最新雅克比迭代法……
雅可比迭代法和高斯塞德尔迭代法对比

雅可比迭代法和高斯塞德尔迭代法对比引言雅可比迭代法和高斯塞德尔迭代法是数值分析中常用的迭代求解线性方程组的方法。
它们都是通过迭代更新变量的值,逐渐逼近方程组的真实解。
本文将详细讨论这两种迭代法的原理、特点和适用情况,并给出一些比较和应用实例。
雅可比迭代法(Jacobi Iteration)雅可比迭代法是一种逐个更新变量的值的迭代方法。
对于线性方程组Ax = b,雅可比迭代法的更新公式如下:x i(k+1)=1a ii(b i−∑a ijnj=1j≠ix j(k))其中,aii表示系数矩阵A的第i行第i列的元素,而bi表示方程组的第i个方程的右侧常数。
特点1.雅可比迭代法的计算过程简单,容易理解和实现。
2.每次迭代只更新一个变量的值,相邻两次迭代之间没有数据依赖关系,可以并行计算。
3.雅可比迭代法收敛的条件是系数矩阵A满足严格对角占优条件或对称正定条件。
优缺点•优点:简单易懂,在一些特定情况下收敛速度较快。
•缺点:收敛速度相对较慢,尤其是在系数矩阵A的条件数较大时;不适用于对角占优条件较弱的问题。
高斯塞德尔迭代法(Gauss-Seidel Iteration)高斯塞德尔迭代法是一种逐个更新变量的值,并立即使用最新的值进行下一个变量的更新的迭代方法。
对于线性方程组Ax = b,高斯塞德尔迭代法的更新公式如下:x i(k+1)=1a ii(b i−∑a iji−1j=1x j(k+1)−∑a ijnj=i+1x j(k))特点1.高斯塞德尔迭代法相较于雅可比迭代法,每次迭代可以使用当前迭代步骤中已更新的变量值,因此收敛速度更快。
2.如果系数矩阵A是严格对角占优或对称正定的,高斯塞德尔迭代法一定收敛。
优缺点•优点:相较于雅可比迭代法,收敛速度更快,对于条件数较大的问题也有较好的效果。
•缺点:实现稍微复杂一些,每次迭代的计算依赖于之前已更新的变量值,无法并行计算。
雅可比迭代法和高斯塞德尔迭代法的比较收敛速度在一些特定的问题中,雅可比迭代法可以比高斯塞德尔迭代法更快地收敛。
雅可比迭代法预处理

雅可比迭代法是一种常用于求解线性方程组的迭代方法。
它通过不断迭代来求解方程组的解。
在使用雅可比迭代法之前,我们需要对方程组进行一些预处理,以便使用这种方法求解。
首先,我们需要将方程组化为如下的形式:
Ax = b
其中A 是系数矩阵,x 是未知向量,b 是常数向量。
然后,我们需要确定一个初始猜测解x0,作为迭代的起点。
这个初始猜测解可以是任意的,但是如果能够选择一个较好的初始猜测解,则可能会使迭代收敛得更快。
最后,我们需要选择一个迭代系数,这个系数决定了新的猜测解与旧的猜测解之间的关系。
一般来说,如果选择的迭代系数越小,则迭代收敛得越慢,但是收敛得更稳定;如果选择的迭代系数越大,则迭代收敛得越快,但是收敛得更不稳定。
这就是雅可比迭代法的预处理过程。
第八节 雅可比迭代法

1)
1( 5
x1(k1)
x2( k 1)
4.2)
取 x(0)=(0,0,0)T 计算如下:
k
x1(k)
1
0.72
x2(k) 0.902
…
…
…
8 1.099998 1.199999
x3(k) 1.1644
… 1.3
上页 下页 返回
三 迭代收敛的充分条件
第三章 第八节
定理 1 在下列任一条件下,雅克比迭代法收敛。
上页 下页 返回
a i j1 ii
1
ji
时,高斯——塞德尔迭代法收敛
定义
若 | aii | | aij | ji
( i 1 , 2 , , n )
或 | a jj | | aij |
i j
( j 1 , 2 , , n )
称矩阵 A 行(或列)严格对角占优。
上页 下页 返回
第三章 第八节
定理3 若矩阵 A 行(或列)严格对角占优,则
则有x* =Bx*+f , 即x*为原方程组Ax=b 的解,B
