金华市2019年中考数学模拟试卷及答案

合集下载

2019年浙江省金华市中考数学必刷模拟试卷附解析

2019年浙江省金华市中考数学必刷模拟试卷附解析

2019年浙江省金华市中考数学必刷模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD •的长为1米,继续往前走2米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度等于( )A .4.5米B .6米C .7.2米D .8米 2.抛物线2y ax =和22y x =的形状相同,则 a 的值是( )A .2B .-2C .2±D .不确定3.下列说法中正确的是( )A .一组对边平行的四边形是梯形B .矩形是特殊的等腰梯形C .有两个角相等的梯形是等腰梯形D .等腰梯形是轴对称图形4.方程(1)5(1)x x x -=-的解是( )A .1B .5C .1或5D . 无解5.下列命题中,是假命题的为 ( )A .任何多边形的外角和都为360°B .若△ABC 中,E ,F 分别在AB ,AC 上,且EF=12BC ,则EF ∥BCC .能单独镶嵌平面的正多边形只有正三角形,正方形,正六边形D .若在△ABC 所在的平面上有一点P ,满足PA=PB=PC ,则点P 是AABC 三边中垂线的交点6.如图,在 Rt △ABC 中,∠ACB = 90°,DE 过点C 且平行于AB. 若∠BCE = 35°,则∠A 等于( )A . 35°B .45°C . 55°D . 65°7.(1)一辆汽车在公路上行驶,两次拐弯后,仍与原来的方向平行前进,那么这两次拐弯的角度可能是( )A .第一次右拐40°,第二次左拐140°B .第一次左拐 40°,第二次右拐 40.C .第一次左拐 40°,第二饮右拐 140°D .第一次右拐 40°,第二次右拐 140°(2)要想保证两次拐后,汽车仍在原来的方向上平行前进,你还能设计出新的拐弯方案吗?从中你得出了什么规律?8.下列事件中,不可能事件是()A.掷一枚六个面分别刻有1~6数码的均匀正方体骰子,•向上一面的点数是“5”B.任意选择某个电视频道,正在播放动画片C.肥皂泡会破碎D.在平面内,度量一个三角形的内角度数,其和为360°9.下列命题中正确的是()A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外10.某商店销售一批服装,每件售价 150 元,可获利 25%,求这种服装的成本价. 设这种服装的成本价为x元,则得到方程()A.15025%x=⨯B.25%150x⋅=C.15025%xx-=D.15025%x-=11.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F.若∠BAF=60°,则∠DAE= ()A.150 B.30°C. 45°D.60°12.下列运算结果为负值的是()A.(-7)×(-4)B.(-6)+(-5)C.82-⨯-D.O×(-2)×8二、填空题13.小华与父母一同从重庆乘火车到广安邓小平故居参观. 火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是.14.写出一个对称轴是y轴的二次函数的解析式____________.15.给出四个特征:①两条对角线相等;②任一组对角互补:③任一组邻角互补;④是轴对称图形但不是中心对称图形.其中属于矩形和等腰梯形共同具有的特征是.16.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个四边形各角为.17.和对应相等的两个直角三角形全等,简写成“斜边直角边”或“”.18.如图,若a∥b,且∠2是∠1的3倍,则∠2= .19.如图中的图案均是用长度相同的小木棒按一定的规律拼搭而戍,拼搭第1个图案需 4根小木棒,拼搭第2个图案需10根小木棒……依此规律,拼搭第8个图案需根小木棒.20.若一个角的余角等于它的补角的15,则这个角是 .21.观察下列等式9-1=8;16-4=12;25 -9= 16;36--16=20;…这些等式反映出自然数间的某种规律,设n(n≥1)表示自然数,用关于 n 的等式表示这个规律为.三、解答题22.如图,在 Rt△ABC中,CD⊥AB,D为垂足,∠B=30°.求证:::AD AC CD BC.23.如图,边长为 l5m 的正方形池塘的周围全是草地,池塘边A、B、C、D处各有一棵树,且 AB=BC=CD=3m,现用长4 m的绳子将一头羊拴在其中一棵树上,要便羊在草地上活动的区域最大,应将绳子拴在哪棵树上?羊活动的最大面积是多少?24.如图是某市一天的温度曲线图,其中x表示时间(时),y表示某市的温度(℃),根据图象回答下面问题:(1)这个函数反映了哪两个变量之间的关系?(2)这天几时温度最高、最低,它们相差多少度?(3)温度y 可以看成时间x 的函数吗?为什么?(4)求当x=21时的函数值,并说明它的实际意义.25.如图,育英中学为了保护校内一棵百年古树,打算在古树周围用钢管焊制一排如图所示的护栏,如果图中的1l , 2l ,……,10l 都与上面的横杆垂直,上面的横杆与下面的横杆平行且都等于3 m ,1l = 1.5m ,那么要焊制这样的护栏至少需要多m 的钢管?26.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.27.当整数x 取何值时,分式31x +的值是整数? 0,2,4x =±-28.如图,将△ABC 先向上平移5格得到△A ′B ′C ′,再以直线MN 为对称轴,将△A ′B ′C ′作轴对称变换,得到△A ″B ″C ″,作出 △A ′B ′C ′和△A ″B ″C ″.29.已知一个长方形的长是宽的 3倍,面积是48 cm2,求这个长方形的周长.30.利用旧墙为一边(旧墙长为7 m),再用13 m长的篱笆围成一个面积为20 m2的长方形场地,则长方形场地的长和宽分别是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.D4.C5.B6.C7.(1)B;(2)如:第一次左拐40°,第二次左拐320°.规律:两次拐的方向一样,角度之和为360°,两次拐的方向相反,所拐角度相等8.D9.C10.C11.12.B二、填空题13.1314.2xy=15.①②16.60°,120°,60°,120°17.斜边,直角边,HL18.135°19.8820.67.5°21.22(2)4(1)n n n+-=+三、解答题22.∵CD⊥AB,∠B=30°,∴:1:2CD BC=,∵∠B= 30°,∠ACB= 90°,∴∠A = 60°,∠ACD= 30°,∴:1:2AD AC=,∴::AD AC CD BC=.23.拴在B处,最大面积为2270412360ππ⨯⨯=m2.24.某市一天中时间与温度之间的关系;(2)这天15时温度最高为16℃,3时温度最低为2℃,相差l4℃;(3)可以;(4)10℃,21时温度为10℃21 m26.∵0)()(22)(22222222222=-+-=-++-+=+-++c b b a bc c b ab b a c a b c b a , ∴c b a ==,∴ΔABC 为正三角形.27.0,2,4x =±-28.略29.32cm30.宽为 4m ,长为 5 m。

2019届浙江金华六校联考中考模拟考试数学试卷【含答案及解析】

2019届浙江金华六校联考中考模拟考试数学试卷【含答案及解析】

2019届浙江金华六校联考中考模拟考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. ﹣2的倒数是()A.2 B. C.﹣ D.﹣22. 下面几何体的俯视图是()3. 下列计算正确的是()A.2a3+a2=2a5 B.(﹣2ab)3=﹣2ab3C.2a3÷a2=2a D.4. 若y=有意义,则x的取值范围是()A.x≠4 B.x≤4 C.x≥4 D.x<45. 如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80° B.50° C.40° D.20°6. 若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是()A.1.5 B.2 C.3 D.67. 如图,双曲线y=经过点A(2,2)与点B(4,m),则△AOB的面积为()A.2 B.3 C.4 D.58. 如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣π B.(4﹣π)a2C.π D.4﹣π9. 如图,在圆锥形的稻草堆顶点P处有一只猫,看到底面圆周上的点A处有一只老鼠,猫沿着母线PA下去抓老鼠,猫到达点A时,老鼠已沿着底面圆周逃跑,猫在后面沿着相同的路线追,在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处.在这个过程中,假设猫的速度是匀速的,猫出发后与点P距离s,所用时间为t,则s与t之间的函数关系图象是()10. 如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;②;③点F是BC的中点;④若,tanE=.A.1 B.2 C.3 D.4二、填空题11. 分解因式:a2﹣4=_________12. 一组数据1,2,a的平均数为2,另一组数据﹣1,a,1,2,b的唯一众数为﹣l,则数据﹣1,a,1,2,b的中位数为 _________.13. 函数y=ax+b的图象如图,则方程ax+b=0的解为;不等式0<ax+b≤2的解集为.14. 用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为度.15. 在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是.16. 如图,抛物线y=ax2+bx+c(a≠0)的图象经过点A,B,C,已知点A的坐标为(﹣3,0),点B的坐标为(1,0),点C在y轴的正半轴上,且∠CAB=30°,若直线l:y=x+m从点C开始沿y轴向下平移.(1)当直线l上点D满足DA=DC且∠ADC=90°时,m的值为 _________ ;(2)以动直线l为对称轴,线段AC关于直线l的对称线段A′C′与抛物线有交点,写出m的取值范围 _________.三、计算题17. 计算:﹣+4cos45°﹣.四、解答题18. 如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.19. 如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2).(1)①若点C与点A关于原点O对称,则点C的坐标为;②将点A向右平移5个单位得到点D,则点D的坐标为;(2)在由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点恰好落在双曲线的概率.20. “校园手机”现象越来越受到社会的关注﹒春节期间,小明随机调查了城区若干名同学和家长对中学生带手机现象的看法.统计整理并制作了如下的统计图:(1)这次的调查对象中,家长有人;(2)图②中表示家长“赞成”的圆心角的度数为度;(3)开学后,甲、乙两所学校对各自学校所有学生带手机情况进行了统计,发现两校共有2384名学生带手机,且乙学校带手机的学生数是甲学校带手机学生数的,求甲、乙两校中带手机的学生数各有多少?21. 对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+,2×1+4),即P′(3,6).(1)①点P(﹣1,﹣2)的“2属派生点”P′的坐标为 _________ ;②若点P的“k属派生点”P′的坐标为(3,3),请写出一个符合条件的点P的坐标_________ ;(2)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且△OPP′为等腰直角三角形,求k的值.22. 如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB 的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:AP=BP=AB=2;(3)如果tan∠E=,求DE的长.23. 小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC 的延长线于点F,求证:S四边形ABCD=S△ABF.(S表示面积)问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,≈1.73)拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)(,)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.24. 如图,在Rt△AOB中,∠AOB=90°,AO=,BO=1,AB的垂直平分线交AB于点E,交射线BO于点F,点P从点A出发沿射线AO以每秒2个单位的速度运动,同时点Q从点O出发沿OB方向以每秒1个单位的速度运动,当点Q到达点B时,点P、Q同时停止运动,设运动的时间为t秒.(1)①当t为何值时,PQ∥AB;②当t为何值时,PQ∥EF;(2)当点P在O的左侧时,记四边形PFEQ的面积为S,求S关于t的函数关系式;(3)以O为原点,OA所在直线为x轴,建立直角坐标系,若P、Q关于点O的对称点分别为P′、Q′,当线段P′Q′,与线段EF有公共点时,抛物线y=ax2+1经过P′Q′的中点,此时的抛物线与x正半轴交于点M;①求a的取值范围;②求点M移动的运动速度.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。

浙江省金华市中考真题数学模拟试卷(解析版)

浙江省金华市中考真题数学模拟试卷(解析版)

