高中物理《动量守恒定律》优秀教学设计

合集下载

最新整理优秀高中物理动量守恒定律教案范文

最新整理优秀高中物理动量守恒定律教案范文

高中物理动量守恒定律教案三篇范文一教学目标:一、知识目标1、理解动量守恒定律的确切含义.2、知道动量守恒定律的适用条件和适用范围.二、能力目标1、运用动量定理和牛顿第三定律推导出动量守恒定律.2、能运用动量守恒定律解释现象.3、会应用动量守恒定律分析、计算有关问题(只限于一维运动).三、情感目标1、培养实事求是的科学态度和严谨的推理方法.2、使学生知道自然科学规律发现的重大现实意义以及对社会发展的巨大推动作用.重点难点:重点:理解和基本掌握动量守恒定律.难点:对动量守恒定律条件的掌握.教学过程:动量定理研究了一个物体受到力的冲量作用后,动量怎样变化,那么两个或两个以上的物体相互作用时,会出现怎样的总结果?这类问题在我们的日常生活中较为常见,例如,两个紧挨着站在冰面上的同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化,又如火车编组时车厢的对接,飞船在轨道上与另一航天器对接,这些过程中相互作用的物体的动量都有变化,但它们遵循着一条重要的规律.(-)系统为了便于对问题的讨论和分析,我们引入几个概念.1.系统:存在相互作用的几个物体所组成的整体,称为系统,系统可按解决问题的需要灵活选取.2.内力:系统内各个物体间的相互作用力称为内力.3.外力:系统外其他物体作用在系统内任何一个物体上的力,称为外力.内力和外力的区分依赖于系统的选取,只有在确定了系统后,才能确定内力和外力.(二)相互作用的两个物体动量变化之间的关系【演示】如图所示,气垫导轨上的A、B两滑块在P、Q两处,在A、B间压紧一被压缩的弹簧,中间用细线把A、B拴住,M和N为两个可移动的挡板,通过调节M、N的位置,使烧断细线后A、B两滑块同时撞到相应的挡板上,这样就可以用SA和SB分别表示A、B两滑块相互作用后的速度,测出两滑块的质量mA\mB和作用后的位移SA和SB比较mASA和mBSB.高二物理《动量守恒定律》教案1.实验条件:以A、B为系统,外力很小可忽略不计.2.实验结论:两物体A、B在不受外力作用的条件下,相互作用过程中动量变化大小相等,方向相反,即△pA=-△pB或△pA+△pB=0【注意】因为动量的变化是矢量,所以不能把实验结论理解为A、B两物体的动量变化相同.(三)动量守恒定律1.表述:一个系统不受外力或受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律.2.数学表达式:p=p’,对由A、B两物体组成的系统有:mAvA+mBvB=mAvA’+mBvB’(1)mA、mB分别是A、B两物体的质量,vA、vB、分别是它们相互作用前的速度,vA’、vB’分别是它们相互作用后的速度.【注意】式中各速度都应相对同一参考系,一般以地面为参考系.(2)动量守恒定律的表达式是矢量式,解题时选取正方向后用正、负来表示方向,将矢量运算变为代数运算.3.成立条件在满足下列条件之一时,系统的动量守恒(1)不受外力或受外力之和为零,系统的总动量守恒.(2)系统的内力远大于外力,可忽略外力,系统的总动量守恒.(3)系统在某一方向上满足上述(1)或(2),则在该方向上系统的总动量守恒.4.适用范围动量守恒定律是自然界最重要最普遍的规律之一,大到星球的宏观系统,小到基本粒子的微观系统,无论系统内各物体之间相互作用是什么力,只要满足上述条件,动量守恒定律都是适用的.