称为迭代格式(1)的迭代矩阵。
上页 下页 返回
第三章 第八节
问题: 如何构造迭代格式,迭代法产生的 向量 序列{ x(k) }的收敛条件,收敛速度,误差估计等。
一 雅可比迭代法
设方程组
a11x1 a12 x2 a1n xn b1
Seidel 迭代法收敛。
证 A =D-L-LT , BG =(D-L) -1LT ,设 为BG 的特
征值, y 为对应的特征(复)向量,即
(D-L) -1LT y = y , LT y = (D-L) y ,则
[LT y, y ]= [ (D-L) y , y ]
(完整版)第八节雅可比迭代法与高斯-塞德尔迭代法综述.doc

第八节 雅可比迭代法与高斯 —塞德尔迭代法一 雅可比迭代法设线性方程组Ax b(1)的系数矩阵 A 可逆且主对角元素 a 11,a 22,...,ann 均不为零 ,令D diag a 11 ,a 22 ,...,a nn并将 A 分解成AA D D(2)从而 (1) 可写成Dx D A x b令x B 1 xf 1其中 B 1I D 1 A, f 1 D 1b .(3)以B 1为迭代矩阵的迭代法(公式 )xk 1B 1 x kf 1(4)称为雅可比 (Jacobi) 迭代法 ( 公式 ), 用向量的分量来表示,(4) 为x i( k 1)1 n(j k )b ia i j xaiij 1j ii 1,2,...n,k 0,1,2,...(5)T其中 xx 1 0 ,x 20 ,...x n 0为初始向量 .由此看出 , 雅可比迭代法公式简单 , 每迭代一次只需计算一次矩阵和向量的乘法. 在电算时需要两组存储单元 , 以存放 x k及 x k 1 . 例1例1 用雅可比迭代法求解下列方程组10 x 1x 2 2x 3 7.2x 1 10x 22x 3 8.3x 1x 2 5x 34.2解将方程组按雅可比方法写成x 10.1x 20.2x 3 0.72 x 2 0.1x 1 0.2x 30.83x 30.2x 10.2x 20.84取初始值 xx 1 0 ,x 20 , x 3 0TT0,0,0, 按迭代公式x 1 k 10.1x 2 k0.2x 3k 0.72 x 2k 1 0.1x 1 k0.2x 3 k0.83 x 3k 1 0.2x 1 k 0.2x 2k0.84进行迭代,其计算结果如表1 所示表 1k 0 1 2 34 56 7x 1 k 00.720.9711.0571.08531.09511.0983x 2 k0.831.0701.157 1.18531.19511.19831x 3 k0.841.1501.248 1.28281.29411.29802二 高斯 — 塞德尔迭代法由雅可比迭代公式可知 , 在迭代的每一步计算过程中是用x k的全部分量来计算xk 1 的所有分量 , 显然在计算第 i 个分量 x ik 1时 , 已经计算出的最新分量 x 1 k 1 ,...,x i 1 k 1 没有被利 用,从直观上看 , 最新计算出的分量可能比旧的分量要好些. 因此,对这些最新计算出来的第 k 1的分量 xjk 1加以利用 , 就得到所谓解方程组的高斯— 塞德( Gauss-Seidel )次近似 xk 1迭代法 .把矩阵 A 分解成A DL U(6)其中Ddiag a 11 ,a 22 ,...,a nn,L , U分别为 A 的主对角元除外的下三角和上三角部分 , 于是 , 方程组 (1) 便可以写成DL x Ux b即x B 2 x f 2其中B 2 D L 1f 2U , 以B 2为迭代矩阵构成的迭代法( 公式 )xk1B x kf1D L b(7)2 2称为高斯 — 塞德尔迭代法 ( 公式 ), 用 量表示的形式为x i( k 1 )1i 1(j k 1 )b ia ij x n(8)a ij x (j k )a iij1j i 1i 1,2,n,k 0,1,2,...