2019年浙江省金华市中考数学模拟试卷一、选择题(本题有10小题,每小题3分,共30分)1.实数﹣的绝对值是()A.2 B.C.﹣D.﹣2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是()A.a<0 B.ab<0 C.a<b D.a,b互为倒数3.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.014.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.5.一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=26.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD7.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米29.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x+1<﹣2的解集是.12.能够说明“=x不成立”的x的值是(写出一个即可).13.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是mg/L.14.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.15.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD 折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.16.由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是米.(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是米.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:﹣(﹣1)2016﹣3tan60°+(﹣2016)0.18.解方程组.19.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.20.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?21.如图,直线y=x﹣与x,y轴分别交于点A,B,与反比例函数y=(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标.(2)若AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.22.四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求弧AE的长.23.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L,其顶点M在x轴上,求该抛物线的函数2表达式.,顶点为P,对应函数的二次项系(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.数为a324.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD 的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由2019年浙江省金华市中考数学模拟试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.实数﹣的绝对值是()A.2 B.C.﹣D.﹣【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣的绝对值是.故选:B.【点评】本题考查了实数的性质,负数的绝对值是它的相反数.2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是()A.a<0 B.ab<0 C.a<b D.a,b互为倒数【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:A、a<0,故A正确;B、ab<0,故B正确;C、a<b,故C正确;D、乘积为1的两个数互为倒数,故D错误;故选:D.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.3.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.01【考点】正数和负数.【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤5.03.∵44.9不在该范围之内,∴不合格的是B.故选:B.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.4.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.【考点】简单几何体的三视图.【分析】直接利用左视图的观察角度,进而得出视图.【解答】解:如图所示:∵从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,∴该几何体的左视图为:.故选:C.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.5.一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2【考点】根与系数的关系.【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1•x2==﹣2”,再结合四个选项即可得出结论.【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,∴x1+x2=﹣=3,x1•x2==﹣2,∴C选项正确.故选C.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.6.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【考点】全等三角形的判定.【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出小明、小华两名学生参加社会实践活动的情况数,即可求出所求的概率;【解答】解:解:可能出现的结果会调查”的结果有1种,=,则所求概率P1故选:A.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【考点】解直角三角形的应用.【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯的面积至少需要1×(4+4tanθ)=4+tanθ(米2);故选:D.【点评】本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键.9.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点【考点】角的大小比较.【专题】网格型.【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.【解答】解:连接BC,AC,BD,AD,AE,BE,通过测量可知∠ACB<∠A DB<∠AEB,所以射门的点越靠近线段DE,角越大,故最好选择DE(异于端点)上一点,故选C.【点评】本题考查了比较角的大小,一般情况下比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【考点】相似三角形的判定与性质;函数的图象;线段垂直平分线的性质.【分析】由△DAH∽△CAB,得=,求出y与x关系,再确定x的取值范围即可解决问题.【解答】解:∵DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴=,∴=,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.【点评】本题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x+1<﹣2的解集是x<﹣1 .【考点】解一元一次不等式.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以3,不等号的方向不变.得到不等式的解集为:x<﹣1.【解答】解:解不等式3x+1<﹣2,得3x<﹣3,解得x<﹣1.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.能够说明“=x不成立”的x的值是﹣1 (写出一个即可).【考点】算术平方根.【专题】计算题;实数.【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.13.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是 1 mg/L.【考点】算术平均数;折线统计图.【专题】统计与概率.【分析】根据题意可以求得这6次总的含量,由折线统计图可以得到除第3次的含量,从而可以得到第3次检测得到的氨氮含量.【解答】解:由题意可得,第3次检测得到的氨氮含量是:1.5×6﹣(1.6+2+1.5+1.4+1.5)=9﹣8=1mg/L,故答案为:1.【点评】本题考查算术平均数、折线统计图,解题的关键是明确题意,找出所求问题需要的条件.14.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【考点】平行线的性质.【分析】延长DE交AB于F,根据平行线的性质得到∠AFE=∠B,∠B+∠C=180°,根据三角形的外角的性质即可得到结论.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.15.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD 折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是2或5 .【考点】翻折变换(折叠问题).【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【解答】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8﹣x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8﹣x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8﹣x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8﹣x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.【点评】本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键.16.由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是米.(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是3米.【考点】三角形的稳定性.【分析】(1)只要证明AE∥BD,得=,列出方程即可解决问题.(2)分别求出六边形的对角线并且比较大小,即可解决问题.【解答】解:(1)如图1中,∵FB=DF,FA=FE,∴∠FAE=∠FEA,∠B=∠D,∴∠FAE=∠B,∴AE∥BD,∴=,∴=,∴AE=,故答案为.(2)如图中,作BN⊥FA于N,延长AB、DC交于点M,连接BD、AD、BF、CF.在RT△BFN中,∵∠BNF=90°,BN=,FN=AN+AF=+2=,∴BF==,同理得到AC=DF=,∵∠ABC=∠BCD=120°,∴∠MBC=∠MCB=60°,∴∠M=60°,∴CM=BC=BM,∵∠M+∠MAF=180°,∴AF∥DM,∵AF=CM,∴四边形AMCF是平行四边形,∴CF=AM=3,∵∠BCD=∠CBD+∠CDB=60°,∠CBD=∠CDB,∴∠CBD=∠CDB=30°,∵∠M=60°,∴∠MBD=90°,∴BD==2,同理BE=2,∵<3<2,∴用三根钢条连接顶点使该钢架不能活动,∴连接AC、BF、DF即可,∴所用三根钢条总长度的最小值3,故答案为3.【点评】本题考查三角形的稳定性、平行线的性质、平行四边形的判定和性质、勾股定理.等边三角形的判定和性质等知识,解题的关键是添加辅助线构造特殊三角形以及平行四边形,属于中考常考题型.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:﹣(﹣1)2016﹣3tan60°+(﹣2016)0.【考点】实数的运算.【分析】首先利用二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.【解答】解:原式=3﹣1﹣3×+1=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.解方程组.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,由①﹣②,得y=3,把y=3代入②,得x+3=2,解得:x=﹣1.则原方程组的解是.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.【考点】条形统计图.【分析】(1)将训练前各等级人数相加得总人数,将总人数减去训练后B、C两个等级人数可得训练后A等级人数;(2)将训练后A等级人数占总人数比例乘以总人数可得.【解答】解:(1)∵抽取的人数为21+7+2=30,∴训练后“A”等次的人数为30﹣2﹣8=20.补全统计图如图:(2)600×=400(人).答:估计该校九年级训练后成绩为“A”等次的人数是400.【点评】本题主要考查条形统计图,根据统计图读出训练前后各等级的人数及总人数间的关系是解题的关键,也考查了样本估计总体.20.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?【考点】一次函数的应用.【分析】(1)根据图1得到y关于x的函数表达式,根据表达式填表;(2)根据如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间得到伦敦(夏时制)时间与北京时间的关系,结合(1)解答即可.【解答】解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时,故y关于x的函数表达式是y=x+1.由第(1)题,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.【点评】本题考查的是一次函数的应用,根据题意正确求出函数解析式是解题的关键.21.如图,直线y=x﹣与x,y轴分别交于点A,B,与反比例函数y=(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标.(2)若AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)令一次函数中y=0,解关于x的一元一次方程,即可得出结论;(2)①过点C作CF⊥x轴于点F,设AE=AC=t,由此表示出点E的坐标,利用特殊角的三角形函数值,通过计算可得出点C的坐标,再根据反比例函数图象上点的坐标特征可得出关于t的一元二次方程,解方程即可得出结论;②根据点在直线上设出点D的坐标,根据反比例函数图象上点的坐标特征可得出关于点D横坐标的一元二次方程,解方程即可得出点D的坐标,结合①中点E的坐标即可得出结论.【解答】解:(1)当y=0时,得0=x﹣,解得:x=3.∴点A的坐标为(3,0).:(2)①过点C作CF⊥x轴于点F,如图所示.设AE=AC=t,点E的坐标是(3,t),在Rt△AOB中,tan∠OAB==,∴∠OAB=30°.在Rt△ACF中,∠CAF=30°,∴CF=t,AF=AC•cos30°=t,∴点C的坐标是(3+t, t).∴(3+t)×t=3t,解得:t 1=0(舍去),t 2=2.∴k=3t=6.②点E 与点D 关于原点O 成中心对称,理由如下:设点D 的坐标是(x ,x ﹣),∴x(x ﹣)=6,解得:x 1=6,x 2=﹣3,∴点D 的坐标是(﹣3,﹣2).又∵点E 的坐标为(3,2),∴点E 与点D 关于原点O 成中心对称.【点评】本题考查了反比例函数与一次函数的交点问题、解一元二次方程以及反比例函数图象上点的坐标特征,解题的关键是:(1)令一次函数中y=0求出x 的值;(2)根据反比例函数图象上点的坐标特征得出一元二次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征找出关于点的横坐标的一元二次方程是关键.22.四边形ABCD 的对角线交于点E ,有AE=EC ,BE=ED ,以AB 为直径的半圆过点E ,圆心为O .(1)利用图1,求证:四边形ABCD 是菱形.(2)如图2,若CD 的延长线与半圆相切于点F ,已知直径AB=8. ①连结OE ,求△OBE 的面积. ②求弧AE 的长.【考点】菱形的判定与性质;切线的性质.【分析】(1)先由AE=EC、BE=ED可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;(2)①连结OF,由切线可得OF为△ABD的高且OF=4,从而可得S△ABD,由OE为△ABD的中位线可得S△OBE =S△ABD;②作DH⊥AB于点H,结合①可知四边形OHDF为矩形,即DH=OF=4,根据sin∠DAB==知∠EOB=∠DAH=30°,即∠AOE=150°,根据弧长公式可得答案【解答】解:(1)∵AE=EC,BE=ED,∴四边形ABCD是平行四边形.∵AB为直径,且过点E,∴∠AEB=90°,即AC⊥BD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.(2)①连结OF.∵CD的延长线与半圆相切于点F,∴OF⊥CF. ∵FC∥AB,∴OF 即为△ABD 中AB 边上的高. ∴S △ABD =AB×OF=×8×4=16, ∵点O 是AB 中点,点E 是BD 的中点, ∴S △OBE =S △ABD =4.②过点D 作DH⊥AB 于点H . ∵AB∥CD,OF⊥CF, ∴FO⊥AB,∴∠F=∠FOB=∠DHO=90°.∴四边形OHDF 为矩形,即DH=OF=4. ∵在Rt△DAH 中,sin∠DAB==,∴∠DAH=30°.∵点O ,E 分别为AB ,BD 中点, ∴OE∥AD,∴∠EOB=∠DAH=30°. ∴∠AOE=180°﹣∠EOB=150°. ∴弧AE 的长==. 【点评】本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.23.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.,其顶点M在x轴上,求该抛物线的函数②如图2,若BD=AB,过点B,D的抛物线L2表达式.,顶点为P,对应函数的二次项系(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.数为a3【考点】二次函数综合题.【分析】(1)①根据函数解析式求出点A、B的坐标,求出AC的长;的对称轴与AD相交于点N,根据抛物线的轴对称性求出OM,利用待定系②作抛物线L2数法求出抛物线的函数表达式;(2)过点B作BK⊥x轴于点K,设OK=t,得到OG=4t,利用待定系数法求出抛物线的函数表达式,根据抛物线过点B(t,at2),求出的值,根据抛物线上点的坐标特征求出的值.【解答】解:(1)①二次函数y=x2,当y=2时,2=x2,解得x1=,x2=﹣,∴AB=2.∵平移得到的抛物线L1经过点B,∴BC=AB=2,∴AC=4.②作抛物线L2的对称轴与AD相交于点N,如图2,根据抛物线的轴对称性,得BN=DB=,∴OM=.设抛物线L2的函数表达式为y=a(x﹣)2,由①得,B点的坐标为(,2),∴2=a(﹣)2,解得a=4.抛物线L2的函数表达式为y=4(x﹣)2;(2)如图3,抛物线L3与x轴交于点G,其对称轴与x轴交于点Q,过点B作BK⊥x轴于点K,设OK=t,则AB=BD=2t,点B的坐标为(t,at2),根据抛物线的轴对称性,得OQ=2t,OG=2OQ=4t.设抛物线L3的函数表达式为y=a3x(x﹣4t),∵该抛物线过点B(t,at2),∴at2=a3t(t﹣4t),∵t≠0,∴=﹣,由题意得,点P的坐标为(2t,﹣4a3t2),则﹣4a3t2=ax2,解得,x1=﹣t,x2=t,EF=t,∴=.【点评】本题考查的是二次函数的图象和性质、待定系数法求函数解析式,灵活运用待定系数法求出函数解析式、掌握抛物线的对称性、正确理解抛物线上点的坐标特征是解题的关键.24.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD 的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由【考点】正方形的性质;待定系数法求一次函数解析式.【分析】(1)先判断出△AEO为正三角形,再根据锐角三角函数求出OM即可;(2)判断出当AE⊥OQ时,线段AE的长最小,用勾股定理计算即可;(3)由△OEP的其中两边之比为:1分三种情况进行计算即可.【解答】解:(1)如图1,过点E作EH⊥OA于点H,EF与y轴的交点为M.∵OE=OA,α=60°,∴△AEO为正三角形,∴OH=3,EH==3.∴E(﹣3,3).∵∠AOM=90°,∴∠EOM=30°.在Rt△EOM中,∵cos∠EOM=,即=,∴OM=4.∴M(0,4).设直线EF的函数表达式为y=kx+4,∵该直线过点E(﹣3,3),∴﹣3k+4=3,解得k=,所以,直线EF的函数表达式为y=x+4.(2)如图2,射线OQ与OA的夹角为α(α为锐角,tanα).无论正方形边长为多少,绕点O旋转角α后得到正方形OEFG的顶点E在射线OQ上,∴当AE⊥OQ时,线段AE的长最小.在Rt△AOE中,设AE=a,则OE=2a,∴a2+(2a)2=62,解得a1=,a2=﹣(舍去),∴OE=2a=,∴S正方形OEFG=OE2=.(3)设正方形边长为m.当点F落在y轴正半轴时.如图3,当P与F重合时,△PEO是等腰直角三角形,有=或=.在Rt△AOP中,∠APO=45°,OP=OA=6,的坐标为(0,6).∴点P1在图3的基础上,当减小正方形边长时,点P在边FG 上,△OEP的其中两边之比不可能为:1;当增加正方形边长时,存在=(图4)和=(图5)两种情况.如图4,△EFP是等腰直角三角形,有=,即=,此时有AP∥OF.在Rt△AOE中,∠AOE=45°,∴OE=OA=6,∴PE=OE=12,PA=PE+AE=18,的坐标为(﹣6,18).∴点P2如图5,过P作PR⊥x轴于点R,延长PG交x轴于点H.设PF=n.在Rt△POG中,PO2=PG2+OG2=m2+(m+n)2=2m2+2mn+n2,在Rt△PEF中,PE2=PF2+EF2=m2+n2,当=时,∴PO2=2PE2.∴2m2+2mn+n2=2(m2+n2),得n=2m.∵EO∥PH,∴△AOE∽△AHP,∴=,∴AH=4OA=24,即OH=18,∴m=9.在等腰Rt△PRH中,PR=HR=PH=36,∴OR=RH﹣OH=18,的坐标为(﹣18,36).∴点P3当点F落在y轴负半轴时,如图6,P与A重合时,在Rt△POG中,OP=OG,又∵正方形OGFE中,OG=OE,∴OP=OE.的坐标为(﹣6,0).∴点P4在图6的基础上,当正方形边长减小时,△OEP的其中两边之比不可能为:1;当正方形边长增加时,存在=(图7)这一种情况.如图7,过P作PR⊥x轴于点R,设PG=n.在Rt△OPG中,PO2=PG2+OG2=n2+m2,11 在Rt△PEF 中,PE 2=PF 2+FE 2=(m+n )2+m 2=2m 2+2mn+n 2.当=时,∴PE 2=2PO 2.∴2m 2+2mn+n 2=2n 2+2m 2,∴n=2m,由于NG=OG=m ,则PN=NG=m ,∵OE∥PN,∴△AOE∽△ANP,∴=1,即AN=OA=6.在等腰Rt△ONG 中,ON=m , ∴12=m , ∴m=6, 在等腰Rt△PRN 中,RN=PR=6,∴点P 5的坐标为(﹣18,6).所以,△OEP 的其中两边的比能为:1,点P 的坐标是:P 1(0,6),P 2(﹣6,18),P 3(﹣18,36),P 4(﹣6,0),P 5(﹣18,6).【点评】此题是正方形的性质题,主要考查了正方形的性质,等腰三角形的性质,勾股定理,解本题的关键是灵活运用勾股定理进行计算.。