(四)由动量定理和牛顿第三定律可导出动量守恒定律设两个物体m1和m2发生相互作用,物体1对物体2的作用力是F12,物体2对物体1的作用力是F21,此外两个物体不受其他力作用,在作用时间△Vt内,分别对物体1和2用动量定理得:F21△Vt=△p1;F12△Vt =△p2,由牛顿第三定律得F21=-F12,所以△p1=-△p2,即:△p=△p1+△p2=0或m1v1+m2v2=m1v1’+m2v2’.【例1】如图所示,气球与绳梯的质量为M,气球的绳梯上站着一个质量为m的人,整个系统保持静止状态,不计空气阻力,则当人沿绳梯向上爬时,对于人和气球(包括绳梯)这一系统来说动量是否守恒?为什么?高二物理《动量守恒定律》教案【解析】对于这一系统来说,动量是守恒的,因为当人未沿绳梯向上爬时,系统保持静止状态,说明系统所受的重力(M+m)g跟浮力F平衡,那么系统所受的外力之和为零,当人向上爬时,气球同时会向下运动,人与梯间的相互作用力总是等值反向,系统所受的外力之和始终为零,因此系统的动量是守恒的.【例2】如图所示是A、B两滑块在碰撞前后的闪光照片部分示意图,图中滑块A的质量为0.14kg,滑块B的质量为0.22kg,所用标尺的最小刻度是0.5cm,闪光照相时每秒拍摄10次,试根据图示回答:高二物理《动量守恒定律》教案(1)作用前后滑块A动量的增量为多少?方向如何?(2)碰撞前后A和B的总动量是否守恒?【解析】从图中A、B两位置的变化可知,作用前B是静止的,作用后B 向右运动,A向左运动,它们都是匀速运动.mAvA+mBvB=mAvA’+mBvB’(1)vA=SA/t=0.05/0.1=0.5(m/s);vA′=SA′/t=-0.005/0.1=-0.05(m/s)△pA=mAvA’-mAvA=0.14*(-0.05)-0.14*0.5=-0.077(kg·m/s),方向向左.(2)碰撞前总动量p=pA=mAvA=0.14*0.5=0.07(kg·m/s)碰撞后总动量p’=mAvA’+mBvB’=0.14*(-0.06)+0.22*(0.035/0.1)=0.07(kg·m/s)p=p’,碰撞前后A、B的总动量守恒.【例3】一质量mA=0.2kg,沿光滑水平面以速度vA=5m/s运动的物体,撞上静止于该水平面上质量mB=0.5kg的物体B,在下列两种情况下,撞后两物体的速度分别为多大?(1)撞后第1s末两物距0.6m.(2)撞后第1s末两物相距3.4m.【解析】以A、B两物为一个系统,相互作用中无其他外力,系统的动量守恒.设撞后A、B两物的速度分别为vA’和vB’,以vA的方向为正方向,则有:mAvA=mAvA’+mBvB’;vB’t-vA’t=s(1)当s=0.6m时,解得vA’=1m/s,vB’=1.6m/s,A、B同方向运动.(2)当s=3.4m时,解得vA’=-1m/s,vB’=2.4m/s,A、B反方向运动.【例4】如图所示,A、B、C三木块的质量分别为mA=0.5Kg,mB=0.3Kg,mC=0.2Kg,A和B紧靠着放在光滑的水平面上,C以v0=25m/s的水平初速度沿A的上表面滑行到B的上表面,由于摩擦最终与B 木块的共同速度为8m/s,求C刚脱离A时,A的速度和C的速度.高二物理《动量守恒定律》教案【解析】C在A的上表面滑行时,A和B的速度相同,C在B的上表面滑行时,A和B脱离.A做匀速运动,对A、B、C三物组成的系统,总动量守恒.范文二一、教材分析在第一节课“探究碰撞中的不变量”的基础上总结出动量守恒定律就变得水到渠成。