(9)由此看出 , 高斯 — 塞德尔迭代法的一个明显的优点是 , 在电算时 , 只需一组存储单元 ( 计算出k 1kk 1kx i后 x i 不再使用 , 所以用 x i 冲掉 x i, 以便存放近似解 .例 2 例 2 用高斯 —— 塞德尔迭代法求解例 1.取初始值x 0x 1 0 ,x 20 , x 3T解0,0,0, T,按迭代公式x 1 k 10.1x 2k0.2x 3 k 0.72 x 2k 1 0.1x 1 k 10.2x 3k0.83x 3 k 1 0.2x 1 k 10.2x 2 k 10.84进行迭代,其计算结果如下表2表 2k0 1 23456 7 x 1 k0.721.04308 1.093 1.099131.099891.099991.113x 2 k0.902 1.167191.1951.199471.199931.199991.272x 3 k1.164 1.28205 1.2971.299721.299961.31.3477从此例看出 , 高斯 — 塞德尔迭代法比雅可比迭代法收敛快( 达到同样的精度所需迭代次数少 ), 但 这个结论 , 在一定条件下才是对的 , 甚至有这样的方程组 , 雅可比方法收敛,而高斯 — 塞德尔迭代法却是发散的 .三 迭代收敛的充分条件定理 1在下列任一条件下, 雅可比迭代法 (5) 收敛 .B 1 max na ij1a iiij j1i①;B 1naij11maxaiiji 1②j i;I D 1ATmax naij1ji 1 a jj③i j定理 2设 B 1,B 2 分别为雅可比迭代矩阵与高斯 — 塞德尔迭代矩阵 , 则B 2B 1(10)从而,当B1naij1maxa iiijj 1i时,高斯 — 塞德尔迭代法 (8) 收敛 .证明由 B 1,B 2的定义 ,它们可表示成B 1D 1 L UB 21D L 1U I D 1L D 1U用 e 表示 n 维向量e1,1,...,1 T , 则有不等式B 1 e B 1 eB 1D 1 LD 1U这里 , 记号|·|表示其中矩阵的元素都取绝对值, 而不等式是对相应元素来考虑的, 于是D 1U eB 1 D 1L eID 1 L1B 1Ie容易验证nnD 1LD 1 L所以,ID1L 及ID 1L 可逆,且ID 1L 1I D 1 L ...n 1D 1 LID 1 Ln11... D 1LI D 1LID 1L1I从而有B 2 e ID 1L 1D 1U eID 1L1I D 1L 1 B I e1I1 B 1IID 1 L 1eB 1 e因此必有B 2B 1因为已知B 1 1所以 B 2 1 .即高斯 — 塞德尔迭代法收敛 .若矩阵 A 为对称,我们有 定理 3 若矩阵 A 正定 , 则高斯 — 塞德尔迭代法收敛 . 证明把实正定对称矩阵 A 分解为A D LL TUL T, 则 D 为正定的 , 迭代矩阵B 2D L 1 L T设 是B 2的任一特征值 , x 为相应的特征向量 , 则D L 1xxL T以 D L 左乘上式两端 , 并由 A D L L T 有1 L T x Ax 用向量 x 的共轭转置左乘上式两端 , 得1x T L T xx T Ax(11)求上式左右两端的共轭转置, 得1x T L x x T Ax以1和1分别乘以上二式然后相加, 得1 1 x T L TL x2x T Ax由 AD L L T ,得11x T D A x2x T Ax即221x T L x1x T Ax(12)因为 A 和 D 都是正定的 , 且 x 不是零向量 , 所以由 (11) 式得1, 而由 (12) 式得12, 即1, 从而B 21, 因而高斯 — 塞德尔迭代法收敛 .定义 1 设 Aa ijn n为 n 阶矩阵 .