值高 空通通达性碍D.②③④H : \) V/V7图I.无定河地业申国北古干早半干旱过濃国.生杰敏感, 电、氷琵无定,所以取居无瓷河.图2为无宦河地理位鱼菽打部龍太RA ・据此宣锻4f 艷” 由于河道尢定、洙漫是定、李节屯*无定何南值和北侧的毛輕生态坏境何題分别是 九流木很軸和凤丿用辿C.流水堆积和风力良蚀 乩无顾河道无定的主要抵因是A.河減垛枳作用强 C.人类汹期「扰閒 0无定河暈主要的水丈特征是扎注屋大B.流速快瞥議城帀是适阳信息和適廿拽总手强嗨厠、分祈.护合械帀运背牧心岳炖的罢仪关犍怙 息.从而时嵐生、坏裸、必拱妾全*城市龍養,工商业活渤在内的界冲常求愀出智能喰应.其 宪廉是利用丸进們馆思技益,冥现城市帮埴丸膏理和运庁.逆而和市民创.适更屍蚌的生洁, 便扯城市前和谁、町捋禁复肛 图3为熹普氨轉市程房图*据此完成7川縣.采集信息=> 去向登记=> 问魏反应=> 作出判断=[> 城市应用7”图示程序最有可能反眩習慧城甫的领城是A.裡鹽野理B.曾鹽15疗&智議城市最直接的影响体现在民缱解交通I 川址乩改善住房狀况9.种恿城市运用的最主妾地理信息技术是A. RSB.(J [SU 智慧交H D.灣鹽贱游c.改書环境就呈 A 怩进人体偉旗C- GPSD.魏字埴球“一補一品"柏在一定区竦范囲內.以赫为駅衣单任.按卵国內*卜市场霜求.充會电挥审 地資犀化妒,過过丸力推进规憔比、锦車比、常牌比知审坊比煌诛,佬一个村{叔兀芋村)拥有 -个(虫几个)市境潜力尢*区城特邑明豊、阳舸值高帕空毎产品和产业「一村一角"成为财 力參村迪兴的重要逾檯,裁止耳前.花业靈村部拱审械执宣了 1922个“ 一村一品"示皑村範* 图4为我国“-村一品”村慎分布统计&L 据此3fc«W-1】■・mKMBBNHaitOlW^SBSSfl口&FB. 町力锻职和流虫侵蚀 D-流水悝蚀拥凤力堆积氏问蓝佬浊作用强 D.流凰第旧燮化大 C. 骨沙凰乂 D.銷冰期檢C.中寒周%C.种槓业D.分布均匀O.轻工业■・一t ■ -a-tBFlif ■・肝菲■ ■吉吋K.± 畢量 j 壻来 军Jft j 耐; 氐鳖10. 我国“一村一拈”示范村棋的分梯点暑A-南第北少 B.东卑祠少11. 推测“_村_品”主菱集中的银城是&畜牧业氏渝业一、鼻选择删:共WD分。

2020届北京是中学生标准学术能力诊断性测试诊断性测试(1月)数学(理)试题(解析版)

2020届北京是中学生标准学术能力诊断性测试诊断性测试(1月)数学(理)试题(解析版)

2020届北京是中学生标准学术能力诊断性测试诊断性测试(1月)数学(理)试题一、单选题1.若集合{|12}A x x =-<<,{}2,0,1,2B =-,则A B =I ( ) A .∅ B .{0,1}C .{0,1,2}D .{2,0,1,2}-【答案】B【解析】根据题意,利用交集定义直接求解。

【详解】集合{|12}A x x =-<<,{}2,0,1,2B =-,所以集合{}0,1A B =I 。

【点睛】本题主要考查集合交集的运算。

2.若()25i z +=,则z 的虚部为( ) A .-1 B .1C .i -D .i【答案】A【解析】利用复数除法运算化简z ,则虚部可求 【详解】()()()5252222i z i i i i -===-++-,故虚部为-1 故选:A 【点睛】本题考查复数的运算,意在考查计算能力,是基础题3.已知双曲线2221(0)2x y b b -=>的两条渐近线互相垂直,则e =( )A .1 BC D .2【答案】B【解析】根据题意,利用双曲线的两条渐近线垂直推出-1b b a a=-g ,可得a b =,再通过离心率的计算公式即可得出。

【详解】由题意得,-1b b a a =-g ,可得a b =,则2222222,2c a b e e a a+====。

【点睛】本题主要考查双曲线的性质中离心率的求解。

4.由两个14圆柱组合而成的几何体的三视图如图所示,则该几何体的体积为( )A .π3B .π2C .πD .2π【答案】C【解析】根据题意可知,圆柱的底面半径为1,高为2,利用圆柱的体积公式即可求出结果。