2019年浙江省金华市中考数学模拟考试试题附解析

2019年浙江省金华市中考数学模拟考试试题附解析

2019年浙江省金华市中考数学模拟考试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.使皮影戏形成影子的光线是( )A .灯光B .太阳光C .平行光D .以上都不是 2.线段 PQ 的黄金分割点是R (PR>RQ ),则下列各式中正确的是( ) A .PR RQ PQ PQ = B .PR QR PQ PR = C .PQ RQ PR PQ = D .PR PQ PQ QR = 3.在□ABCD 中,对角线AC 与BD 相交于点0,那么能通过绕点0旋转达到重合的三角形有 ( )A .2对B .3对C 4对D .5对4.x 为实数,下列式子一定有意义的是( )A .21x +B .2x x +C .211x -D .21x5.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(-2,2)6.下列各图中,不是直四棱柱的表面展开图的是( )A .B .C .D .7.下列图形中,与如图1形状相同的是( )图 1 A . B . C . D .8.一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( )A .6cmB .5cmC .8cmD .7cm9.下列各等式中正确的是()A.(x-2y)2=x2-2xy+4y2B.(3x+2)2=3x2+12x+4C.(-3x-y)2=9x2-6xy+y2D.(-2x-y)2=4x2+4xy+y210.下列字母中,不是轴对称图形的是()A.X B.Y C.Z D.T11.如图,C、D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm12.由图,可知销售量最大的一年是()A. 2005年B. 2006年C.2007年D.无法确定13.甲、乙两人参加某体育项目训练,为了便于研究,把最近五次训练成绩分别用实线和虚线连结,如图所示,下面结论错误的是()A.乙的第二次成绩与第五次成绩相同B第三次测试甲的成绩与乙的成绩相同C.第四次测试甲的成绩比乙的成绩多2分D.五次测试甲的成绩都比乙的成绩高14.已知当1a=,2b=-时,代数式10ab bc ca++=,则c的值为()A. 12 B. 6 C.-6 D. -1215.在 0.25,14-,13-,0,3,+4,-3 这几个数中,互为相反数的有()A.0 对B.1 对C.2 对D. 3 对二、填空题16.在一个不透明的袋中装有2个绿球,3个红球和5个黄球,它们除了颜色外都相同,从中随机摸出一个球,摸到红球的概率是.17.如图所示,CD 是 Rt △ABC 斜边上的高线,若3sin 3A =,BD=1,则AD= .18.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的一个根是 x =____.19.当0x a <<时,2x 与ax 的大小关系是 .20.若213254b a b x y ---=是二元一次方程,则a = ,b = .21.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v=1f.若f =6厘米,v =8厘米,则物距u =________厘米. 22.已知一个角的补角是这个角的余角的3倍,那么这个角的度数是_______.三、解答题23.图l 是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图2),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm ,有三条边的长是3cm ,每个内角都是120º,该六棱校的高为3cm .现沿它的侧棱剪开展平,得到如图3的平面展开图.(1)制作这种底盒时,可以按图4中虚线裁剪出如图3的模片.现有一块长为17.5cm 、宽为16.5cm 的长方形铁皮,请问能否按图4的裁剪方法制作这样的无盖底盒?并请你说明理由;(2)如果用一块正三角形铁皮按图5中虚线裁剪出如图3的模片,那么这个正三角形的边长至少应为 cm .(说明:以上裁剪均不计接缝处损耗.)24.如图,两幅图片中竹竿的影子是在太阳光线下还是在灯泡光线下形成的?请你 画出两图中小松树的影子.25.已知△ABF ≌△DCE ,E 与F 是对应顶点.(1)△DCE 可以看成是由△ABF 通过怎么样的运动得到的?(2)AF 与DE 平行吗?试说明理由.26.如图所示,一棵大树被龙卷风吹断了,折断点离地面9 m ,树顶端落在离树根12 m 处,问这棵大树原先高度是多少?27.计算:(1) 22216946xy x y x xy÷- (2)22111x x x --+-28.一块玻璃长 a(cm),宽 b(cm),长、宽各裁掉x(cm)后恰能铺盖一张办公桌台面(玻璃与台面一样大),问:(1)栽掉部分的面积是多少?(2)台面面积是多少?你能用两种算法解答吗?比较两种算法,你发现了什么?29.在方程38x ay-=中,若32xy=⎧⎨=⎩是它的一个解,求a的值.12a=30.有五条线段,长度分别为1、3、5、7、9,从中任取三条线段,一定能构成三角形吗?能构成三角形的概率是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.A4.A5.答案:A6.C7.B8.D9.D10.C11.B12.C13.D14.D15.C二、填空题16.3(或0.3)1017.218.19.220.x ax1,121.2422.45°三、解答题23.(1)能.理由:由题设可知,图4中长方形的宽为63+6<16.5,长方形的长为12+33 <17.5.故长为17.5 cm、宽为16.5 cm的长方形铁皮,能按图4的裁剪方法制成这样的无盖底盒.(2)63+15.24.如图.图①:是在灯泡下,AB 是小松树的影子;图②:是在阳光下,AB 是小松树的影子.25.△ABF 先沿BC 方向平移,使点F 与E 重合,再绕点E 顺时针旋转180°,即可. 平行.∵△ABF ≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF ∥DE .26.24m27.(1)2238x y -;(2)x-11. 28.(1)(2ax bx x +-)cm 2 ;(2)方法一:22()()ab ax bx x ab ax bx x -+-=--+cm 2;方法二:2()()()a x b x ab bx ax x --=--+cm 2;发现2()()a x b x ab ax bx x --=--+ 29.12a =30.不一定能构成三角形,因为由树形图(图略)可知,从1,3,5,7,9中任取3个数,能组合成10种形式,能构成三角形的数字有(3,5,7),(3,7,9),(5,7,9),所以从长度分别为1,3,5,7,9 的5条线段中任取三条能构成三角形的概率为310.。