① ①如果na ij ,i 1,2,...na iij ij i(13)即 A 的每一行对角元素的绝对值都严格大于同行其他元素绝对值之和, 则称 A 为严格对角优势矩阵.② ②如果na ij ,aiii 1,2,...nj ij i且至少有一个不等式严格成立 , 则称 A 为弱对角优势矩阵 .2 1 0 1 1 0 13 1 1 2 1例如13 是严格对角优势矩阵,13 是弱对角优势矩阵 .A 11A 12定义 2设 A a ijn n是 n 阶矩阵,如果经过行的互换及相应列的互换可化为 0A22,即存在 n 阶排列矩阵 P, 使P T APA 11 A 120 A 22其中A 11,A22 为方阵,则称A 是可约的 , 否则称 A 为不可约的 .A 是可约矩阵 , 意味着Ax b 可经过若干次行列重排, 化为两个低阶方程组 ,事实上 ,Ax b 可化为 P T AP P T x P T b , 记P T y1 , d x y2 P T b dy d12于是,求解 Ax b 化为求解 A 11 y1A 12 y2 dA 22 y 2d1 2可以证明 , 如果 A 为严格对角优势矩阵或为不可约弱对角优势矩阵 , 则 A 是非奇异的 .定理 4 如果 A 为严格对角优势矩阵或为不可约弱对角优势矩阵, 则对任意 x 0 , 雅可比迭代 法(4) 与高斯 — 塞德尔迭代法 (8) 均为收敛的 .证明 下面我们以 A 为不可约弱对角优势矩阵为例, 证明雅可比迭代法收敛, 其他证明留给 读者 .要证明雅可比迭代法收敛,只要证 B 11,B 1是迭代矩阵 .用反证法 , 设矩阵B 1有某个特征值, 使得1, 则 det IB 10,由于 A 不可约,且具有弱对角优势,所以D 1 存在,且I B 1IID 1AD 1D A D从而det D A D另一方面,矩阵DAD与矩阵 A 的非零元素的位置是完全相同的,所以D AD也是不可约的 , 又由于1, 且 A 弱对角优势,所以na iia iia ij ,i 1,2,...nj ij i并且至少有一个 i 使不等号严格成立. 因此 , 矩阵D AD弱对角优势,故DA D为不可约弱对角优势矩阵 . 从而det D A D 0矛盾,故B1的特征值不能大于等于1,定理得证 .。
雅可比迭代矩阵公式

雅可比迭代矩阵公式雅可比迭代矩阵公式是一种解决线性方程组的方法,特别适用于大规模矩阵。
它的核心思想是通过不断迭代,逐步逼近方程组的解。
本文将详细介绍雅可比迭代矩阵公式的原理和应用。
一、原理考虑一个线性方程组Ax=b,其中A是一个n×n的矩阵,b是一个n维向量,x是我们要求解的n维向量。
雅可比迭代矩阵公式的核心思想是将矩阵A分解为A=D-L-U的形式,其中D是A的对角线元素组成的对角矩阵,L是A的下三角部分(不包括对角线),U是A的上三角部分(不包括对角线)。
则原方程可以改写为(D-L-U)x=b,移项得Dx=(L+U)x+b。
由于D 是一个对角矩阵,容易求逆,故可以得到x=D-1(L+U)x+D-1b。
接下来,我们可以使用迭代的方式来逐步逼近x的解。
具体来说,我们可以从一个初始的估计值x0开始,每次迭代都使用上一次的估计值,按照下面的公式求解:xn+1 = D-1(L+U)xn + D-1b迭代直到收敛,即xn+1-xn的范数小于某个给定的容差值时,我们可以认为x已经收敛,即为Ax=b的解。
二、应用雅可比迭代矩阵公式特别适用于大规模矩阵的求解,因为它只需要存储矩阵A的对角线元素和一些中间结果,而不需要存储整个矩阵。
这使得雅可比迭代矩阵公式在处理大型稀疏矩阵时具有很大的优势。
雅可比迭代矩阵公式还可以用于求解特殊的矩阵,比如对称正定矩阵。
在这种情况下,我们可以使用共轭梯度法等更高效的算法,但雅可比迭代矩阵公式仍然是一个有用的参考。
三、总结雅可比迭代矩阵公式是一种简单而有效的解决线性方程组的方法,特别适用于大规模稀疏矩阵。