动量守恒定律优质教案

动量守恒定律优质教案

动量守恒定律优质教案
简介
本节课将围绕动量守恒定律展开。

首先,我们将讨论动量是什
么以及动量与速度、质量之间的关系。

接着,我们将详细解释动量
守恒定律,包括什么是动量守恒、什么情况下动量守恒、以及如何
应用动量守恒定律。

最后,我们将通过实际案例演示如何应用动量
守恒定律。

教学目标
- 理解动量的概念,并掌握动量与速度、质量之间的基本关系;
- 理解动量守恒定律的定义,并能够判断在何种情况下动量守恒;
- 掌握应用动量守恒定律解决实际问题的方法。

教学内容
1. 动量是什么?
- 动量的概念
- 动量的计算方式
- 动量与速度、质量之间的关系
2. 动量守恒定律
- 动量守恒的定义
- 什么情况下动量守恒
- 动量守恒定律的应用
3. 动量守恒定律的实际应用- 案例一:弹球碰撞问题
- 案例二:火车头碰撞问题
教学方法
- 讲授法
- 示范法
- 实践演练法
教学过程
1. 简介(5分钟)
- 引入本节课的主题
2. 动量是什么?(10分钟)- 讲解动量的概念
- 计算动量的方式
- 解释动量与速度、质量之间的关系
3. 动量守恒定律(15分钟)
- 讲解动量守恒的定义
- 探讨什么情况下动量守恒
- 讲解动量守恒定律的应用
4. 动量的实际应用(15分钟)
- 通过案例一题演示如何应用动量守恒定律- 通过案例二题演示如何应用动量守恒定律5. 总结(5分钟)
教学评估
- 学生课前预笔记
- 课堂提问
- 学生课后作业。

动量守恒定律教案优秀6篇

动量守恒定律教案优秀6篇

动量守恒定律教案优秀6篇高中物理动量守恒定律教案篇一教学目标:一、知识目标1、理解动量守恒定律的确切含义。

2、知道动量守恒定律的适用条件和适用范围。

二、能力目标1、运用动量定理和牛顿第三定律推导出动量守恒定律。

2、能运用动量守恒定律解释现象。

3、会应用动量守恒定律分析、计算有关问题(只限于一维运动).三、情感目标1、培养实事求是的科学态度和严谨的推理方法。

2、使学生知道自然科学规律发现的重大现实意义以及对社会发展的巨大推动作用。

重点难点:重点:理解和基本掌握动量守恒定律。

难点:对动量守恒定律条件的掌握。

教学过程:动(1mi)量定理研究了一个物体受到力的冲量作用后,动量怎样变化,那么两个或两个以上的物体相互作用时,会出现怎样的总结果?这类问题在我们的日常生活中较为常见,例如,两个紧挨着站在冰面上的同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化,又如火车编组时车厢的对接,飞船在轨道上与另一航天器对接,这些过程中相互作用的物体的动量都有变化,但它们遵循着一条重要的规律。

(-)系统为了便于对问题的讨论和分析,我们引入几个概念。

1.系统:存在相互作用的几个物体所组成的整体,称为系统,系统可按解决问题的需要灵活选取。

2.内力:系统内各个物体间的相互作用力称为内力。

3.外力:系统外其他物体作用在系统内任何一个物体上的力,称为外力。

内力和外力的区分依赖于系统的选取,只有在确定了系统后,才能确定内力和外力。

(二)相互作用的两个物体动量变化之间的关系【演示】如图所示,气垫导轨上的A、B两滑块在P、Q两处,在A、B间压紧一被压缩的弹簧,中间用细线把A、B拴住,M和N为两个可移动的挡板,通过调节M、N的位置,使烧断细线后A、B两滑块同时撞到相应的挡板上,这样就可以用SA和SB分别表示A、B 两滑块相互作用后的速度,测出两滑块的质量mAmB和作用后的位移SA和SB比较mASA 和mBSB.高二物理《动量守恒定律》教案1.实验条件:以A、B为系统,外力很小可忽略不计。