2019年浙江省金华市中考数学二模试卷附解析

2019年浙江省金华市中考数学二模试卷附解析

2019年浙江省金华市中考数学二模试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.抛物线223y x x =-++的顶点在( )A . 第一象限B .第二象限 C. 第三象限 D . 第四象限2.n 边形所有对角线的条数是( )A .n (n -1)2B .n (n -2)2C .n (n -3)2D .n (n -4)23.下列语句中是命题的有( )(1)两点之间线段最短;(2)不在同一直线上的三点确定一个平面;(3)画出△ABC 的高;(4)三个角对应相等的两个三角形不一定全等.A .1个B .2个C .3个D .4个 4.如图所示,不能判定1l ∥2l 的是 ( )A .∠l=∠2B .∠l=∠3C .∠2=∠3D .∠3=∠4 5.一组数据共40个,分为6组,第一组到第四组的频数分别为l0,5,7,6,第五组的频 率为0.1,则第六组的频数为( )A .4B .5C .8D .10 6.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cmB .12cmC .15cmD .12cm 或15cm 7.在多项式222x y +,22x y -,22x y -+,22x y --中,能用平方差公式分解的是( )A .1个B .2个C .3个D .4个8.下列图形中,与如图1形状相同的是( )图 1 A . B . C . D .9.已知分式11x x -+的值为零,那么x 的值是( ) A .-1 B .0 C .1 D .1±二、填空题10.如图所示,在 Rt △ABC 中,∠C= 90°,AC= 6 ,BC= 8 ,那么sinA = .cosA = ,tanB = .11.已知直线y=2x ,则该直线与x 轴正方向夹角的正切值是 .12.在半径为5dm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为2dm ,那么油面宽度 AB 是 dm .第 15 题DB CA O13.平行四边形相邻两边长分别为7和2,若较短的一条对角线与相邻两边所围成的三角形的周长为偶数.则这条对角线的长为 .14.定理“到一条线段两端点距离相等的点,在这条线段的垂直平分线上”的逆定理是 .15.线段是中心对称图形,它的对称中心是这条线段的 .16.正方体有 个顶点,经过每个顶点有 条棱,这些棱的位置关系是 ,数量关系是 .17.如图,校园里有一块边长为20 m 的正方形空地,准备在空地上种草坪,草坪上有横竖各3条小路,每条小路的宽度都为2 m ,则草坪的面积为 .18.如图所示,△ABC 三条中线AD 、BE 、CF 交于点0,S △ABC=l2,则S △ABD = , S △AOF = .19.已知数a为负数,且数轴上表示a 的点到原点的距离等于 3,将该点向右移动 6 个单位后得到的数的相反数是.20.如图是某市晚报记者在抽样调查了一些市民用于读书、读报、参加“全民健身运动”等休闲娱乐活动的时间后,绘制的频率分布直方图(共六组),已知从左往右前五组的频率之和为0.94,如果第六组有12个数,则此次抽样的样本容量是.21.直角三角形的两个锐角的平分线AD,BE交于点0,则∠AOB= .三、解答题22.如图,∠PAQ 是直角,⊙O 与 AP 相切于点 T,与 AQ 交于B、C两点.(1)BT 是否平分∠OBA?说明你的理由.(2)若已知 AT=4,弦 BC=6,试求⊙O的半径R.23.如图,已知有一腰长为 2 cm 的等腰直角△ABC 余料,现从中要截下一个半圆,半圆的直径要在三角形的一边上,且与另两边相切. 请设计两种栽截方案,画出示意图,并计算出半圆的半径.A B CD E 30°60°24.已知:如图,在□ABCD 中,∠B =60°,CE 平分∠BCD ,交AD 于E ,∠ACE =30°,求证:BC =2AB.25.如图所示,已知 EB ∥DC ,∠C=∠E.试说明:∠A=∠ADE .26.某学校共有2个大阅览室和4个小阅览室,经过测试,同时开放 1 个大阅览室和2个小阅览室,可供 372名同学阅读;同时开放 2 个大阅览室和 1个小阅览室,可供 474名同学阅读.(1)问1个大阅览室和1个小阅览室分别可供多少名同学阅读?(2)若6个阅览室同时开放,能不能供 780名同学阅读?请说明理由.27. :请你在3×3 的方格纸上,以其中的格点为顶点分别画出,三个形状不同的三角形(工具不限,只要求画出图形,不必写结论).28.解二元一次方程组358 2 1.x yx y+=⎧⎨-=⎩,29.如图,先画出三角形关于直线n的轴对称图形,再画出所得图形关于直线m的轴对称图形;经过这样两次轴对称变换后所得的图形和原来图形有什么关系?30.暑假两名教师带 8 名学生外出旅游,旅游费教师每人a元、学生每人 b元,因是团体,给予优惠,教师打八折,学生按六五折优惠,共需旅游费多少无?并计算当 a=30,b=20 时,旅游费的总金额.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.C4.B5.D6.C7.B8.B9.C二、填空题10.4 5,35,3411.212.813.714.线段垂直平分线上的点到这条线段两端点的距离相等15.中点16.8,3,垂直,相等17.196 m218.6,219.-320.20021.135°三、解答题22.(1) BT 平分∠OBA.理由如下:连结 OT,则 OT⊥AP.∵∠PAQ=90°,∴∠PAQ+∠OTA=180°∴OT∥AQ,∴∠OTB=∠ABT,又∠OTB=∠OBT,∴∠ABT=∠0BT,∴BT 平分∠0BA (2)作 OE⊥BC于E 点,则 BE=3,四边形 AEOT 是矩形,∴ OE=AT=4,∴5R==23.如图的两种裁截方案:方案一:作∠CAB 的角平分线交 CB 于点0,以 0 为圆心,以 OC 为半径画半圆. 作OE ⊥AB. 则CO=EO ,由面积可得:AC BC AC CO OE AB ⋅=⋅+⋅,解得222OC =-.方案二:作∠ACB 的角平分线交 AB 于点0,作 OD ⊥AC ,以 0为圆心,以 OD 为半径画半圆.作 OE ⊥CB ,则 OD=OE ,由面积可得0AC BC AC OD E CB ⋅=⋅+⋅,解得 OD=1. 24.提示:2(∠ACB +30°)+60°=180°,∠ACB =30°,∠BAC =90°,∴BC =2AB . 25.可由AC ∥DE 说明26.(1)大阅览室可供 192人阅读,小阅览室可供 90人阅读 (2)2×192十4×9O=744<780,不能供 780名同学同时阅读.27.28.11.x y =⎧⎨=⎩, 29. 略30.(1)(1.6a+5.2b)元,152 元。

2019年金华市永康市中考数学模拟试卷含答案解析+【精选五套中考模拟卷】

2019年金华市永康市中考数学模拟试卷含答案解析+【精选五套中考模拟卷】

2019年金华市永康市中考数学模拟试卷含答案解析一、选择题(本题有10小题,每小题3分,共30分) 2019的相反数是(1.A.2019 B. - 2019 C.2.A.3.)] 2016) D.]2016下列运算正确的是(3a 2 - a 2=3 B. (a 2) 3=a 5 C. a 3*a 6=a 9上面图案中,既是中心对称图形,又是轴对称图形的是(D. (2a 2) Ma 2A.5.( B.是关于X, y 的二元一次方程x - ay=3的一个解,则a 的值为()A.1 B. - 1今年是猴年,)"8如图, C. 2 D. - 2在“猴年马月”和“猴头猴脑”这两个词语的八个汉字中,任选一个汉字是“猴”字的概率是B. 28某登山运动员从营地A 沿坡角为30°的斜坡AB 到达山顶B,如果AB=600m,那么他实际上升的高度6.BC 为(B A. 300/J 11 B. 1200m C. 300m D.■'""的解集表示在数轴上,正确的是(6- x>37.把不等式组:)A. B.―勤 c. ♦ • L1 2 30 12 3 D.0 12 38.0 1如图,圆弧形石拱桥的桥顶到水面的距离CD 为6m,桥拱半径0C 为4m,则水面宽AB 为()C A. 旧 mB. 2顼"袒.4扼mD.6扼m9.如图是一个K 何体的三视图,其中主视图,左视图都是腰为13cm,底为10cm 的等腰三角形,则这个几何体 的侧面积是()主视图左视图俯视囹A.60it cm2B.65n cm2C.70冗cm2D.75Jt cm210.已知顶点为(-3,-6)的抛物线y=ax'+bx+c经过点(-1,-4),则下列结论中错误的是()A.b2>4acB.关于x的一元二次方程ax2+bx+c=-4的两根为-5和TC.ax^+bx+cN-6D.若点(-2,m),(-5,n)在抛物线上,则m>n二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:a2-l=.12.如图,三角板的直角顶点在直线1上,若Zl=40°,则匕2的度数是.13.若一组2,-1,0,2,-1,a的众数为2,则这组数据的平均数为.14.如图,在q ABCD中,已知AD=8cm,AB=6cm,DE平分ZADC,交BC边于点E,则BE=cm.15.如图,一次函数y=kx+3分别与x,y轴交于点N,M,与反比例函数y=2(x>0)的图象交于点A,若AM:16.如图,在平面直角坐标系中,直线y=-'x+3与x轴交于点A,与y轴交于点B.点Q在直线AB上,点P4在x轴上,且Z0QP=90°.(1)当点P与点A重合时,点Q的坐标为;(2)设点P的横坐标为a,则a的取值范围是.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:sin30°-"12"*"I~21-(―)°.19.学校植物园沿路护栏的纹饰部分设计成芦干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dem,如图所示,已知每个菱形图案的边长为lOj^cm,其中一个内角为60°(1)求一个菱形图案水平方向的对角线长.(2)若d=26,则该纹饰要用231个菱形图案,求纹饰的长度L.20.为了解永康市某中学八年级学生的视力水平,从中抽查部分学生的视力情况,绘制了如图统计图:永・亩工中学八年统部分学生没力况条形统计图永康市工申学八年sub分学生检力情况al彩统计图人敏〈人〉sii*skick枚力情'兄(1)本次调查的样本容量是;(2)请补全条形统计图,并求扇形统计图中“视力正常”的圆心角度数;(3)该校八年级共有200位学生,请估计该校八年级视力正常的学生人数.21.如图,DC是。

金华市六校联考2019届中考数学模拟试卷含答案解析(word版)