它的核心思想是通过迭代,逐步逼近方程组的解。
虽然它不如一些更高效的算法,但在某些情况下,它仍然是一个有用的工具。
研究生数值分析(11)---雅可比(Jacobi)迭代法

a x (k) n,n1 n1
bn )
取初始向量
X
(0)
(
x (0) 1
,
x (0) 2
,
,
x (0) n
)T
利用(4)反复迭代可以得到一个向量序列 {X (k)}
称式(4)为雅可比迭Jacobi代公式。
若记
a11
D
a22
0
a21 0
0 a12
0
L a31
a32
0
U
特征方程 I D1(L U ) 0
又可以写成 D1 D L U 0 因为 D1 0 ,所以 D L U 0 上式左端为将系数矩阵 A 的对角元同乘以 λ 后所得新矩阵的行列式。
例8 用雅可比迭代法求解方程组
10x1 2x2 x3 3 2x1 10x2 x3 15 x1 2x2 5x3 10
由迭代矩阵的特征方程
10 2 1 2 10 1 0 1 2 5
展开得到
(10 2)(50 2 10 3) 0
解得
1
1 5
, 2
1 10
7
, 3
1 10
7
于是 (J ) 1 7 0.3646 1
10
因而雅可比迭代公式是收敛的。
练习:考察用雅可比Jacobi迭代法解方程组 AX=b的收敛性,
解:相应的雅可比迭代公式为
x1(
k
1)
1 10
(2x2(k )
x (k) 3
3)
x2(k
1)
1 10
(2
x1(
k
)
x (k) 3
15)
x3(k
1)
1 5
(
x1(
雅可比迭代法

雅可比迭代法一、引言雅可比迭代法,也称为雅可比算法(Jacobi method),在科学计算领域中应用很广泛,本文重点讲述该算法在迭代进化计算中的应用。
20世纪40年代初,由美国数学家Jacobi和瑞士数学家可夫等人创造。
雅可比迭代法主要步骤如下: 1、初始化; 2、选择一种迭代策略; 3、按照迭代策略执行相应的操作,直至收敛; 4、调整参数使迭代过程收敛,得到最终的收敛速度。
下面将详细介绍这个方法的原理及过程。
1、初始化“雅可比”是一个美国人,因此他不会使用编程来实现自己的想法,但是他对于迭代法非常了解,曾经使用编程来解决两个公开的问题,一个是阿基米德与公元前250年的欧几里德的问题,另一个是荷兰金属铸件需要多少时间来铸成一个合金块。
他研究过可以提高计算效率的任何技术。
20世纪30年代初, Jacobi发现一些只能运行到第n次的迭代法并没有提供尽可能快的收敛速度。
因此,他决定编写一个运行到第n+1次的迭代法,通过检查某种程序的输入输出情况,就可以预测当前执行到哪一步。
2、选择一种迭代策略在给定初始条件,一共有m次迭代,该迭代法一定满足下列条件之一:直到十年后的1973年, Jacobi在美国数学学会会议上才正式提出了雅可比算法(Jacobi algorithm),而且仅仅限于这个算法本身,并没有对它加以推广,由此可见, Jacobi选择这样一种渐进的发展策略,也许是出于性格上的稳健吧。
3、按照迭代策略执行相应的操作如果你想设计一种运行到第n+1次的迭代法,那么你要选择使计算复杂度为O(n^n)。
的策略(L(n))。
注意(1)此处的复杂度是以数字的形式来表示的;(2)它是针对每一次迭代的计算复杂度。
然后再选择一个初值使函数值在第m次迭代时满足O(n^m)。
3、调整参数使迭代过程收敛,得到最终的收敛速度雅可比迭代法一般情况下,迭代算法的目标函数不收敛,就需要对参数进行调整,而使算法收敛,如果把迭代速度函数和梯度算法进行比较,就可以知道梯度算法存在算法收敛性问题,而雅可比迭代法是满足这一要求的。
解线性方程组的Jacobi迭代法