【详解】由三视图可知圆柱的底面半径为1,高为2, 则21122V ππ=⋅⨯=, 故答案选C 。

【点睛】本题主要考查根据几何体的三视图求体积问题,考查学生的空间想象能力。

5.函数()()22xf x x x e =-的图像大致是( )A .B .C .D .【答案】B【解析】求导,求出函数()y f x =的单调性,利用单调性来辨别函数()y f x =的图象,以及函数值符号来辨别函数()y f x =的图象. 【详解】()()22x f x x x e =-Q ,()()()()222222x x x f x x e x x e x e '∴=-+-=-.解不等式()0f x '<,即220x -<,得22x -<<;解不等式()0f x '>,即220x ->,得x <x >所以,函数()y f x =的单调递增区间为(,-∞和)+∞,单调递减区间为(.令()0f x >,即220x x ->,得0x <或2x >; 令()0f x <,即220x x -<,得02x <<.所以,符合条件的函数()y f x =为B 选项中的图象,故选B. 【点睛】本题考查利用函数解析式辨别函数的图象,一般从以下几个要素来进行分析:①定义域;②奇偶性;③单调性;④零点;⑤函数值符号.在考查函数的单调性时,可充分利用导数来处理,考查分析问题的能力,属于中等题.6.已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是( )A .⎛-∞ ⎝⎭B .4,7⎛⎫-∞ ⎪⎝⎭C .⎫∞⎪⎪⎝⎭D .4,7⎛⎫+∞⎪⎝⎭【答案】A【解析】将不等式化为32aax x+<,讨论0a =、0a >和0a <时,分别求出不等式成立时a 的取值范围即可 【详解】(]0,2x ∈时,不等式可化为32aax x+<; 当0a =时,不等式为02<,满足题意;当0a >时,不等式化为32x x a +<,则2a >=x =所以a ,即0a <<;当0a <时,32x x a+>恒成立;综上所述,实数a 的取值范围是(,3-∞ 答案选A 【点睛】本题考查不等式与对应的函数的关系问题,含参不等式分类讨论是求解时常用方法7.已知a ,b 为实数,则01b a <<<,是log log a b b a >的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】通过正向与反向推导来验证充分与必要条件是否成立即可 【详解】若01b a <<<,则lg lg b a <,lg lg 1,1lg lg b a a b >> ,lg lg log log lg lg a b b ab a a b>⇔>, 显然o 0l g lo 1g a b b a b a <><<⇒,充分条件成立但log log a b b a >时,比如说2,3a b ==时,却推不出01b a <<<,必要条件不成立 所以01b a <<<是log log a b b a >的充分不必要条件 【点睛】本题考查充分与必要条件的判断,推理能力与计算能力,由于参数的不确定性,故需要对参数进行讨论8.已知随机变量ξ,η的分布列如下表所示,则( )A .E E ξη<,D D ξη<B .E E ξη<,D D ξη>C .E E ξη<,D D ξη= D .E E ξη=,D D ξη=【答案】C【解析】由题意分别求出E ξ,D ξ,E η,D η,由此能得到E ξ<E η,D ξ>D η. 【详解】 由题意得: E ξ111123326=⨯+⨯+⨯=116, D ξ22211111111151(1)(2)(3)636108266=-⨯+-⨯+-⨯=. E η111131236236=⨯+⨯+⨯=,D η=(1316-)216⨯+(2136-)212⨯+(3136-)21513108⨯=, ∴E ξ<E η,D ξ=D η. 故选:C . 【点睛】本题考查离散型随机变量的分布列、数学期望、方差的求法,考查运算求解能力,是中档题.9.在ABC △中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v,则AB BC=u u u vu u u v ( ) A .1 B.2CD.2【答案】C【解析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果。

2020届清华大学中附属中学学生标准学术能力诊断性测试11月测试高三理综化学试题(原卷版)

2020届清华大学中附属中学学生标准学术能力诊断性测试11月测试高三理综化学试题(原卷版)

中学生标准学术能力诊断性测试 2019年11月测试理科综合试卷(一卷)——化学可能用到的相对原子质量:H 1 O 16 Fe 56 Cu 64 S 32一、选择题:本题共13小题,每小题 6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.中华文化源远流长、博大精深。

下列有关蕴含的化学知识的说法中,不正确的是A. 食品包装中常见的抗氧化剂成分为:还原性铁粉、氯化钠、炭粉等,其脱氧原理与钢铁的吸氧腐蚀不相同B. “陶尽门前土,屋上无片瓦。

十指不沾泥,鳞鳞居大厦。

”黏土烧制陶瓷的过程发生了化学变化C. “兰陵美酒郁金香,玉碗盛来琥珀光。

”粮食发酵产生的酒精分散在酒糟中,可以通过蒸馏与酒糟分离D. 侯氏制碱法中的“碱”指的是纯碱2.某有机物结构简式如图,下列关于该有机物的说法正确的是①分子式为C16H14O5;②能使酸性KMnO4溶液褪色;③能发生加成反应,但不能发生取代反应;④苯环上的一溴代物有6种;⑤1mol该有机物水解时最多能消耗4molNaOH;⑥1mol该有机物在一定条件下和H2反应,共消耗6molH2。

A. ①②③⑥B. ①②⑤C. ①④⑤⑥D. ①②④⑤⑥3.W、X、Y、Z 为元素周期表中的主族元素,且原子序数均不大于20,W 的原子序数最大,X 位于第二周期且原子的最外层电子数是内层电子数的2 倍,Y 的单质在空气中易形成一层致密的氧化膜,Z 与Y 同周期且相邻,W、Y 原子的最外层电子数之和等于Z 原子的最外层电子数。

下列说法正确的是A. 简单离子半径:Y>W>XB. 最高价氧化物对应水化物的碱性:Y﹤WC. 单质的熔点:Z>W>XD. Y、Z 的氧化物均不能溶解于水中,且均为碱性氧化物4.CuSO4是一种重要的化工原料,其制备途径及性质如图所示(假设恰好完全反应)。

下列说法正确的是A. 途径①所用混酸中,H2SO4与HNO3物质的量之比为2:3B. 1molCuSO4在1100℃所得混合气体中,O2为0.75molC. Z 只能是葡萄糖D. 相对于途径①、③,途径②更好地体现了绿色化学思想5.下列装置图的使用说法正确的是A. 甲装置吸收NH3制氨水B. 乙装置需添加其它仪器才能检验其气密性C. 丙装置中,向酸性高锰酸钾溶液中滴加草酸溶液,溶液的紫红色逐渐褪去D. 丁装置收集并吸收多余的HCl6.某工厂采用如图装置处理化石燃料开采、加工过程产生的H2S废气,已知电解池中的两个电极均为惰性电极。