动量守恒定律教案

动量守恒定律教案

动量守恒定律教案教案一:简单介绍动量守恒定律目标:学生能够了解动量守恒定律的定义及应用。

导入:1. 引导学生回顾牛顿第二运动定律和动量的概念。

2. 提问:你认为在碰撞过程中,物体的动量是否会发生改变?为什么?内容:1. 定义动量守恒定律:在一个系统内,当没有外力作用时,系统内物体的总动量保持不变。

2. 动量守恒定律的数学表示:m1v1 + m2v2 = m1v1' +m2v2'3. 解释动量守恒定律的原理:动量守恒定律是基于牛顿第二运动定律和动量的定义推导出来的,当外力为零时,物体受到的总动量变化为零,故物体的总动量保持不变。

4. 动量守恒定律的应用举例:弹性碰撞和非弹性碰撞的实验示范,并根据动量守恒定律解释碰撞过程中物体的运动变化。

练习:1. 给出一个实际问题,让学生应用动量守恒定律解答。

2. 分组讨论并呈现各自的解答,进行交流讨论。

总结:1. 回顾动量守恒定律的定义及应用。

2. 强调动量守恒定律对运动过程的影响。

教案二:动量守恒定律实验目标:学生能够通过实验观察和验证动量守恒定律。

导入:1. 回顾动量的概念及公式。

2. 提问:你认为在碰撞过程中,动量会发生改变吗?实验步骤:1. 准备实验装置和材料:小球、直径不同的玻璃瓶等。

2. 实验一:垂直碰撞- 将两个大小不同的小球放在平面上,一个小球做静止状态,另一个小球沿直线运动后与静止小球发生碰撞。

- 观察碰撞过程中小球的运动变化。

- 记录小球的质量和初速度,计算碰撞后小球的速度。

验证动量守恒定律的成立。

3. 实验二:水平碰撞- 将小球放在光滑水平面上,小球沿直线运动后与静止小球发生碰撞。

- 观察碰撞过程中小球的运动变化。

- 记录小球的质量和初速度,计算碰撞后小球的速度。

验证动量守恒定律的成立。

总结:1. 回顾实验结果,并验证动量守恒定律的成立。

2. 强调动量守恒定律在实验中的应用和重要性。

延伸:1. 提出其他实验方案,让学生自主设计实验并验证动量守恒定律。

《3动量守恒定律》公开课优秀教案教学设计(高中选修第一册)

《3动量守恒定律》公开课优秀教案教学设计(高中选修第一册)

动量守恒定律【教学目标】一、知识与技能1.应用牛顿定律推导出适用于两球碰撞模型的动量守恒定律,能够理解动量守恒定律的物理过程。

2.理解动量守恒定律(内容、守恒条件),会分析计算同一直线上两个物体的动量守恒问题。

二、过程与方法1.在理解动量守恒定律的确切含义的基础上正确区分内力和外力。

2.知道运用动量守恒定律解决问题,并知道运用动量守恒定律解决有关问题的优点。

三、情感、态度与价值观培养逻辑思维能力,会应用动量守恒定律分析计算有关问题。

【教学重点】1.动量守恒定律。

2.运用动量守恒定律解题的一般步骤。

【教学难点】1.动量守恒的条件。

2.动量守恒定律的应用。

【教学过程】一、复习提问、新课导入让学生回忆、提问:动量、冲量、动量定理的相关知识。

动量:0="八,冲量:I=Ft动量定理:二、新课教学(-)相互作用的两个物体的动量改变如图,在光滑水平桌面上做匀速运动的两个物体A、B,质量分别是也和〃?2,沿同一直线向同一方向运动,速度分别是1”和vj,肛>】“。

当B追上A时发生碰撞。

碰撞后A、B 的速度分别是"和犯'。

碰撞过程中A所受B对它的作用力是B,B所受A对它的作用力是尸2。

碰撞时,两物体之间力的作用时间很短,用加表示。

BIV 2 根据动量定理,物体A 动量的变化量等于它所受作川力B 的冲量,即:FlAr = 7??lvf — 7771V1物体B 动量的变化量等于它所受作用力尸2的冲量,即:F»t =7772 V2' 一 〃?2 P2根据牛顿第三定律B=—B ,两个物体碰撞过程中的每个时刻相互作用力B 与B 大小相等、方向相反,故有:〃〃 Y1'一加 1 y 1 =— (加 2 V2'—加 2力)加 1 y 1' + 加 2 v2'—加 11,1 + 加 2 v2这说明,两物体碰撞后的动量之和等于碰撞前的动量之和,并且该关系式对过程中 的任意两时刻的状态都适用。