function [x,k]=jacobi2(A,b,x0,e) n=length(b); D=diag(A); D=diag(D); L=zeros(n,n); U=zeros(n,n); x=zeros(n,1); k=1; for i=2:n for j=1:i-1
3
L(i,j)=A(i,j); end end for i=1:n-1 for j=i+1:n U(i,j)=A(i,j); end end x=-inv(D)*(L+U)*x0+inv(D)*b; while norm(x-x0)>e x0=x; x=-inv(D)*(L+U)*x0+inv(D)*b; k=k+1; end disp(x); disp(k);
⎛ a11 ⎜ 其中, D = ⎜ ⎜ ⎜ ⎝ a22
a22
⎞ ⎛ 0 ⎟ ⎜ ⎟ + ⎜ a21 ⎟ ⎜ ⎟ ⎜ ann ⎠ ⎝ an1
0 an 2
⎞ ⎛ 0 a12 ⎟ ⎜ 0 ⎟+⎜ ⎟ ⎜ ⎟ ⎜ … 0⎠ ⎝
a1n ⎞ ⎟ a2 n ⎟ ⎟ ⎟ 0 ⎠ a1n ⎞ ⎟ a2 n ⎟ 。 ⎟ ⎟ 0 ⎠
【解答】
迭代格式为
(k ) (k ) ⎛ 3 + 2 x2 ⎞ + x3 ⎜ ⎟ 10 ⎟ ⎛ x1( k +1) ⎞ ⎜ (k ) ⎟ ⎜ ( k +1) ⎟ ⎜ 15 + 2 x1( k ) + x3 ⎟ ⎜ x2 ⎟ = ⎜ 10 ( k +1) ⎟ ⎜ ⎟ ⎜ x3 ( ⎝ ⎠ ⎜ 10 + x k ) + 2 x ( k ) ⎟ 1 2 ⎜ ⎟ 5 ⎝ ⎠
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验课程名称:数值分析
}
结果:
流程图:
②Gauss-Seidel迭代法
#include<stdio.h>
int main()
{
double x[3] = {0, 0, 0};
开始
阶数n,系数矩
阵,初始向量
for(i=0;i<n;i++)
i=j
Y
N
total += a[i][j] *
x[j]
e = e +
ABS(x[j],
结束
double a[3][3] = {6,2,-1,1,4,-2,-3,1,4}; double y[3] = {-3,2,4};
double d[3][3],g[3];
int round = 5, i,j;
for (i=0; i<3; ++i)
{
g[i] = y[i] / a[i][i];
for (j=0; j<3; ++j)
{
d[i][j] = i==j ? 0 : -a[i][j]/a[i][i]; }
}
while (round--) {
for (i=0; i<3; ++i)
{
x[i] = g[i];
for (j=0; j<3; ++j)
{
x[i] += d[i][j] * x[j];
}
printf("%lf", x[i]);
}
printf("\n");
}
}
结果:
流程图:
{ a[i]=(float *)malloc(n*sizeof(float)); } return a;
}
float matrix_category(float* x,int n)
{ int i; float temp=0; for(i=0;i<n;i++)
{ temp=temp+fabs(x[i]); }
return temp;
}
结果:
流程图:
return 0; }
结果:
流程图:
⑤欧拉显式方法
#include <stdio.h>
#include <conio.h>
#include <math.h>
double f(double x,double y) {
return x*pow(y,1.0/3);
}
int main()
{
int i;
开始
矩阵阶数系数矩阵
for(k=1;k<=i-1;k++)
m=m+a[i][k]*a[k][j];
a[i][j]= a[i][j]-m;