北京市清华大学2020届高三中学生标准学术能力诊断性测试(11月) 数学(文) Word版含答案

北京市清华大学2020届高三中学生标准学术能力诊断性测试(11月) 数学(文) Word版含答案

中学生标准学术能力诊断性测试2019年11月测试文科数学试卷(一卷)本试卷共150分,考试时间120分钟。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.己知全集U =R ,集合A ={x|1x x-≥0},B ={x|y =lg(3x -1)},则A ∩(U ðB)= A.(0,1] B.(0,13] C.(13,1] D.(-∞,13] 2.己知a ∈R ,复数z =23a i i-+(i 为虚数单位),若z 为纯虚数,则a = A.23 B.23- C.6 D.-6 3.某单位200名职工的年龄分布情况如图所示,现要从中抽取25名职工进行问卷调查,若采用分层抽样方法,则40~50岁年龄段应抽取的人数是A.7B.8C.9D.104.下列函数中,在区间(0,+∞)上单调递增的是A.y =3-xB.y =log 0.5xC.21y x =D.12x y x +=+ 5.已知抛物线y 2=4x 的焦点为F ,直线l 过点F 与抛物线交于A 、B 两点,若|AF|=3|BF|,则|AB|=A.4B.92 C.132 D.1636.己知1tan()43πα-=-,则sin(2)2sin()cos()2παπαπα+--+= A.75 B.15 C.15- D.31257.设变量x 、y 满足约束条件20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,且z =kx +y 的最大值为12,则实数k 的值为A.-2B.-3C.2D.38.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,v ,若a =1,c =bsinA =asin(3π-B),则sinC =9.某三棱锥的三视图如图所示,网格纸上小正方形的边长为l ,则该三棱锥外接球的表面积为A.27πB.28πC.29πD.30π10.函数13cos 6x y x e =-的大致图象是11.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,直线l :yx 与C 交于A ,B 两点,AF ,BF 的中点分别为M ,N ,若以线段MN 为直径的圆经过原点,则双曲线的离心率为A.3-12+112.在△ABC 中,AB =8,AC =6,∠A =600,M 为△ABC 的外心,若AM AB AC λμ=+,λ,μ∈R ,则4λ+3μ=A.34B.53C.73D.83二、填空题:本大题共4小题,每小题5分,共20分。

精品解析:北京市清华大学中学生标准学术能力诊断性测试2020年11月测试高三英语试题(原卷版)

精品解析:北京市清华大学中学生标准学术能力诊断性测试2020年11月测试高三英语试题(原卷版)

中学生标准学术能力诊断性测试2020年11月测试英语试卷第一部分阅读理解(共两节,满分60分)第一节(共15小题;每小题3分,满分45分)阅读下列短文,从每题所给的A、B、C 和D 四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