高中物理动量守恒定律教案(通用3篇)

高中物理动量守恒定律教案(通用3篇)

高中物理动量守恒定律教案(通用3篇)高中物理动量守恒定律篇1一.教材的地位和作用动量守恒定律是自然界中最重要,最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,甚至对力的作用机制尚不清楚的问题中,动量守恒定律也适用。

它是除牛顿运动定律与能量观点外,另一种更广泛的解决动力学问题的方法,而且在今后的磁学,电学中也会用到此定律。

二.知识结构1,动量守恒定律的表述:如果一个系统不受外力,或者所受外力合力为零,这个系统的总动量保持不变。

2,动量守恒的条件:系统不受外力或者所受外力合力为零。

3,实验验证:两个弹性小球的弹性碰撞。

设两个小球的质量分别为M1和M2,碰撞前的速度分别为V1和V2,碰撞后的速度分别为V1`和V2`。

由动量守恒有:M1·V1+M2·V2=M1·V`1+M2·V`24,动量守恒定律的适用范围:小到微观粒子,大到天体,无论是什么性质的相互作用力,即使对相互作用情况还了解得不大清楚,动量守恒定律都是适用的。

5,灵活运用动量守恒定律和注意事项:动量守恒定律具有普适性。

当系统受到的合外力不为零,但是在某一方向上的合外力为零,那么在该方向上可以运用动量守恒定律。

在运用动量守恒定律之前应严格检验是否符合动量守恒定律的条件。

三.教学重点和难点学习本节的主要目的是为了掌握并会应用动量守恒定律这一应用广泛的自然规律,要达到这一目的,每个学生就需要正确理解其成立的条件和使用的特点。

而动量又是矢量,因此,确定本节的教学重点和难点为:(1)掌握动量守恒定律及其成立的条件。

(2)动量守恒定律的矢量性。

四.教学目标1,知识与技能(1)理解动量守恒定律的确切含义和表达式;(2)能用动量定理和牛顿第三定律推导出动量守恒定律;(3)知道动量守恒定律的适用条件和适用范围;2,过程与方法(1)会用动量守恒定律解释现象;(2)会应用动量守恒定律分析求解运动问题。

高中物理《动量守恒定律》优秀教学设计

高中物理《动量守恒定律》优秀教学设计

违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核
发生 β 衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解
释这一反常现象, 1930 年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到
5、系统 内力和外力
( 1)系统: 相互作用的物体组成系统。
( 2)内力: 系统内物体相互间的作用力
( 3)外力: 外物对系统内物体的作用力
例 1: 质量为 30kg 的小孩以 8m/s 的水平速度跳上一辆静止在水平轨道上的平板车,已知平板车的质量为
90kg,求小孩跳上
车后他们共同的速度? dvzfvkwMI1
2
m1v1 m2v 2
v1 v2 m1 m2
实验记录及分析( a-2 )
m1=4
碰撞前
v1=9
m2=2
v
=0
2
m1v1 m2 v2
m1v12 m2 v22
v1 v2 m1 m2
m1=4
碰撞后
v1 =4.5
m2=2
v2 =9
m1v1 m2v2
2
2
m1v1 m2v 2
v1 v2 m1 m2
质量 速度 mv mv2 v/m
v2=0
m=4 1
碰撞后
m=2 2
v1 =6
v2 = 6
mv
m1v1 m2 v2
mv2
m1 v12 m2 v22
m1v1 m2v2
2
2
m1v1 m2v 2
v/m
v1 v2
m1 m2
v1 v2 m1 m2