2019年浙江省金华市六校联考中考数学模拟试卷一、选择题1.﹣2的倒数是()A.2 B.C.﹣D.﹣22.下面几何体的俯视图是()A.B.C.D.3.下列计算正确的是()A.2a3+a2=2a5B.(﹣2ab)3=﹣2ab3C.2a3÷a2=2a D.4.若y=有意义,则x的取值范围是()A.x≠4 B.x≤4 C.x≥4 D.x<45.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80° B.50° C.40° D.20°6.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是()A.1.5 B.2 C.3 D.67.如图,双曲线y=经过点A(2,2)与点B(4,m),则△AOB的面积为()A.2 B.3 C.4 D.58.如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣π B.(4﹣π)a2C.π D.4﹣π9.如图,在圆锥形的稻草堆顶点P处有一只猫,看到底面圆周上的点A处有一只老鼠,猫沿着母线PA下去抓老鼠,猫到达点A时,老鼠已沿着底面圆周逃跑,猫在后面沿着相同的路线追,在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处.在这个过程中,假设猫的速度是匀速的,猫出发后与点P距离s,所用时间为t,则s与t之间的函数关系图象是()A.B.C.D.10.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD 并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;②=;③点F是BC的中点;④若=,tanE=.A.1 B.2 C.3 D.4二、填空题11.分解因式:a2﹣4=.12.一组数据1,2,a的平均数为2,另一组数据﹣1,a,1,2,b的唯一众数为﹣l,则数据﹣1,a,1,2,b的中位数为.13.函数y=ax+b的图象如图,则方程ax+b=0的解为;不等式0<ax+b≤2的解集为.14.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为度.15.在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C ﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是.16.如图,抛物线y=ax2+bx+c(a≠0)的图象经过点A,B,C,已知点A的坐标为(﹣3,0),点B的坐标为(1,0),点C在y轴的正半轴上,且∠CAB=30°,若直线l:y=x+m从点C开始沿y轴向下平移.(1)当直线l上点D满足DA=DC且∠ADC=90°时,m的值为;(2)以动直线l为对称轴,线段AC关于直线l的对称线段A′C′与抛物线有交点,写出m的取值范围.三、解答题(共8小题,满分66分)17.计算:﹣+4cos45°﹣.18.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.19.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2).(1)①若点C与点A关于原点O对称,则点C的坐标为;②将点A向右平移5个单位得到点D,则点D的坐标为;(2)在由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点恰好落在双曲线的概率.20.“校园手机”现象越来越受到社会的关注﹒春节期间,小明随机调查了城区若干名同学和家长对中学生带手机现象的看法.统计整理并制作了如下的统计图:(1)这次的调查对象中,家长有人;(2)图②中表示家长“赞成”的圆心角的度数为度;(3)开学后,甲、乙两所学校对各自学校所有学生带手机情况进行了统计,发现两校共有2384名学生带手机,且乙学校带手机的学生数是甲学校带手机学生数的,求甲、乙两校中带手机的学生数各有多少?21.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+,2×1+4),即P′(3,6).(1)①点P(﹣1,﹣2)的“2属派生点”P′的坐标为;②若点P的“k属派生点”P′的坐标为(3,3),请写出一个符合条件的点P的坐标;(2)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且△OPP′为等腰直角三角形,求k的值.22.如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.23.小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延=S△ABF.(S表示面积)长线于点F,求证:S四边形ABCD问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.实际应用:如图3,若在道路OA 、OB 之间有一村庄Q 发生疫情,防疫部门计划以公路OA 、OB 和经过防疫站P 的一条直线MN 为隔离线,建立一个面积最小的三角形隔离区△MON .若测得∠AOB=66°,∠POB=30°,OP=4km ,试求△MON 的面积.(结果精确到0.1km 2)(参考数据:sin66°≈0.91,tan66°≈2.25,≈1.73)拓展延伸:如图4,在平面直角坐标系中,O 为坐标原点,点A 、B 、C 、P 的坐标分别为(6,0)(6,3)(,)、(4、2),过点p 的直线l 与四边形OABC 一组对边相交,将四边形OABC 分成两个四边形,求其中以点O 为顶点的四边形面积的最大值.24.如图,在Rt △AOB 中,∠AOB=90°,AO=,BO=1,AB 的垂直平分线交AB 于点E ,交射线BO 于点F ,点P 从点A 出发沿射线AO 以每秒2个单位的速度运动,同时点Q 从点O 出发沿OB 方向以每秒1个单位的速度运动,当点Q 到达点B 时,点P 、Q 同时停止运动,设运动的时间为t 秒.(1)①当t 为何值时,PQ ∥AB ;②当t 为何值时,PQ ∥EF ;(2)当点P 在O 的左侧时,记四边形PFEQ 的面积为S ,求S 关于t 的函数关系式;(3)以O 为原点,OA 所在直线为x 轴,建立直角坐标系,若P 、Q 关于点O 的对称点分别为P ′、Q ′,当线段P ′Q ′,与线段EF 有公共点时,抛物线y=ax 2+1经过P ′Q ′的中点,此时的抛物线与x 正半轴交于点M ;①求a 的取值范围;②求点M 移动的运动速度.2019年浙江省金华市六校联考中考数学模拟试卷参考答案与试题解析一、选择题1.﹣2的倒数是()A.2 B.C.﹣D.﹣2【考点】倒数.【分析】根据倒数定义可知,﹣2的倒数是﹣.【解答】解:﹣2的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下面几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有看得到的棱都应表现在俯视图中.【解答】解:从上面看,这个几何体只有一层,且有3个小正方形,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.下列计算正确的是()A.2a3+a2=2a5B.(﹣2ab)3=﹣2ab3C.2a3÷a2=2a D.【考点】分式的混合运算;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【专题】计算题.【分析】根据合并同类项、幂的乘方与积的乘方、同底数幂的除法以及分式的混合运算法则依次计算即可.【解答】解:A、2a3+a2≠2a5,不是同类项不能合并,故本选项错误;B、(﹣2ab)3=﹣8a3b3,故本选项错误;C、2a3÷a2=2a,故本选项正确;D、a÷b•=,故本选项错误.故选C.【点评】本题考查了合并同类项、幂的乘方与积的乘方、同底数幂的除法以及分式的混合运算法则,牢记法则是关键.4.若y=有意义,则x的取值范围是()A.x≠4 B.x≤4 C.x≥4 D.x<4【考点】函数自变量的取值范围.【专题】计算题.【分析】根据负数没有平方根及0不能做分母,求出x的范围即可.【解答】解:要使y=有意义,则有4﹣x>0,即x<4,故选D.【点评】此题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80° B.50° C.40° D.20°【考点】垂径定理;圆周角定理.【专题】几何图形问题.【分析】欲求∠DCF,又已知一圆心角,可利用圆周角与圆心角的关系求解.【解答】解:∵⊙O的直径CD过弦EF的中点G,∴(垂径定理),∴∠DCF=∠EOD(等弧所对的圆周角是圆心角的一半),∴∠DCF=20°.故选:D.【点评】本题考查垂弦定理、圆心角、圆周角的应用能力.6.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是()A.1.5 B.2 C.3 D.6【考点】弧长的计算.【分析】本题考查圆锥的侧面展开图.根据图形可知,圆锥的侧面展开图为扇形,且其弧长等于圆锥底面圆的周长.【解答】解:设这个圆锥的底面半径是R,则有2πR=120π×,解得:R=3.故选C.【点评】主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.7.如图,双曲线y=经过点A(2,2)与点B(4,m),则△AOB的面积为()A.2 B.3 C.4 D.5【考点】反比例函数综合题.【专题】计算题.【分析】过A、B分别作x轴的垂线,垂足分别为C、D,把点A(2,2)代入双曲线y=确定k﹣S△BOD 的值,再把点B(4,m)代入双曲线y=,确定点B的坐标,根据S△AOB=S△AOC+S梯形ABDC和三角形的面积公式与梯形的面积公式进行计算即可.【解答】解:过A、B分别作x轴的垂线,垂足分别为C、D,如图,∵双曲线y=经过点A(2,2),∴k=2×2=4,而点B(4,m)在y=上,∴4•m=4,解得m=1,即B点坐标为(4,1),∴S△AOB=S△AOC+S﹣S△BOD梯形ABDC=OC•AC+×(AC+BD)×CD﹣×OD×BD=×2×2+×(2+1)×(4﹣2)﹣×4×1=3.故选B.【点评】本题考查了点在图象上,点的横纵坐标满足图象的解析式;也考查了利用坐标表示线段的长以及利用规则的几何图形的面积的和差计算不规则的图形面积.8.如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣π B.(4﹣π)a2C.π D.4﹣π【考点】扇形面积的计算;直线与圆的位置关系.【专题】几何图形问题;压轴题.【分析】这张圆形纸片“不能接触到的部分”的面积是就是小正方形的面积与扇形的面积的差.【解答】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是:.则这张圆形纸片“不能接触到的部分”的面积是4(1﹣)=4﹣π.故选D.【点评】本题主要考查了正方形和圆的面积的计算公式,正确记忆公式是关键.9.如图,在圆锥形的稻草堆顶点P处有一只猫,看到底面圆周上的点A处有一只老鼠,猫沿着母线PA下去抓老鼠,猫到达点A时,老鼠已沿着底面圆周逃跑,猫在后面沿着相同的路线追,在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处.在这个过程中,假设猫的速度是匀速的,猫出发后与点P距离s,所用时间为t,则s与t之间的函数关系图象是()A.B.C.D.【考点】函数的图象;圆锥的计算.【分析】根据题意先分析出猫沿着母线PA下去抓老鼠,猫到达点A时,s是随着t的增大而增大,再根据老鼠沿着底面圆周逃跑,猫在后面沿着相同的路线追时,得出s随着t的增大不发生变化,最后根据在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处时,s是随着t的增大而减小的,从而得出s与t之间的函数关系的图象.【解答】解:∵猫沿着母线PA下去抓老鼠,猫到达点A时,∴s随着t的增大而增大,∵老鼠沿着底面圆周逃跑,猫在后面沿着相同的路线追时,∴s随着t的增大不发生变化,∵在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处时,∴s随着t的增大而减小.故选:A.【点评】此题考查了函数的图象;正确判断小猫经过的路线,把曲面的问题转化为平面的问题是解题的关键.10.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD 并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;②=;③点F是BC的中点;④若=,tanE=.A.1 B.2 C.3 D.4【考点】圆的综合题.【分析】①正确,运用圆周角定理以及等角的余角相等即可解决问题.②正确,运用△EBC∽△BDC即可证明.③错误,运用反正法来判定.④正确,设BC=3x,AB=2x,得出OB、OD及OC、CD的值,运用即可解决问题.【解答】证明:(1)∵BC⊥AB于点B,∴∠CBD+∠ABD=90°,∵∠BAD+∠ABD=90°∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正确.(2)∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴,故②正确,(3)∵∠EBD=∠BDF=90°,∴DF∥BE,假设点F是BC的中点,则点D是EC的中点,∴ED=DC,∵ED是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.