AAutumn is great for European walking: paths are mud-free, temperatures are mild, crowds are few and beautiful colors abound.The following are four European adventures to walk your way through autumn.The unknown CilentoSouth of Italy’s Amalfi Coast hides a much less discovered wonderland.After stopping to view the marvelous Greek temple remains at Paestum, Sherpa’s next destination concentrates on the Cilento National Park — first following its rugged seashore past the occasional myrtle grove (小树林), and sandy beach, then leaving modernity behind and venturing inland to medieval (中世纪的) hilltop towns.Home-cooked dinners conclude exciting days of goat tracks and ghost villages before a scenic path leads back to the seaside.Four nights £630 half board, including transport, luggage transfers and walking st departure October 31.Turkish delightsFollow an impressive section of Turke y’s expansive Lycian Way, gradually moving from cliffs to coastline.You’ll begin in pine-filled peaks, typically on shaded paths to sea views, and stop at both a pool-boasting upscale hotel and one of the Yanartas region’s ever-burning flames — possibly fueled by a monster below.A fine fish restaurant comes next, then a mile-long sandy beach ahead of two days on lonely Cape Gelidonya, finishing by its lighthouse.Six nights £790, including ten other meals, transport, luggage transfers and walking st departure in early November.Carpathian clambersPoland and Slovakia are separated by the Carpathian Mountains and their large forest-filled valleys.Starting and ending in Krakow, this trip covers both countries.Some days include the option of climbing to snowy peaks or taking easier, lower-altitude options, and you’ll likely meet the Gorals — a culturally-distinct group known as “highlanders”.Most memorable activity will be walking along the 300m-high Dunajec River to spa town Szczawnica.Seven nights £630, including transport, luggage transfers and walking st departure October 24. Flowers and fetaGreece’s Pelion Peninsula is a place known as the “Land of the Centaurs (人首马身的怪物)” for its association with the mythological horse-human hybrids.Between villages of whitewashed, flower-decorated stone houses, walkers can follow old paths onto mountainsides, and wander through olive groves or beside the glittering Aegean Sea.Some days yield swimming opportunities, and others the chance to recharge in a local pub of some bean soup and feta-cheese bread.Seven nights £535, including transport, luggage transfers and walking st departure October 23.1. What can you do when you are in the unknown Cilento?A. Swim in a pool.B. Have a spa.C. Explore medieval towns.D. Walk through olive groves.2. Which destination is your best choice if you intend to travel to Europe after October?A. Turkey.B. Cilento.C. GreeceD. Krakow.3. Which of the following is true according to the passage?A. It is a monster that fuels the fire in Yanartas region.B. Meals are free when you are taking the first adventure.C. You can enjoy a spa from Gorals in the town Szczawnica.D. Bean soup can be served in the pub of Greece’s Pelion Peninsula.B Lou Gehrig (1903-1941) was a baseball player with the New York Yankees for 17 seasons. He was a powerfulhitter known as “The Iron Horse”. Gehrig was a strong, tough and very moral man. His father was often out-of-work because he was an alcoholic and his mother was a maid. His two sisters and only brother died young.As a young boy, Gehrig helped his mother with her work. However, he never let his tough start hold him back. He started playing for the Yankees in 1923 after attending Columbia University, setting many major league records during his career. This included the most consecutive games played (2130 games), a record only broken 56 years later in 1995.Sadly, at the age of 36, he started to tire mid-season and his speed and cooperation ability faded. He resigned. Soon after he was diagnosed with a form of motor neuron disease named amyotrophic lateral sclerosis (ALS). He delivered his farewell-to-baseball speech to his teammates and fans on 4 July of the same year at the Yankee Stadium.After his speech, the crowd stood and clapped for almost two minutes. The New York Times reported that it was“one of the most touching scenes ever witnessed on a ball field”. Gehrig died two years later of the disease. This increased awareness of the disease and its symptoms; in North America it is sti ll commonly known as “Lou Gehrig’s disease”. The Lou Gehrig Memorial Award is given each year to the Major League Baseball player who best exhibits Gehrig’s integrity and character.4. When did Lou Gehrig give his speech?A. in 1903.B. in 1923.C. in 1939.D. in 1940.5. Who are the audience for Lou’s speech?A. His family.B. His friends.C. His opponents.D. His supporters.6. Why is the illness known as “Lou Gehrig’s disease”?A. Lou Gehrig named the disease.B. This disease is related to playing baseball.C. People get to know the disease due to Lou Gehrig.D. The disease had never appeared before Lou Gehrig caught it.7. What word can best describe Lou Gehrig according to the passage?A. Determined and persistent.B. Emotional and patient.C. Wealthy and humorous.D. Gentle and generous.CWe know that the pandemic(流行病)has had a far-reaching impact on our minds — so much so that it may have changed the very fabric of our society altogether. Mental health professionals think that those with social anxiety will not emerge from the pandemic unaffected.Counselling Directory member Beverley Blackman says, “For people with social anxiety, lockdown will make them deeply anxious in one way, and yet a relief in another.” He added, “On one hand, a person with social anxiety may feel relieved that they no longer have to socialize in person, but they may also feel that they have lost the opportunity to socialize with the people they feel safe and secure spending time with, meaning that they feel a new level of isolation and a different level of anxiety about socializing in any form.Without the security of those they feel safe with, self-confidence may very well decrease rapidly.Lockdown may have had a negative impact on those with social anxiety.”Dr Daria J.Kuss, ass ociate professor in psychology at Nottingham Trent University, says: “Following the lockdown, people in this country were allowed to meet up again, which for individuals with social anxiety may have led to stress and worry.They may not be comfortable being expected to be ‘social’ again, especially when in larger groups, and may worry about saying the wrong things and asking the wrong questions as they are reintegrating into their offline social lives.” Furthermore, Beverley says our even bigger reliance on social media and digitalcommunication in the midst of lockdown could also have a negative impact on people with social anxiety.She says “For some people with social anxiety, communication by media can be even harder than communication in person.We know that words form only roughly 7-10% of the way in which we communicate and that we rely on body language, facial expression, tone of voice, and unconscious signals behind words to convey our thoughts and feelings.”When it comes to what people with social anxiety can do to feel better as the lockdown situation continues to shift, Dr.Kuss says “I recommend being open and honest with their social environments. Friends and family will empathize when the concerns are voiced openly.Engaging in focused breathing and relaxation may also help alleviate feelings of worry and discomfort.Finally, negative thinking (e.g., “I don’t know what to say”) may be replaced with positive ones (e.g., “I am good enough” and “My friends want to see me”).”8. Why do people with social anxiety feel relieved during the lockdown?A. There is no one disturbing their life.B. There is no need for them to socialize.C. They have increased their self-confidence.D. People can no longer communicate with each other.9. What does the underlined word mean in the third paragraph?A. Stimulate.B. Relieve.C. Begin.D. Develop.10. What can be the good advice for those with social anxiety during the lockdown?A. Stay at home alone.B. Communicate online.C. Open heart to strangers.D. Take a positive attitude.11. What can we learn from the passage?A. Stay with safe people can bring more confidence.B. Lockdown can help people overcome the feeling of anxiety.C. For people with social anxiety, lockdown is a double-edged sword.D. It is a suitable way for people of social anxiety to communicate by media.DMost of the 500 whales stranded (搁浅)off Tasmania have now died. Dozens more stricken whales have been found in Australia’s largest ever mass stranding.The estimated total now stands at around 500, wi th the majority of that number dead and a tenth rescued by authorities on the Island state of Tasmania. Experts believe all of the animals would have been part of one large group. Officials began working to rescue survivors among an estimated 270 whales found on Monday on a beach and two sandbars near the remote coastal town of Strahan. Then another 200 whaleswere spotted from a helicopter on Wednesday less than 10 kilometres (six miles) to the south.All 200 had been confirmed dead by late afternoon. They were among the 380 whales that have died overall, with estimates from earlier today suggesting that 30 that were alive but stranded and 50 had been rescued since Tuesday, Mr Deka, Wildlife Service manager explained. He added,“We’ll continue to work to free as many of the animals as we can.We’ll continue working as long as there are live animals.”It is not known what caused the animals to run aground. While stranding events are not unheard of, they are very rare in such large numbers. About 30 whales in the original stranding were moved from the sandbars to open ocean on Tuesday, but several got stranded again. About a third of the first group had died by Monday evening.Australia’s largest mass stranding had previously been 320 pilot whales near the Western Australian town of Dunsborough in 1996.This week’s incident is the first involving more than 500 whales in Tasmania since2009.Marine Conservation Programme wildlife biologist Kris Carlyon said the latest mass stranding was the biggest in Australia in terms of numbers stranded and died.Marine scientist Vanessa Pirotta said there were a number of potential reasons why whales might become beached, including navigational errors.She explained, “They do have a very strong social system; these animals are close ly bonded and that’s why we have seen so many in this case unfortunately in this situation.Rescuing them does not always work, because they are wanting to return back to the group, they might hear the sounds that the others are making, or they’re just diso riented and, in this case, extremely stressed, and just probably so exhausted that they in some cases don’t know where they are.” she added.12. What can be inferred from the first paragraph?A. 270 whales were rescued on Monday.B. 380 whales were found dead on Tuesday.C. 500 whales were found stranded and dead.D.200 whales spotted from a helicopter were dead. 13. Why did Kris Carlyon say this event is the biggest in Australia? A. Rescue work is not done in time. B. The number of the death is large. C. The cause of the event is still a mystery. D. There was no other similar event in recent years. 14. Which of the following is Not the cause of the stranding of the whales? A. Navigational errors.B.Overhunting of the human beings.C. Whales’ group living style.D. Whales’ confusion and exhaustion.15. Where does this passage possibly come from? A. A newspaper. B. A magazine. C. A textbook. D. A travel brochure.第二节(共5小题;每小题3分,满分15分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。