高中力学物理动量守恒教案

高中力学物理动量守恒教案

高中力学物理动量守恒教案
教学内容:动量的概念、动量守恒定律、动量守恒定律在碰撞问题中的应用
教学目标:
1. 理解动量的概念;
2. 掌握动量守恒定律的基本原理;
3. 能够运用动量守恒定律解决碰撞问题。

教学重点:动量的概念、动量守恒定律、碰撞问题的解决
教学难点:碰撞问题中动量守恒定律的应用
教学过程:
一、导入新知识
让学生通过观察一个小球被撞击后加速度、速度的改变来引出动量的概念,并介绍动量的定义。

二、讲解动量守恒定律
1. 介绍动量守恒定律的概念和基本原理。

2. 解释动量守恒定律在封闭系统中的适用条件。

三、案例分析
1. 给出一个简单的碰撞问题,让学生尝试运用动量守恒定律求解。

2. 讲解解题思路和方法,引导学生理解碰撞问题中的动量守恒原理。

四、练习与检测
让学生进行一些练习题,巩固动量守恒定律的应用。

布置作业,要求学生解决几个碰撞问题,以检测他们是否掌握了动量守恒定律的应用。

五、总结与评价
对学生的学习情况进行总结和评价,强调动量守恒定律在力学物理中的重要性。

教学反思:
在教学过程中,要重点讲解动量守恒定律的适用条件和应用方法,帮助学生理解并熟练运用这一重要物理定律。

同时,要引导学生进行实际的案例分析和练习,加深他们对动量守恒定律的理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 动量守恒研究
第二节 动量守恒定律( 1)
三维教学目标
1、知识与技能: 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围; 2、过程与方法: 在理解动量守恒定律的确切含义的基础上正确区分内力和外力; 3、情感、态度与价值观: 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题。
如果 mA>m,B 碰后 A、 B 两球一起向右摆动; 如果 mA<m,B 碰后 A 球反弹、 B 球向右摆动。
以上现象可以说明什么问题? 结论: 以上现象说明 A、 B 两球碰撞后,速度发生了变化, 变化时,速度变化的情况也不同。 RTCrpUDGiT ( 2)追寻不变量
当 A、B 两球的质量关系发生

L,气垫导轨上黄色框架上安装有光控开关,并与计
时装置相连,构成光电计时装置。 xHAQX74J0X
当挡光板穿入时,将光挡住开始计时,穿过后不再挡光则停止计时,设记录的时间为 动了时间 t ,所以滑块匀速运动的速度 v=L/t 。LDAYtRyKfE
3、实验方案
( 1)用气垫导轨作碰撞实验(如图所示)
m1 v12 m2 v22
2
m1 v1
2
m2v 2
v1 v2 m1 m2
v1 v2 m1 m2
分析:
①碰撞前后物体质量不变,但质量并不描述物体的运动状态,不是我们追寻的“不变量”

②必须在各种碰撞的情况下都不改变的量,才是我们追寻的不变量。
2、实验条件的保证、实验数据的测量
( 1)实验必须保证碰撞是一维的,即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动;
t ,则滑块相当于在 L 的位移上运
质量 速度 mv
实验记录及分析( a-1 )
m=4 1
碰撞前
v1=9
m=4 2
v2=0
m1v1 m2 v2
m=4 1
碰撞后
v1 =3
m=4 2
v2 =6
m1v1 m2v2
mv2 v/m
质量 速度
mv
2
mv v/m
m1 v12 m2 v22
v1 v2 m1 m2
2
在一维碰撞的情况下与物体运动有关的量只有物体的质量和物体的速度。设两个物体的质量分别为
m、 m,碰撞前它们速度
1
2
分别为
v1
、v
,碰撞后的速度分别为
2
v1 、 v2 ,规定某一速度方向为正。碰撞前后速度的变化和物体的质量
m的关系,我们可
以做如下猜测: 5PCzVD7HxA
m1v1 m2 v2 m1v1 m2 v2
v2=0
m=4 1
碰撞后
m=2 2
v1 =6
v2 = 6
mv
m1v1 m2 v2
mv2
m1 v12 m2 v22
m1v1 m2v2
2
2
m1v1 m2v 2
v/m
v1 v2
m1 m2
v1 v2 m1 m2
4、动量守恒定律( law of conservation of momentum