(4)∵,设BC=3x,AB=2x,∴OB=OD=x,∴在RT△CBO中,OC=x,∴CD=(﹣1)x∵由(2)知,∴==,∵tanE=∴tanE=,故④正确.故选:C.【点评】本题主要考查了圆的综合题,涉及相似三角形的判定与性质、圆周角定理、锐角三角函数定义等知识点,解题的关键在于灵活应用这些知识解决问题,通过求证三角形相似根据对应边成比例的性质求出tan∠E的值,属于中考压轴题.二、填空题11.分解因式:a2﹣4=(a+2)(a﹣2).【考点】因式分解-运用公式法.【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【解答】解:a2﹣4=(a+2)(a﹣2).【点评】本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.12.一组数据1,2,a的平均数为2,另一组数据﹣1,a,1,2,b的唯一众数为﹣l,则数据﹣1,a,1,2,b的中位数为1.【考点】中位数;算术平均数;众数.【专题】计算题.【分析】根据平均数求得a的值,然后根据众数求得b的值后再确定新数据的中位数.【解答】解:∵一组数据1,2,a的平均数为2,∴1+2+a=3×2解得a=3∴数据﹣l,a,1,2,b的唯一众数为﹣l,∴b=﹣1,∴数据﹣1,3,1,2,b的中位数为1.故答案为:1.【点评】本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的值.13.函数y=ax+b的图象如图,则方程ax+b=0的解为x=3;不等式0<ax+b≤2的解集为0≤x<3.【考点】一次函数与一元一次不等式;一次函数与一元一次方程.【专题】数形结合.【分析】观察函数图象当x=3时,y=0,即程ax+b=0;函数值满足0<y≤2所对应的自变量的取值范围为0≤x<3.【解答】解:方程ax+b=0的解为x=3;不等式0<ax+b≤2的解集为0≤x<3.故答案为x=3;0≤x<3.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为22度.【考点】平移的性质;同位角、内错角、同旁内角.【分析】由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.【解答】解:由平移的性质知,AO∥SM,故∠WMS=∠OWM=22°;故答案为:22.【点评】本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C ﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(0,﹣2).【考点】规律型:点的坐标.【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2019÷10=201…6,∴细线另一端在绕四边形第202圈的第6个单位长度的位置,即CD中间的位置,点的坐标为(0,﹣2),故答案为:(0,﹣2).【点评】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.16.如图,抛物线y=ax2+bx+c(a≠0)的图象经过点A,B,C,已知点A的坐标为(﹣3,0),点B的坐标为(1,0),点C在y轴的正半轴上,且∠CAB=30°,若直线l:y=x+m从点C开始沿y轴向下平移.(1)当直线l上点D满足DA=DC且∠ADC=90°时,m的值为2﹣3;(2)以动直线l为对称轴,线段AC关于直线l的对称线段A′C′与抛物线有交点,写出m的取值范围﹣<m<.【考点】二次函数综合题.【分析】(1)过点D作DE⊥y轴,垂足为E,过点A作AF⊥DE,垂足为F.先证明Rt△AFD≌Rt△DEC,由全等三角形的性质可知AF=DE,DF=CE.设点D的坐标为(x,x+m),接下来,依据AF=DE,DF=CE可列出关于x、m的方程组,从而可解得m的值;(2)先求得点C的坐标,当直线l经过点C时可求得m=,当点A的对称点A′在抛物线上时,先求得抛物线的解析式,然后求得AA′的解析式,将直线AA′的解析式与抛物线的解析式联立可求得点A′的坐标,由点A和点A′的坐标可求得点D的坐标,将点D的坐标代入l的解式可求得m=﹣,从而可求得m的取值范围.【解答】解:如图1所示:过点D作DE⊥y轴,垂足为E,过点A作AF⊥DE,垂足为F.∵∠ADC=90°,∴∠ADF+∠CDE=90°.∵∠ADF+∠DAF=90°,∴∠DAF=∠CDE.∵在Rt△AFD和Rt△DEC中,∴Rt△AFD≌Rt△DEC.∴AF=DE,DF=CE.设点D的坐标为(x,x+m),则x=x+m=①,x+3=﹣﹣m②.①+②得:2x+3=,解得:x=.∴=+m.解得:m=2﹣3.(2)∵OA=3,∠CAB=30°,∴OC=.∴C(0,).①当直线l经过点C时.∵将C(0,)代入y=x+m得:∴m=.②如图2所示:设抛物线的解析式为y=a(x+3)(x﹣1).∵将C(0,)代入得:﹣3a=,解得:a=﹣,∴抛物线的解析式为y=﹣x2﹣x+.∵点A与点A′关于l对称,∴AA′⊥l.∴直线AA′的一次项系数为﹣.设直线AA′的解析式为y=﹣x+b.∵将A(﹣3,0)代入得:+b=0,解得:b=﹣∴直线AA′的解析式为y=﹣x﹣.将y=﹣x﹣代入y=﹣x2﹣x+得:﹣x﹣=﹣x2﹣x+.整理得:x2+x﹣6=0.解得:x1=2,x2=﹣3.∵将x=2代入y=﹣x﹣得:y=﹣,∴点A′的坐标为(2,﹣).∴D(﹣,﹣).将D(﹣,﹣)代入y=+m得:+m=﹣,解得:m=.∴m的取值范围是﹣<m<.故答案为:(1)2﹣3;(2)﹣<m<.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数、一次函数的解析式、全等三角形的性质和判定、一次函数与二次函数的交点坐标,求得出点A和点C 的对应点A′、C′恰好在抛物线上时m的值取值是解题的关键.三、解答题(共8小题,满分66分)17.计算:﹣+4cos45°﹣.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及负整数指数幂的性质和特殊角的三角函数值化简求出答案.【解答】解:﹣+4cos45°﹣=3﹣1+4×﹣2=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.【考点】平行四边形的判定与性质;菱形的性质.【专题】证明题.【分析】(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)解:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC=5.【点评】此题考查的知识点是平行四边形的判定和性质及菱形的性质,解题的关键是运用平行四边形的性质和菱形的性质推出结论.19.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2).(1)①若点C与点A关于原点O对称,则点C的坐标为(2,﹣2);②将点A向右平移5个单位得到点D,则点D的坐标为(3,2);(2)在由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点恰好落在双曲线的概率.【考点】关于原点对称的点的坐标;反比例函数图象上点的坐标特征;坐标与图形变化-平移;概率公式.【分析】(1)①根据两个点关于原点对称时,它们的坐标符号相反确定C点坐标;②根据点的平移方法可得A点横坐标加5,纵坐标不变可得D点位置;(2)顺次连接A、B、C、D,可得四边形ABCD,找出范围内的横、纵坐标均为整数的点的个数,再根据反比例函数图象上点的坐标特点可得横纵坐标之积为2且在由点A,B,C,D组成的四边形ABCD内的有(2,1)(﹣2,﹣1),再利用概率公式可得答案.【解答】解:(1)①∵A(﹣2,2),∴与点A关于原点O对称的C点坐标(2,﹣2);故答案为:(2,﹣2);②将点A向右平移5个单位得到点D,则点D的坐标为(﹣2+5,2),即(3,2),故答案为:(3,2);(2)恰好落在双曲线的点横纵坐标之积为2,横、纵坐标均为整数的点共有15个,横纵坐标之积为2且在由点A,B,C,D组成的四边形ABCD内的有(2,1)(﹣2,﹣1),共2个,概率为.【点评】此题主要考查了反比例函数图象上点的坐标特点,以及关于原点对称的点的坐标特点,点的平移,概率公式,关键是熟练掌握课本基础知识.20.“校园手机”现象越来越受到社会的关注﹒春节期间,小明随机调查了城区若干名同学和家长对中学生带手机现象的看法.统计整理并制作了如下的统计图:(1)这次的调查对象中,家长有400人;(2)图②中表示家长“赞成”的圆心角的度数为36度;(3)开学后,甲、乙两所学校对各自学校所有学生带手机情况进行了统计,发现两校共有2384名学生带手机,且乙学校带手机的学生数是甲学校带手机学生数的,求甲、乙两校中带手机的学生数各有多少?【考点】条形统计图;扇形统计图.【分析】(1)认为无所谓的有80人,占总人数的20%,据此即可求得总人数;(2)赞成的人数所占的比例是:,所占的比例乘以360°即可求解;(3)甲、乙两校中带手机的学生数分别有x、y人,根据两校共有2384名学生带手机,且乙学校带手机的学生数是甲学校带手机学生数的,即可列方程组,从而求解.【解答】解:(1)家长人数为80÷20%=400.(2)表示家长“赞成”的圆心角的度数为×360°=36﹒(3)设甲、乙两校中带手机的学生数分别有x、y人,则由题意有,解得即甲、乙两校中带手机的学生数分别有1490人,894人﹒【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+,2×1+4),即P′(3,6).(1)①点P(﹣1,﹣2)的“2属派生点”P′的坐标为(﹣2,﹣4);②若点P的“k属派生点”P′的坐标为(3,3),请写出一个符合条件的点P的坐标(1,2);(2)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且△OPP′为等腰直角三角形,求k的值.【考点】反比例函数综合题.【分析】(1)①只需把a=﹣1,b=﹣2,k=2代入(a+,ka+b)即可求出P′的坐标.②由P′(3,3)可求出k=1,从而有a+b=3.任取一个a就可求出对应的b,从而得到符合条件的点P的一个坐标.(2)设点P坐标为(a,0),从而有P′(a,ka),显然PP′⊥OP,由条件可得OP=PP′,从而求出k.【解答】解:(1)①当a=﹣1,b=﹣2,k=2时,∴a+=﹣1+=﹣2,ka+b=2×(﹣1)﹣2=﹣4.∴点P(﹣1,﹣2)的“2属派生点”P′的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).②由题可得:,∴ka+b=3k=3.∴k=1.∴a+b=3.∴b=3﹣a.当a=1时,b=2,此时点P的坐标为(1,2).故答案为:(1,2).说明:只要点P的横坐标与纵坐标的和等于3即可.(2)∵点P在x轴的正半轴上,∴b=0,a>0.∴点P的坐标为(a,0),点P′的坐标为(a,ka).∴PP′⊥OP.∵△OPP′为等腰直角三角形,∴OP=PP′.∴a=±ka.∵a>0,∴k=±1.故答案为:±1.【点评】本题考查了反比例图象上点的坐标特征以及等腰直角三角形的性质,此题属于新定义下的阅读理解题,有一定的综合性.第(2)题中由OP=PP′得到a与ka之间的关系是本题的易错点,需要注意.22.如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.【考点】切线的判定.【专题】证明题.【分析】(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt△BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.【解答】(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)证明∵AP=BP,AO=OC∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴=,即=,∴DE=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.23.小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延=S△ABF.(S表示面积)长线于点F,求证:S四边形ABCD问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,≈1.73)拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)(,)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC 分成两个四边形,求其中以点O为顶点的四边形面积的最大值.【考点】四边形综合题.【专题】压轴题.【分析】问题情境:根据可以求得△ADE≌△FCE,就可以得出S△ADE=S△FCE就可以得出结论;问题迁移:根据问题情境的结论可以得出当直线旋转到点P是MN的中点时S△MON最小,过点M 作MG∥OB交EF于G.由全等三角形的性质可以得出结论;实际运用:如图3,作PP1⊥OB,MM1⊥OB,垂足分别为P1,M1,再根据条件由三角函数值就可以求出结论;。