北京市清华大学2020届高三上学期11月中学生标准学术能力诊断性测试数学(理)试题(二卷) 试题及答案

北京市清华大学2020届高三上学期11月中学生标准学术能力诊断性测试数学(理)试题(二卷) 试题及答案

中学生标准学术能力诊断性测试2019年11月测试理科数学试卷(二卷)本试卷共150分,考试时间120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,1,3,5,7,9U =-,{}1,5A =,{}1,5,7B =-,则()U C A B =U ( ) A. {}3,9B. {}1,5,7C. {}1,1,3,9-D.{}1,1,3,7,9-【答案】A 【解析】 【分析】根据集合并集的定义求出A B U ,根据集体补集的定义求出()U C A B U .【详解】因为{}1,5A =,{}1,5,7B =-,所以{}=1,1,5,7A B ⋃-,又因为集合{}1,1,3,5,7,9U =-,所以{}3(),9U C A B =U ,故本题选A.【点睛】本题考查了集合的并集、补集运算,掌握集合的并集、补集的定义是解题的关键. 2.已知空间三条直线,,l m n ,若l 与m 异面,且l 与n 异面,则( ) A. m 与n 异面 B. m 与n 相交C. m 与n 平行D. m 与n 异面、相交、平行均有可能【答案】D 【解析】 【分析】根据题意作出图形,进行判断即可.【详解】解:空间三条直线l 、m 、n .若l 与m 异面,且l 与n 异面, 则可能平行(图1),也可能相交(图2),也m 与n 可能异面(如图3),故选D .【点睛】本题考查空间直线的位置关系,着重考查学生的理解与转化能力,考查数形结合思想,属于基础题.3.复数z 满足|||3|z i z i -=+,则||z ( ) A. 恒等于1B. 最大值为1,无最小值C. 最小值为1,无最大值D. 无最大值,也无最小值【答案】C 【解析】 【分析】设复数z x yi =+,其中x ,y R ∈,由题意求出1y =-,再计算||z 的值. 【详解】解:设复数z x yi =+,其中x ,y R ∈, 由|||3|z i z i -=+,得|(1)||(3)|x y i x y i +-=++,2222(1)(3)x y x y ∴+-=++, 解得1y =-;222||11z x y x ∴=++…,即||z 有最小值为1,没有最大值. 故选:C .【点睛】本题考查了复数的概念与应用问题,是基础题.4.某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm2)是( )A. 16B. 32C. 44D. 64 【答案】B【解析】【分析】由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,PA⊥底面ABC.然后由直角三角形面积公式求解.【详解】解:由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,PA⊥底面ABC.⊥.则BC PC∴该几何体的表面积1(34543445)32S=⨯+⨯+⨯+⨯=.2故选:B.【点睛】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题. 5.已知0x y +>,则“0x >”是“||2222yx x y +>+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】首先判断由0x >,能不能推出||2222yx x y +>+,而后再看由||2222yx x y +>+,能不能推出0x >,然后通过充分性、必要性的定义得出答案.【详解】由不等式||2222yx x y +>+,可以构造一个函数:2()2tf t t =+,可以判断该函数为偶函数且0t >时,函数单调递增.当0x >时,而0x y +>,这时y 可以为负数、正数、零,因此,x y 的大小关系不确定,因此由“0x >”不一定能推出“||2222yx x y +>+”.当||2222yx x y +>+成立时,利用偶函数的性质,可以得到:22()()0x y x y x y x y >⇒>⇒+->,而0x y +>,因此有0x y ->,所以有x y >-且x y >,如果0x ≤,则有0y <,所以0x y +<,这与0x y +>矛盾,故0x >,故本题选B.【点睛】本题考查了必要不充分条件的判断,构造函数,利用函数的性质和不等式的性质是解题的关键. 6.函数y =ln |x |·cos (2π-2x )的图像可能是( ) A. B.C. D.【答案】D 【解析】 【分析】根据函数的奇偶性,和特殊值,可判断。