( 1)内容:一个系统不受外力或者所受外力的和为零, 这个系统的总动量保持不变。 这个结论叫做动量守恒定律。 Zzz6ZB2Ltk
2
m1v1 m2v 2
v1 v2 m1 m2
实验记录及分析( a-2 )
m1=4
碰撞前
v1=9
m2=2
v
=0
2
m1v1 m2 v2
m1v12 m2 v22
v1 v2 m1 m2
m1=4
碰撞后
v1 =4.5
m2=2
v2 =9
m1v1 m2v2
2
2
m1v1 m2v 2
v1 v2 m1 m2
质量 速度 mv mv2 v/m
5、系统 内力和外力
( 1)系统: 相互作用的物体组成系统。
教学重点: 动量守恒定律。 教学难点: 动量守恒的条件。 教学方法: 教师启发、引导,学生讨论、交流。 教学用具: 投影片,多媒体辅助教学设备。 (一)引 入
演示: ( 1)台球由于两球碰撞而改变运动状态。 ( 2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子。
碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化。两个物体的质量比例不同时, 它们的速度变化也不一样。物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物 理量保持不变(守恒) 。 b5E2RGbCAP
( 2)用天平测量物体的质量;
( 3)测量两个物体在碰撞前后的速度。
测量物体的速度可以有哪些方法?
总结:
速度的测量:可以充分利用所学的运动学知识,如利用匀速运动、平抛运动,并借助于斜槽、气垫导轨、打点计时器和
纸带等来达到实验目的和控制实验条件。 jLBHrnAILg
如图所示,图中滑块上红色部分为挡光板,挡光板有一定的宽度,设为
公式: m1υ 1+ m2υ2= m1υ 1′ + m2υ 2′
( 2)注意点:
① 研究对象:几个相互作用的物体组成的系统(如:碰撞) 。
② 矢量性:以上表达式是矢量表达式,列式前应先规定正方向;
③ 同一性(即所用速度都是相对同一参考系、同一时刻而言的)
④ 条件:系统不受外力,或受合外力为 0。要正确区分内力和外力;当 F 内>> F 外时,系统动量可视为守恒;
(二)进行新课 1、实验探究的基本思路
( 1) 一维碰撞 我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。这种碰撞叫做一维碰撞。
p1EanqFDPw 演示: 如图所示, A、 B 是悬挂起来的钢球,把小球 A 拉起使其悬线与竖直线夹一角度 a,放开后 A 球运动到最低点与 B 球发 生碰撞,碰后 B 球摆幅为 β角,如两球的质量 mA=m,B碰后 A 球静止,B球摆角 β=α ,这说明 A、B两球碰后交换了速度; DXDiTa9E3d
质量 速度
实验记录及分析( a-3 )
m=2 1
碰撞前
v =6 1
m=4 2
v =0 2
m1v1 m2 v2
m1 v12 m2 v22
v1 v2 m1 m2
m=2 1
碰撞后
v1 = -2
m=4 2
v2 =4
m1v1 m2v2
m1v1 2 m2v 2 2
v1 v2 m1 m2
实验记录及分析( b)
m=4 1
碰撞前
v =0 1
m=2 2
v =0 2
m=4 1
碰撞后
m=2 2
v1 = 2
v2= - 4
mv
m1v1 m2 v2
2
mv
m1v12 m2 v22
v/m
v1 v2
m1 m2
m1v1 m2v2
2
2
m1v1 m2v 2
v1 v2 m1 m2
实验记录及分析( c)
质量 速度
m=4 1
碰撞前
v1=9
m=2 2
相关文档
最新文档