浙江省金华市2019-2020学年中考数学模拟试题含解析

浙江省金华市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°2.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°3.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小4.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠15.下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4)D.1-4x2=(1+4x)(1-4x)6.下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x37.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.248.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交 AB 于G ,连接DG ,现在有如下4个结论:①ADG V ≌FDG △;②2GB AG =;③∠GDE=45°;④DG=DE 在以上4个结论中,正确的共有( )个A .1个B .2 个C .3 个D .4个9.下列运算正确的是( )A .a 2+a 3=a 5B .(a 3)2÷a 6=1C .a 2•a 3=a 6D .(+)2=510.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )A .B .C .D .11.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .1212.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_____元.14.如图,Rt △ABC 中,∠ACB=90°,∠A=15°,AB 的垂直平分线与AC 交于点D ,与AB 交于点E ,连接BD .若AD=14,则BC 的长为_____.15.如图,P 为正方形ABCD 内一点,PA :PB :PC=1:2:3,则∠APB=_____________ .16.如图所示,D 、E 之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD 和AE 上选择了测量点B ,C ,已知测得AD =100,AE =200,AB =40,AC =20,BC =30,则通过计算可得DE 长为_____.17.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.18.如图,在Y ABCD 中,AB=8,P 、Q 为对角线AC 的三等分点,延长DP 交AB 于点M ,延长MQ 交CD 于点N ,则CN=__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某反比例函数图象的一支经过点A (2,3)和点B (点B 在点A 的右侧),作BC ⊥y轴,垂足为点C ,连结AB ,AC .求该反比例函数的解析式;若△ABC 的面积为6,求直线AB 的表达式.20.(6分)解方程:1+231833x x x x x-=-- 21.(6分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800 510 250 210 150 120人数 1 1 3 5 3 2(1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.22.(8分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)23.(8分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.24.(10分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC (1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=13,求线段CE的长.25.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A 点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.26.(12分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F 点,若AC=BC.(1)求证:»»AC CE=;(2)若32DEDF=,求tan∠CED的值.27.(12分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和是20,求三角形△AOD的周长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=12∠ABK,∠SHC=∠DCF=12∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣12(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选B.2.C【解析】【分析】根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【详解】解:∵直线m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故选C.【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.3.B【解析】【分析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.4.C【解析】【详解】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.C【解析】【分析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【详解】请在此输入详解!6.B【解析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案. 详解:A 、不是同类项,无法计算,故此选项错误;B 、235x x x ⋅=, 正确;C 、()326x x -=-,故此选项错误; D 、624x x x ÷=, 故此选项错误;故选:B .点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.7.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD ,再根据菱形的周长公式列式计算即可得解.【详解】Q E 、F 分别是AC 、DC 的中点,∴EF 是ADC V 的中位线,∴2236AD EF ==⨯=,∴菱形ABCD 的周长44624AD ==⨯=.故选:D .【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.8.C【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF ,∠A=∠GFD=90°,于是根据“HL”判定△ADG ≌△FDG ,再由GF+GB=GA+GB=12,EB=EF ,△BGE 为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE=12ADC ∠=45〫,再抓住△BEF 是等腰三角形,而△GED 显然不是等腰三角形,判断④是错误的.【详解】由折叠可知,DF=DC=DA ,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG ≌△FDG ,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE=12ADC=45〫.③正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;∴正确说法是①②③故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.9.B【解析】【分析】利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.【详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误.故选:B.【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.B【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=.故选B .11.B【解析】【分析】根据一元二次方程的解的定义把x=0代入方程()22110a x x a -++-=得到关于a 的一元二次方程,然后解此方程即可【详解】把x=0代入方程()22110a x x a -++-=得210a -=,解得a=±1. ∵原方程是一元二次方程,所以 10a -≠,所以1a ≠,故1a =-故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.12.C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选C .考点:简单组合体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.17【解析】【分析】根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题.【详解】解:1-30%-50%=20%,∴2520%1030%1850%17⨯+⨯+⨯=.本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键. 14.1【解析】解:∵DE是AB的垂直平分线,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=12BD=12×14=1.故答案为1.点睛:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解答本题的关键.15.135°【解析】【分析】通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APB.【详解】把△PAB绕B点顺时针旋转90°,得△P′BC,则△PAB≌△P′BC,设PA=x,PB=2x,PC=3x,连PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案为135°.【点睛】本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把△PAB顺时针旋转90°使得A′与C点重合是解题的关键.16.1.【解析】先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.【详解】∵401201,20051005 AB ACAE AD====,∴AB AC AE AD=,又∵∠A=∠A,∴△ABC∽△AED,∴15 BC ABDE AE==,∵BC=30,∴DE=1,故答案为1.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.17.2 3【解析】【分析】根据概率的概念直接求得. 【详解】解:4÷6=2 3 .故答案为:2 3 .【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比.18.1【解析】【分析】根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的长.【详解】∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q为对角线AC的三等分点,∴12CN CQAM AQ==,21CP CDAP AM==,设CN=x,AM=1x,∴82 21x=,解得,x=1,∴CN=1,故答案为1.【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y6x=;(2)y12=-x+1.【解析】【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.【详解】(1)由题意得:k=xy=2×3=6,∴反比例函数的解析式为y6x =;(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y6x=的图象经过点B(a,b),∴b6a =,∴AD =36a -, ∴S △ABC 12=BC•AD 12=a(36a -)=6, 解得a =6,∴b 6a==1, ∴B(6,1),设AB 的解析式为y =kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=⎧⎨+=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为y 12=-x+1. 【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC ,AD 的长是解题的关键.20.无解.【解析】【分析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x 2﹣3x ﹣x 2=3x ﹣18,解得:x =3,经检验x =3是增根,分式方程无解.【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.(1)平均数为320件,中位数是210件,众数是210件;(2)不合理,定210件【解析】试题分析:(1)根据平均数、中位数和众数的定义即可求得结果;(2)把月销售额320件与大部分员工的工资比较即可判断.(1)平均数件, ∵最中间的数据为210,∴这组数据的中位数为210件,∵210是这组数据中出现次数最多的数据,∴众数为210件;(2)不合理,理由:在15人中有13人销售额达不到320件,定210件较为合理.考点:本题考查的是平均数、众数和中位数点评:解答本题的关键是熟练掌握找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.22.1 2【解析】【分析】过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CBD,得出CD=PD•tan37°;再根据CD﹣BD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在△APE中利用三角函数的定义即可求解.【详解】解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD•tan∠BPD=PD•tan26.6°.在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD•tan∠CPD=PD•tan37°.∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=1.∴0.75PD﹣0.50PD=1,解得PD=2.∴BD=PD•tan26.6°≈2×0.50=3.∵OB=220,∴PE=OD=OB﹣BD=4.∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.∴PE60tanAE12120α===.23.(1)详见解析;(2)BD=9.6. 【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD,»»»12BF DF BD==,再由圆周角定理可得BOE A ∠=∠ ,从而得到∠ OBE +∠ DBC =90°,即90OBC ∠=︒ ,命题得证. (2)由勾股定理求出OC ,再由△OBC 的面积求出BE ,即可得出弦BD 的长.试题解析:(1)证明:如下图所示,连接OB.∵ E 是弦BD 的中点,∴ BE =DE ,OE ⊥ BD ,»»»12BFDF BD ==, ∴∠ BOE =∠ A ,∠ OBE +∠ BOE =90°. ∵∠ DBC =∠ A ,∴∠ BOE =∠ DBC , ∴∠ OBE +∠ DBC =90°,∴∠ OBC =90°,即BC ⊥OB ,∴ BC 是⊙ O 的切线.(2)解:∵ OB =6,BC =8,BC ⊥OB ,∴2210OC OB BC += ,∵1122OBC S OC BE OB BC =⋅=⋅V ,∴68 4.810OB BC BE OC -⨯=== , ∴29.6BD BE ==.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法. 24.(1)证明见解析;(2)2.【解析】【分析】(1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得AB ∥CD ,AB=CD ,又因AE=AB ,可得AE=CD ,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平行四边形;(2)连接 EC ,易证△BEC 是直角三角形,解直角三角形即可解决问题.【详解】(1)证明:∵四边形 ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∵AE=AB ,∴AE=CD ,∵AE ∥CD ,∴四边形 ACDE 是平行四边形.(2)如图,连接 EC .∵AC=AB=AE,∴△EBC 是直角三角形,∵cosB==,BE=6,∴BC=2,∴EC===4.【点睛】本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)3;(2)∠DEF的大小不变,tan∠DEF=34;(3)7541或7517.【解析】【详解】(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BD BNDO NA=,BD AMDO OM=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴34 DF DMDE DN==,∵∠EDF=90°,∴tan∠DEF=34 DFDE=;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=34(3﹣t),∴AF=4+MF=﹣34t+254,∵点G为EF的三等分点,∴G(37112t+,23t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:8043k bk b+=⎧⎨+=⎩,解得:346kb⎧=-⎪⎨⎪=⎩,∴直线AD的解析式为y=﹣34x+6,把G(37112t+,23t)代入得:t=7541;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=34(t﹣3),∴AF=4﹣MF=﹣34t+254,∵点G为EF的三等分点,∴G (3236t +,13t ), 代入直线AD 的解析式y=﹣34x+6得:t=7517; 综上所述,当AD 将△DEF 分成的两部分的面积之比为1:2时,t 的值为7541或7517. 考点:四边形综合题.26.(1)见解析;(2)tan ∠CED =5 【解析】【分析】(1)欲证明»»AC CE =,只要证明EAC AEC ∠∠=即可;(2)由EDF COF ∆∆∽,可得32ED OC DF OF ==,设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,由BAD BEC ∆∆∽,可得BD•BE =BC•BA ,设AC =BC =x ,则有2267.5x a a ⨯=,由此求出AC 、CD 即可解决问题.【详解】(1)证明:如下图,连接AE ,∵AD 是直径,∴90ACD ∠︒=,∴DC ⊥AB ,∵AC =CB ,∴DA =DB ,∴∠CDA =∠CDB ,∵180EAC EDC ∠+∠︒=,180EDC CDB ∠+∠︒=,∴∠BDC =∠EAC ,∵∠AEC =∠ADC ,∴∠EAC =∠AEC ,∴»»AC CE =;(2)解:如下图,连接OC ,∵AO =OD ,AC =CB ,∴OC ∥BD ,∴EDF COF ∆∆∽, ∴32ED OC DF OF ==,设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,∵∠BAD =∠BEC ,∠B =∠B ,∴BAD BEC ∆∆∽,∴BD•BE =BC•BA ,设AC =BC =x ,则有2267.5x a a ⨯=, ∴310x a =,∴310AC a =, ∴2236CD AD AC a =-=, ∴36152tan tan 310a DC EDC DAC AC ∠=∠===.【点睛】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.27. (1)8;(2)1.【解析】【分析】(1)由平行四边形的性质和已知条件易证△AOE ≌△COF ,所以可得AE=CF=3,进而可求出BC 的长;(2)由平行四边形的性质:对角线互相平分可求出AO+OD 的长,进而可求出三角形△AOD 的周长.【详解】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AO=CO ,∴∠EAO=∠FCO ,在△AOE 和△COF 中EAO FCO AO COAOE COF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AOE ≌△COF ,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四边形ABCD 是平行四边形,∴AO=CO ,BO=DO ,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD 的周长=AO+BO+AD=1.【点睛】本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.。

【精选3份合集】浙江省金华市2019年中考一模数学试卷有答案含解析

中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=13CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A.6 B.7 C.8 D.10 解析:C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=12AB=1.又CE=13 CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.2.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2B .2C .4D .-4解析:D【解析】【详解】 2122m x x x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D .3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 解析:B【解析】【分析】根据二次根式有意义的条件即可求出x 的范围.【详解】由题意可知:3010x x -≥⎧⎨+>⎩, 解得:3x …, 故选:B .【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.4.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q解析:D【解析】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q ,∴原点在点M 与N 之间,∴这四个数中绝对值最大的数对应的点是点Q .故选D .5.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .13解析:D【解析】【分析】过C 点作CD⊥AB,垂足为D ,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD 中求tanB .【详解】过C 点作CD⊥AB,垂足为D .根据旋转性质可知,∠B′=∠B.在Rt△BCD 中,tanB=13CD BD =, ∴tanB′=tanB=13. 故选D .【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.6.如图,65,AFD CD EB ∠=︒∕∕,则B Ð的度数为( )A .115°B .110°C .105°D .65°解析:A【解析】【分析】根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.【详解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°−65°=115°,故选:A.【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.7.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 8.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A. B.C.D.解析:C【解析】【分析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- 1ax2+x,对照四个选项即可得出.【详解】∵△ABC为等边三角形,∴∠B=∠C=60°,BC=AB=a,PC=a-x.∵∠APD=60°,∠B=60°,∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴CD PCBP AB=,即y a xx a-=,∴y=- 1ax2+x.故选C. 【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-1ax2+x是解题的关键.9.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()DC=3OG;(2)OG= 12BC;(3)△OGE是等边三角形;(4)16AOE ABCD S S∆=矩形.A.1 B.2 C.3 D.4。