THUSSAT2020年11月诊断性测试理科数学(一)卷答案

THUSSAT2020年11月诊断性测试理科数学(一)卷答案

中学生标准学术能力测试诊断性测试2020年11月测试理科数学(一)卷答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本题共4小题,每小题5分,共20分. 14. [][)4,0,e −+∞15. 3 16.23 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.解:(1)()433cos sin +⎪⎭⎫⎝⎛+⋅=πx x x f =43sin 23cos 21sin +⎪⎪⎭⎫ ⎝⎛−x x x ……2分 =43sin 232sin 412+−x x =43432cos 432sin 41+−+x x =⎪⎭⎫⎝⎛+32sin 21πx ……4分 当⎥⎦⎤⎢⎣⎡∈2,0πx 时,⎥⎦⎤⎢⎣⎡∈+34,332πππx , ⎥⎦⎤⎢⎣⎡−∈⎪⎭⎫ ⎝⎛+1,2332sin πx ,()⎥⎦⎤⎢⎣⎡−∈21,43x f .()x f ∴的值域是⎥⎦⎤⎢⎣⎡−21,43.……6分(2)2132sin 214=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛πA A f , ⎪⎭⎫⎝⎛∈2,0πA ,可得3π=A ……8分设x DC =,则x AD 3=,x BD 7=,由余弦定理,()()21232723cos 222=⨯⨯−+=x xx A ,解得1=x 或2=x .……10分又11sin 2422ABC S AB AC A x ∆=⋅⋅=⨯⨯=, ∴ABC ∆的面积为32或34.……12分 18.解:(1)当1=n 时,11=a .当2≥n 时,()()12213211321+⋅−=−+⋅⋅⋅+++−−n n n a n a a a ①,……2分由()12132321+⋅−=+⋅⋅⋅+++nn n na a a a ②,②-①可得:12−⋅=n n n na ,()221≥=−n a n n ,……4分1201==a ,符合12−=n n a . 综上,12−=n n a .……5分(2)()2-111212222112n n n n S ⋅−=++++==−−……7分则⎪⎭⎫⎝⎛−+=−=−1211211221n n n n n S a ,当1≥n 时,有1212−≥−n n 成立, 所以有⎪⎭⎫ ⎝⎛+≤−121121n n n S a 1122n =+……10分 从而21-121-1212212121222211⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⋅⋅⋅+++≤+⋅⋅⋅++n n n n n n S a S a S a111222nn n ⎛⎫=+−≤+ ⎪⎝⎭,所以,122211+≤+⋅⋅⋅++n S a S a S a n n ,即证.……12分19.解:(1)连接DB ,在ABD ∆中,3cos 2222=∠⋅−+=DAB AB AD AB AD BD , 则3=BD .所以,222AB BD AD =+,即 2π=∠ADB ,DB AD ⊥.……2分又因为平面ABCD ⊥平面ABE ,平面ABCD 平面ABE AB =,且AB EB ⊥,所以⊥EB 平面ABCD .……3分因为⊂AD 平面ABCD ,所以AD EB ⊥.……4分由DB AD ⊥,AD EB ⊥,B EB DB = ,且⊂BE DB ,平面DBE , 所以有⊥AD 平面DBE ……5分因为⊂DE 平面DBE ,所以DE AD ⊥,又因为BC AD //,所以DE BC ⊥.…6分 (2)解法一:过C 点作CG AB ⊥交AB 的延长线于G ,连接EG ,//,,33AD BC DAB CBG ππ∠=∴∠=,由90CGB ∠=,可得:31sin 6023,cos 6021,22CG BC BG BC =⋅=⨯==⋅=⨯=901=∠=EBG ,BE ,EG ∴=平面ABCD ⊥平面ABE , 面ABCD 面ABE =AB , AB CG ⊥,∴CG ABE ⊥面,又EG ⊂平面ABE ,CG EG ∴⊥22290,5CGE CE CG GE ∴∠=∴=+=5=∴CE ,由(1)可知,DE AD ⊥,4222=−=∴AD AE DE ,即2=DE ,由(1)可知,⊥AD 平面DBE ,所以AD BD ⊥,BD ∴=BC AD // , BC BD ∴⊥2227,CD BD BC ∴=+=即7=CD ,可知:222cos 2DC CE DE DCE DC CE +−∠===⋅, 351935161sin =−=∠DCE , 21935195721sin 21=⨯⨯⨯=∠⨯⨯⨯=∆DCE CE DC S DCE .……9分 3312323131C =⨯⨯⨯=⨯⋅=∆−BE S V D B BCD E 由等体积:CDE B BCD E V V −−=,所以,=33,代入:h ⋅⋅=2193133, 解得1932=h ,设直线BC 与平面DCE 所成角为θ,则sin 19h BC θ===.……12分解法二:以B 为原点,分别以BE BA ,所在直线为y x ,轴,过B 作垂线为z 轴,建立空间直角坐标系B xyz −.过点C 作CG AB ⊥交AB 的延长线于点G ,过点D 作DF AB ⊥交AB 于点F ,//BC,3AD CBG DAB π∴∠=∠=,又1,2AD BC ==,sin1sin 2323DF CG ππ∴=⨯==⨯=,1cos 1,cos 21323AF BG ππ=⨯==⨯=,h S CDE ⨯⋅∆31又132,2,22AB BF AB AF =∴=−=−=(3,,0,,22C D ⎛⎫∴− ⎪ ⎪⎝⎭又()()()2,0,0,0,0,0,0,1,0A B E .()(531,1,3,,0,,22EC DC BC ⎛⎫∴=−−=−=− ⎪ ⎪⎝⎭.……8分设平面DCE 的法向量为()z y x n ,,=,由,00⎪⎩⎪⎨⎧=⋅=⋅n DC n EC 有⎪⎩⎪⎨⎧=+−=+−−0232503z x z y x ,令3=z , 则⎪⎭⎫⎝⎛=3,512,53n ……10分设直线BC与平面DCE 所成角为θ,则sin cos =192n BC θn,BC n BC⋅===⋅⨯,即直线BC 与平面DCE 所成角的正弦值为1957.……12分 20.解:(1)由已知可知直线AB 的斜率必存在,设直线AB 的斜率为k (0k ≠),抛物线x y 42=的焦点()0,1F ,则()1−=x k :y l AB与抛物线相联立,()()0421422222=++−⇒⎩⎨⎧−==k x k x k x k y x y设()()2211,,,y x B y x A ,则⎪⎩⎪⎨⎧=⋅+=+142212221x x k k x x221442kx x AB +=++=……2分, 同理,244CD k =+,则四边形ACBD 的面积为()(),32228128141142121S 2222=+≥⎪⎭⎫ ⎝⎛++=+⋅⎪⎭⎫ ⎝⎛+⋅=⋅=k k k k CD AB 当且仅当1±=k 时,四边形ACBD 的面积的最小值为32……4分 (2)设点()()()()()()()()02,,02,,02,,02,4424332322221121<><>t t t D t t t C t t t B t t t A ,则43212,2t t k t t k CD AB +=+=.,考虑到点()B F A ,0,1,共线,则12221121−=+⇒=t tt t k k AF AB ,从而121−=t t ……6分 同理143−=t t .由于CD AB ⊥,从而,1224321−=+⋅+=⋅t t t t k k CD AB 故()().44321−=++t t t t 由于直线()12:43−+=x t t y CD ,则点⎪⎪⎭⎫ ⎝⎛+−−434,1t t N ,由于.42143t t t t +=+− 故()21,1t t N +−.……8分由于()12111212121211111112t t t t t t t t t t t k AN=++=+−=++−=,从而直线AN 的方程为()121121t t x t y +−=,即111y x t t =+,从而点Q 的横坐标为21t x Q −=. 由此211t FQ +=.又()1211121122222t t t t t t y y B A +=+=−=−,从而()()()222211111121111022AQB A B t t t S FQ y y t t t ∆+++=⋅−=⨯=>.……10分12211−=t t k AF由于()113112141122112121t t t t t t t t S ΔAQB++=++=+=,令()1131112t t t t f ++=,则()()()21212121214121211'113123123t t t t t t t t t f +−=−+=−+=, 可知()1t f 在⎪⎪⎭⎫⎝⎛+∞,33上单调递增,在⎪⎪⎭⎫⎝⎛330,上单调递减, 所以,当且仅当331=t 时,AQB ∆面积的最小值为9316……12分 21.解: (1)设()()()112ln 12ln 111>+−+=+−+−−=−x x x e x x x x f x h x()211'−+=∴−x e x h x ,()21''1x e x h x −=∴−1>x 110,121<<>∴−x e x ()0121''>−=∴−xe x h x ……2分 ()x h '∴在()+∞,1上单调递增,又()01'=h 1>∴x 时,()x h '()01'=>h ……4分()12ln 1+−+=−x x e x h x 在()+∞,1上单调递增,又()01=h 1>∴x 时,()()01=>h x h故当1>x 时,()12ln 11−+−>−−x x x x f , ∴()()132ln 112+−>−−−x x x x x f …6分(2) ()()2121+−=x a xe x g x∴()()()()()a e x x a e x x g xx−+=+−+=111'当0=a 时,易知函数()x g 只有一个零点,不符合题意:……7分当0<a 时,在()1,−∞−上,()0'<x g ,()x g 单调递减;在()+∞−,1上,()0'>x g ,()x g 单调递增;又()011<−=−eg ,且()021>−=a e g 不妨取4−<b 且()a b −<ln 时,()()()02122112122ln >⎪⎭⎫ ⎝⎛++−=+−>−b b a b a be b g a ()[]+∞→−∞→x g x ,或者考虑:当,所以函数()x g 有两个零点,0a ∴<符合题意.……9分当0>a 时,由()()()01'=−+=a e x x g x得1−=x 或a x ln =(i )当1ln −=a 即ea 1=时,在()+∞∞−,上,()0'≥x g 成立, 故()x g 在()+∞∞−,上单调递增,所以函数()x g 至多有一个零点,不符合题意.……10分 (ii )当1ln −<a 即ea 10<<时,在()a ln ,∞−和()+∞−,1上,()0'>x g ,()x g 单调递 增;在()1,ln −a 上,()0'<x g ,()x g 单调递减:又()011<−=−eg , 且()()()01ln 211ln 21ln ln 22<+−=+−=a a a a a a a g , 所以函数()x g 至多有一个零点()x g ,不符合题意.……11分 (iii )当ea a 11ln >−>即时,在()1,−∞−和()+∞,ln a 上()0'>x g ,()x g 单调递增; 在()a ln ,1−上()0'<x g ,()g x 单调递减又()011<−=−eg ,所以函数()x g 至多有一个零点,不符合题意. 综上所述,实数a 的取值范围是()0,∞−.……12分(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:极坐标与参数方程](10分)解: (1)22sin2,02cos2====ππy x ,∴P 的直角坐标为()2,0P ……2分 由⎩⎨⎧==ϕϕsin 2cos 3y x ,得2sin 3cos y ,x ==ϕϕ .∴曲线C 的普通方程为14922=+y x ……4分(2)将⎪⎪⎩⎪⎪⎨⎧+=−=ty t x 22222代入14922=+y x 36222922422=⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛−⇒t t , 化简得21336360t t +−=……6分 设A ,B 对应的参数分别为21,t t , 则1336,13362121−=⋅−=+t t t t ……8分 ∵P 点在直线l 上,∴()13221213364133642212212121=⨯+⎪⎭⎫⎝⎛=−+=−=+=+t t t t t t t t PB PA……10分23.[选修4—5:不等式选讲](10分)解:(1)0,,>c b a ,336316332abc abc c b a ≥⇒≥++∴……2分162131613=⎪⎭⎫ ⎝⎛≤∴abc ……4分当且仅当3132===c b a ,即91,61,31===c b a 时,abc 取到最大值为1621……5分 (2)013132>−−=+∴=++b a c b c b a ,()()()414114141141341−−−++=−−+−−−++=−−+++=++++∴ba b a b a b a b a b a b a b a c b b a b a ……7分()()[]()5114141411≥+−−+++−−=−⎪⎭⎫ ⎝⎛−−++−−++=b a b a b a b a b a b a b a b a ……9分 当且仅当()b a b a +=−−21,即31=+b a 时, ()cb b a b a 341++++取得最小值为5……10分.。