2019年浙江省金华市中考数学三模试题附解析

2019年浙江省金华市中考数学三模试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.某人做掷硬币实验,投掷m 次,正面朝上有 n 次(即正面朝上的频率是m P n =),则下列说法正确的是( )A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .投掷次数逐渐增加,P 稳定在12附近2.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,OD ∥AC ,下列结论错误..的是( ) A .∠BOD =∠BAC B .∠BOD =∠COD C .∠BAD =∠CAD D .∠C =∠D3.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( )A .4B .0或2C .1D .1-4.如图,正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从M 点沿正方体的表面爬到D ,点,蚂蚁爬行的最短距离是( )A .13B .3C .5D .25+5.为了考查某城市老年人参加体育锻炼的情况,调查了其中100名老年人每天参加体育锻炼的时间,其中100是这个问题的( )A .一个样本B .样本容量C .总体D .个体 6.已知:如图,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角7.若两个有理数的和与积都是负数,则这两个有理数( )A .都是负数B .都是正数C .一正一负,且正数的绝对值较小D .无法确定8.下列运算中,结果为负数的是( )A .(-5)×(-3)B .(-8)×O ×(-6)C . (-6)+(-8)D . (-6)-(-8) 二、填空题如图是一个正方体的展开图,如果正方体相对的面上标注的值,那么x =____,y =_______. 10.12y y y =+,若 y l 与x 成正比例,y 2 与x 成反比例,当x=1 时,y= 一5,且它的图象经过点 (2,一4),则 y 关于x 的函数解析式为 . 11.若22a a a a =-- 成立,则a 的取值范围是 . 12.钢筋的横截面面积是0.25π,长度为h ,则钢筋的体积V=0.257πh ,这里常量是 ,变量是 .13.如图,若∠1+∠2 =180°,则1l ∥2l ,试说明理由(填空).∵∠2+∠3= ( )又∵∠1+∠2=180°( ),∴∠1= ( ),∴1l ∥2l ( )14.有三个连续自然数,中间一个是x ,则它们的积是 .15.如图是一个以点 0为旋转中心的旋转对称图形.能使旋转后的图形与原图形重合的旋转角是 .16.一种细胞膜的厚度是0.00000000学记数法表示为 .17.已知:25,27a b b c +=-=,则代数式222a ac c ++的值是 .18.若x 、y 满足关系式 时分式3355x y x y --的值等于35.19.“在标准大气压下,气温高于0℃,冰就开始融化”是事件.20.完成下列角度的换算:(1)21.5°= ′= ″;360″= ′= °;(512)°= ″;900′= °.(2)37.175°= °′″; 8°30 ′18″= °.21.体育老师手上有九年级同学立定跳远的成绩,现要求对体育成绩分性别进行统计,并统计出成绩为优秀的人数,良好的人数,合格的人数,不合格的人数.(1)在这里涉及个数据,分别是;(2)统计时,把表格中“A、B、C、D、E、F、G、H、I、J、K、L”所代表的要统计项目的具体内容填写完整.C DA E F G H I J K LB三、解答题22.如图,P 为⊙O上一点,⊙P交⊙O交A、B,AD为⊙P的直径,延长 DB交⊙O于 C,求证:PC⊥AD.23.已知抛物线y1=x2-2x+c的部分图象如图1所示.图1图2AB C DF E(1)求c的取值范围;(2)若抛物线经过点(0,-1),试确定抛物线y1=x2-2x+c的解析式;(3)若反比例函数y2=kx的图象经过(2)中抛物线上点(1,a),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象比较y 1与y2的大小..24.下三图是由三个相同的小正方形拼成的图形,请你再添加一个同样大小的小正方形,使所得的新图形分别为下列A,B,C题要求的图形,请画出示意图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形.25.已知:如图,E,F分别是□ABCD的边AD,BC的中点,求证:DE=DF.26.已知:E是AB、CD外一点,∠D=∠B+∠E,求证:AB∥CD.27.若规定两数a,b通过“※”运算,得到4ab,即a※b=4ab,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x※x+2※x-2※4=0中x的值.28.王伯伯在一个新开的鱼塘内放养了一批鱼苗,3个月后,他想了解这批鱼的生长情况(成活率、塘内鱼的总量),请你利用所学的调查方法,帮助设计解决问题的方案.29.把大小为4×4的正方形方格图形分割成两个全等图形,如右图所示,请在下图中,沿着虚线再画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形30.借助计算器计算下列各题.31=33+12333++1233333+++1234从上面计算结果,你发现了什么规律?你能把发现的规律进行拓展吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.C4.A5.B6.B7.C8.C二、填空题9.4,1010.4=--11.y xxa>212.0.25π;V,h13.180°;平角的定义;已知,∠3;同角的补角相等;同位角相等,两直线平行14.3-15.x x120°16.10⨯17.810-418.x≠19.y必然20.(1)1290,77400;6,0.1;1500;15 (2)37,10,30;8.50521.(1)4 优秀人数、良好人数、合格人数、不合格人数 (2)A:成绩、等级8:人数C:男生D:女生E、I:优秀 F、J:良好G、K:合格 H、L:不合格三、解答题22.连结 AB,则∠A=∠C.∵AD 是直径,∴∠ABD= 90°,∴∠D+∠A=∠D+∠C=90°,即∠DPC= 90°,从而 PC⊥AD23.(1)c<0; (2) y1=x2-2x-1;(3)a=-2;当x=2或±1时,y1=y2;当x<-1或0<x<1或x>2时,y1>y2;当-1<x<0或1<x<2时, y1<y2.24.(1)可添在右下方;(2)可添在左下方或添在左边;(3)可添在右上角,图略25.提示:四边形BEDF是平行四边形.26.利用∠BFD=∠B +∠E,∠D=∠B+∠E得∠D =∠BFD.27.(1) 60 (2)12x=,24x=-28.略29.略30.(1) 1 (2) 3 (3) 6 (4) 10 3123n n++=++++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金华市2019年中考数学模拟试卷及答案(全卷共120分,考试时间120分钟)第Ⅰ卷一、选择题(共10小题,每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确 的)1.16的算术平方根为 A .±4 B .4C .﹣4D .82.某天的温度上升了-2℃的意义是A .上升了2℃B .没有变化C .下降了-2℃D .下降了2℃3.2017年4月,位于连云港高新开发区约10万平米土地拍卖,经过众多房地产公司的476轮竞价,最终成交价为20.26亿元人民币.请你将20.26亿元用科学计数法表示为 A .102.02610⨯元 B .92.02610⨯元 C .82.02610⨯元D .112.02610⨯元4.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的主视图是5. 为了响应“精准扶贫”的号召,帮助本班的一名特困生,某班15名同学积极捐款,他们捐款的数额如下表.捐款的数额/元5 10 20 50 100 人数24531关于这15名同学所捐款的数额,下列说法正确的是A. 众数是100B. 平均数是30C. 中位数是20D. 方差是20 6.不等式063≤-x 的解集在数轴上表示正确的是7.c b a ,,为常数,且222)(c a c a +>-,则关于x 的方程02=++c bx ax 根的情况是ABCDA. 有两个相等的实数根B. 有两个不相等的实数根C. 无实数根D. 有一根为08.将抛物线y =x 2向左平移两个单位,再向上平移一个单位,可得到抛物线A .y=(x -2) 2+1 B .y=(x -2) 2-1 C .y=(x+2) 2+1 D .y=(x+2) 2-19. 如图,直立于地面上的电线杆AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得BC =6米,CD =4米,∠BCD =150°,在D 处测得电线杆顶端A 的仰角为30°,则电线杆AB 的高度为30°AB CDA.2+2 3B.4+2 3C.2+3 2D.4+3 210. 如图,直角三角形纸片ABC 中,AB=3,AC=4. D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交于点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;…;设P n-1D n-2的中点为D n-1,第n 次将纸片折叠,使点A 与点D n-1重合,折痕与AD 交于点P n (n >2),则AP 6的长为A. 125235⨯B. 95253⨯ C. 146235⨯ D. 117253⨯ 第Ⅱ卷二、填空题(共6小题,每小题3分,共18分.)11.在平面直角坐标系中,点P (m ,m-3)在第四象限内,则m 的取值范围是_______. 12.分解因式:x 3-4x = .13.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是 .14.如果关于x 的不等式组⎩⎨⎧≤-≥-0203b x a x 的整数解仅有1和2,那么a 、b 的取值范围分别是 .15.如图,正方形ABCD 内接于半径为2的⊙O,则图中阴影部分的面积为_____.16.在一张长为7,宽为5的矩形纸片上,现要剪下一个腰长为4的等腰三角形(要求:等腰三角形 的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为_____ 。

三、解答题(共7小题,计72分) 17.(本题8分)计算:04cos30(12)12|2|+-18.(本题8分) 先化简,再求值:22224m m m m m m ⎛⎫-÷ ⎪+--⎝⎭,再从0,-2,222中选取一个适当的数代入求值.19.(本题10分)某校对学生课外数阅读状况进行了一次问卷调查,并根据调查结果绘制了中学生每学期阅读课 外书籍数量的统计图(不完整).设x 表示阅读书籍的数量(x 为正整数,单位:本),其中A :1≤x ≤2;B :3≤x ≤4;C :5≤x ≤6;D :x ≥7.请你根据两幅图提供的信息解答下列问题:⑴ 本次共调查了多少名学生?⑵ 补全条形统计图,并判断中位数在哪一组; ⑶ 计算扇形统计图中扇形D 的圆心角的度数.20.(本题10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h ),两车之间的距离为y (km ),图中的折线表示y 与x 之间的函数关系,根据图像回答以下问题:(1)请在图中的( )内填上正确的值,并写出两车的速度和.(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围. (3)请直接写出两车之间的距离不超过15km 的时间范围.21.(本题12分)如图,矩形ABCD 的顶点A 在坐标原点,顶点C 在y 轴上,OB=2。

将矩形ABCD 绕点O 顺时针旋转60°,使点D 落在x 轴的点G 处,得到矩形AEFG ,EF 与AD 交于点M ,过点M 的反比例函数图象交FG 于点N ,连接DN .x ∕h∕km( )O150 4B C12310 DABCDA 19 %20 40 60 80387448人数/(人)(1)求反比例函数的解析式(2)求△AMN的面积;22.(本题12分)(一)如下图①:把三个正方形摆成一定的形状。

问题(1):若图中的三角形△DEF为直角三角形,P的面积为9,Q的面积为15,则M的面积为().问题(2):若P的面积为36cm2,Q的面积为64cm2,同时M的面积为100cm2,则△DEF为()三角形.(二)图形变化:如图②,分别以直角△ABC的三边为直径向三角形外作三个半圆,你能找出这三个半圆的面积之间有什么关系吗?请说明理由.23.(本题12分)如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.备用图参 考 答 案第Ⅰ卷一、选择题(共10小题,每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的)1.B2.D3.B4.C5.C6.B7.B8.C9.C 10.A第Ⅱ卷二、填空题(共6小题,每小题3分,共18分.)11. 0<m<3 12. x(x-2)(x+2) 13.﹣3<x <1 14. 30≤<a 64<≤b 15.π-2 16. 8,152,72 三、解答题(共7小题,计72分)17.原式=4×3232132232123=+-+=+-+ . 18.解:22()224m m mm m m -÷+-- =…………2分=…………4分==………… 6分由题意可知,即∴, 原式=6=………… 8分19.⑴ 本次调查了=%1938200名学生. ---------------------------------------- 3分 ⑵ D 高40 -------------------------------------------------------------- 6分 中位数在B 组 -------------------------------------------------------- 8分 ⑶ 圆心角度数为7236020040=⨯. ------------------------------------ 10分20.解:(1)(900);两车的速度和为225km ∕h. -----------------------(2分)(2)900÷12=75km ∕h ; 225-75=150km ∕h ; 900÷150=6h ;225×(6-4)=450km ;∴C (6,450)---------------------------------------------------(5分) 设y BC =kx+b ,由B (4,0);C (6,450)得:y BC =225x-900(4≤x ≤6)----------------------------------------(7分)(3)15611559≤≤x . ---------------------------------------------------(10分) 解:(1) 由题意可得:6032=∠==DOG OE OB ,°∴90=∠COD °60-°30=° .........1分 在EOM Rt ∆中,23323===OE EM .............3分 ∴322322121=⨯⨯=⋅=∆EM OE S EOM ∴反比例函数解析式为:xy 34=..............5分 (2) 在BOC Rt ∆中,60=∠BOC °∴63233=⨯==OB BC ∴6==OG EF ∴312326=⨯=⋅=AG AE S AGFE 矩形 .............................7分 在x y 34=中,当6=x 时,332=y ∴332=NG ∴33433232=-=-=NG FG FN由(1)可知:2=EM ,∴426=-=-=EM EF MF ......................9分 ∴33843342121=⨯⨯=⋅=∆FN MF S MFN 3233262121=⨯⨯=⋅=∆NG OG S ONG ∴33163233832312=---=---=∆∆∆∆ANG MFN AEM AGFE AMN S S S S S 矩形 ....12分 22.解:(一)(1)M 的面积为:24.……………………3分 (2)△DEF 为直角三角形.…………………………3分 (二)∵△ABC 是直角三角形, ∴AB 2=AC 2+BC 2,∵S1=π•(AC)2=πAC2,S2=π•(BC)2=πBC2,S3=π•(AB)2=πAB2,∴S1+S2=πAC2+πBC2=π(AC2+BC2)=πAB2.∴S1+S2=S3.……………………………………6分23、解:(1)∵y=x﹣1,∴x=0时,y=﹣1,∴B(0,﹣1).当x=﹣3时,y=﹣4,∴A(﹣3,﹣4).∵y=x2+bx+c与直线y=x﹣1交于A、B两点,∴,∴,∴抛物线的解析式为:y=x2+4x﹣1;(2)∵P点横坐标是m(m<0),∴P(m,m2+4m﹣1),D(m,m﹣1)如图1①,作BE⊥PC于E,∴BE=﹣m.CD=1﹣m,OB=1,OC=﹣m,CP=1﹣4m﹣m2,∴PD=1﹣4m﹣m2﹣1+m=﹣3m﹣m2,∴,解得:m1=0(舍去),m2=﹣2,m3=﹣;如图1②,作BE⊥PC于E,∴BE=﹣m.PD=1﹣4m﹣m2+1﹣m=2﹣4m﹣m2,∴,解得:m=0(舍去)或m=﹣3,∴m=﹣,﹣2或﹣3时S四边形OBDC=2S△BPD;(3))如图2,当∠APD=90°时,设P(a,a2+4a﹣1),则D(a,a﹣1),∴AP=m+4,CD=1﹣m,OC=﹣m,CP=1﹣4m﹣m2,∴DP=1﹣4m﹣m2﹣1+m=﹣3m﹣m2.在y=x﹣1中,当y=0时,x=1,∴(1,0),∴OF=1,∴CF=1﹣m.AF=4.∵PC⊥x轴,∴∠PCF=90°,∴∠PCF=∠APD,∴CF∥AP,∴△APD∽△FCD,,∴,解得:m=1舍去或m=﹣2,∴P(﹣2,﹣5)如图3,当∠PAD=90°时,作AE⊥x轴于E,∴∠AEF=90°.CE=﹣3﹣m,EF=4,AF=4,PD=1﹣m﹣(1﹣4m﹣m2)=3m+m2.∵PC⊥x轴,∴∠DCF=90°,∴∠DCF=∠AEF,∴AE∥CD.∴,∴AD=(﹣3﹣m).∵△PAD∽△FEA,∴,∴,∴m=﹣2或m=﹣3∴P(﹣2,﹣5)或(﹣3,﹣4)与点A重合,舍去,∴P(﹣2,﹣5).。

相关文档
最新文档