THUSSAT2020年11月诊断性测试文科数学(一)卷试卷(含解析))

THUSSAT2020年11月诊断性测试文科数学(一)卷试卷(含解析))


C1
A1
B1
14. 若 sin ( + )sin ( − ) = − 1 ,则 sin2 − sin2 =

2
( ) 15. 已知圆 C 与 y 轴相切于点 P 0, 3 ,与 x 轴正半轴交于两点 A, B,
则圆 C 的方程为

APB = 30 , A
C B
(第 13 题图)
16. 在锐角 ABC 中,内角 A, B,C 所对的边分别为 a,b, c ,若 b + a = 4 cos C ,则 1 + 1 的
同编号不同的 3 个黄色乒乓球和 3 个白色乒乓球,现从 A、B 两个口袋中各摸出 2 个球.
(1)求摸出的 4 个球中有 3 个黄色乒乓球和 1 个白色乒乓球的概率;
(2)求摸出的 4 个球中黄球个数 的数学期望.
18. (12 分)已知数列 an 是等差数列,若 a1 = 2 ,且 a3, 2a 2 , 2a4 −1成等比数列,数列 bn 满足
1 − 1) 2

x2
D.
f (x) = 1 + x2 (10x −1)2
5
1
-3 -2 -1 O
1
2 3x
5
-1
9. 将函数 y = sin 2x 的图象沿 x 轴向左平移 ( 0)个单位长度得到函数
2
-3
π y = cos 2x + 的图象,则 的最小值为
3
4
(第 8 题图)
5
5
A.
B.
C.
D.
A. 0,1,2 M
B. 0,1 M
C. 1, 2,3 M
D. 1, 2 M
2. 已知双曲线方程: 2x2 − 3y2 = 1,则该双曲线的渐近线方程为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学生标准学术能力诊断性测试2019年11月测试
理科数学试卷(二卷)
本试卷共150分,考试时间120分钟。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.己知集合U ={-1,1,3,5,7,9},A ={1,5},B ={-1,5,7},则U ð(A ∪B)=
A.{3,9}
B.{I ,5,7}
C.{-1,1,3,9}
D.{-1,1,3,7,9}
2.己知空间三条直线l ,m ,n ,若l 与m 垂直,l 与n 垂直,则
A.m 与n 异面
B.m 与n 相交
C.m 与n 平行
D.m 与n 平行、相交、异面均有可能
3.复数z 满足|z -1|=|z +3|,则|z|
A.恒等于1
B.最大值为1,无最小值
C.最小值为1,无最大值
D.无最大值,也无最小值
4.某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm 2)是
A.16
B.32
C.44
D.64
5.已知x +y>0,则“2|x|+x 2>2|y|+y 2”是“x>0”的
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
6.函数y =ln|x|·cos(2
-2x)的图像可能是
7·已知两个不相等的非零向量a r ,b r ,满足|a r |与b r -a r 的夹角为60°,则|b r |的取值范围是 A.30,2⎛⎫ ⎪ ⎪⎝⎭ B.3,12⎡⎫⎪⎢⎪⎣⎭ C.3,2⎡⎫+∞⎪⎢⎪⎣⎭
D.()1,+∞ 8.已知随机变量ξ的分布列为:
则下列说法正确的是
A.存在x ,y ∈(0,1),E(ξ)>
12 B.对任意x ,y ∈(0,1),E(ξ)≤14
C.对任意x ,y ∈(0,1),D(ξ)≤E(ξ)
D.存在x ,y ∈(0,1),D(ξ)>14 9.设函数f(x)=ax 3+bx 2+cx +d(a ,b ,c ,d ∈R 且a≠0),若0<2f(2)=3f(3)=4f(4)<1,则f(1)+f(5)的取值范围是
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
10.已知F 1,F 2分别为双曲线22
221(0,0)x y a b a b
-=>>的左、右焦点,若在双曲线右支上存在点P ,使得点F 2到直线PF 1的距离为a ,则该双曲线的离心率的取值范围是
A.51,2⎛⎫ ⎪ ⎪⎝⎭
B.5,2⎛⎫+∞ ⎪ ⎪⎝⎭
C.()1,5
D.
()
5,+∞ 11.如图,在菱形ABCD 中,∠ABC =60°,E ,F 分别是边AB ,CD 的中点,现将△ABC 沿着对角线AC 翻折,则直线EF 与平面ACD 所成角的正切值最大值为
2 B.21
3 C.33 D.22
12.己数列{a n }满足a 1=1,a n +1=lna n +
1n a +1,记S n =[a 1]+ [a 2]+···+[a n ],[t]表示不超过t 的最大整数,则S 2019的值为
A.2019
B.2018
C.4038
D.4037
二、填空题:本大题共4小题,每小题5分,共20分。

13.在[-2,2]上随机地取一个实数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为。

14.如图,在△ABC中,AB>AC,BC=23,A=60°,△ABC的面积等于23,则角平分线AD的长等于。

15.已知数列{a n}满足a n+a n+1=15-2n,其前n项和为S n,若S n≤S8恒成立,则a1的取值范围为。

16.已知P为椭圆C:
22
1
43
x y
+=上一个动点,F1、F2是椭圆C的左、右焦点,O为坐标原点,O到椭圆C
在P点处的切线距离为d,若
1224 7
PF PF
⋅=,则d=。

三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:60分。

17.(12分)已知函数f(x)=sinx-3cosx
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若f(B)=3,b=3,求△ABC面积的最大值。

18.(12分)如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E为PB的中点。

(1)求证:AE//平面PDC;
(2)若BC=CD=PD,求直线AC与平面PBC所成角的余弦值。

19.(12分)已知甲盒内有大小相同的2个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各取2个球。

(1)求取出的4个球中恰有1个红球的概率;
(2)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望。

20.(12分)如图,斜率为k 的直线l 与抛物线y 2=4x 交于A 、B 两点,直线PM 垂直平分弦AB ,且分别交AB 、x 轴于M 、P ,已知P(4,0)。

(1)求M 点的横坐标;
(2)求△PAB 面积(用k 表示)。

21.(12分)已知函数ln (),x ax f x a R x
-=∈。

(1)若a =0,求函数f(x)的值域;
(2)设函数f(x)的两个零点为x 1,x 2,且x 1≠x 2,求证:x 1·x 2>e 2。

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

作答时请写清题号。

22.[选修4-4:坐标系与参数方程](10分)
在平面直角坐标系xOy 中,曲线C 的参数方程为4cos 2sin x y αα=⎧⎨=⎩
(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点P 的极坐标为4,
3π⎛⎫ ⎪⎝⎭,直线l 的极坐标方程为2sin 96πρθ⎛⎫-= ⎪⎝⎭。

(1)求直线l 的直角坐标方程与曲线C 的普通方程;
(2)若Q 是曲线C 上的动点,M 为线段PQ 的中点,直线l 上有两点A ,B ,始终满足|AB|=4,求△MAB 面积的最大值与最小值。

23.[选修4-5:不等式选讲](10分)
已知a ,b ,c 为正实数,且满足a +b +c =3。

证明:
(1)ab +bc +ac ≤3; (2)222
3a b c b c a
++≥。

相关文档
最新文档