a[k][num+1]=(a[k][
num+1]-q)/a[k][k]
结束
double x,y,y0=1,dx=0.1;
double xx[11];
double euler[11],euler_2[11];
double temp;
double f(double x,double y);
for (i=0;i<11;i++)
xx[i]=i*dx;
euler[0]=y0;
for (i=1,x=0;i<11;i++,x+=dx)
euler[i]=euler[i-1]+dx*f(x,euler[i-1]);
euler_2[0]=y0;
for (i=1,x=0;i<11;i++,x+=dx)
{
temp=euler_2[i-1]+dx*f(x,euler_2[i-1]);
euler_2[i]=euler_2[i-1]+dx*(f(x,euler_2[i-1])+f(x+dx,temp))/2;
}
for (i=0,x=0;i<11;i++,x+=dx)
printf("x=%lf\teluer=%lf\teuler_2=%lf\taccu=%lf\n",x,euler[i],euler_2[i],pow(1+x*x,1.0/3)); getch();
}
结果:
流程图:
⑥欧拉隐式方法
#include<stdio.h>
#include<math.h>
#define f(x,y)(x+y)
int main()
{int m;
int i;
double a,b,y0;
double xn,yn,xn1,yn1,yn1b;
double h;
printf("\nInput the begin and end of x:");
scanf("%lf%lf",&a,&b);
printf("Input the y value at %f:",a);
scanf("%lf",&y0);
printf("Input m value[divide(%f,%f)]:",a,b);
scanf("%d",&m);
if(m<=0)
{printf("Please input a number larger than 1.\n");
return(1);
}
h=(b-a)/m;
xn=a;yn=y0;
for(i=1;i<=m;i++)
{xn1=xn+h;
yn1b=yn+h*f(xn,yn);
yn1=yn+h/2*(f(xn,yn)+f(xn1,yn1b));
printf("x%d=%f,y%d=%f\n",i,xn1,i,yn1);
xn=xn1;
yn=yn1;
}return(0);
}
结果:
流程图:
二、实验结果及分析
雅克比迭代法的全部分量都是间接利用,由于新值比旧值好,Gauss-Seidel迭代法直接对算出的分量加以使用,这样使得迭代的收敛情况有所改善,而超松弛法是在Gauss-Seidel迭代法的基础上,应用加速收敛思想而构造的一种方法;欧拉公式和梯形公式在计算上有明显的区别,
欧拉公式的特点是可以有U
N 直接计算U
n+1
,也就是显式的,而梯形公式右端也有U
n+1
,必须通过解
方程才能求得,这类是隐式的。
从算法的角度看显式远比隐式方便,隐式通常用迭代法求解。
三、实验小节、建议及体会
任何一种方法都有它的优点和局限性,只有找到一种方法能够解决我们的问题,又尽量减少出错,减少计算量就是符合这个问题的好方法。
良好的编程习惯有助于检查错误,也可以增强程序的可阅读性。
信息技术在教学中的应用和反思
通过的近期信息技术提升培的学习,结合教学教学中相关信息
技术的应用和周边教师信息技术使用过程的讨论,个人对在现代信息技术手段在教学中应用有引起感触,现整理如下,仅供大家批评指正:
一、信息技术的重要性
随着信息技术使用的走进了人们的工作、生活、学习,尤其在教育教学活动中的地位作用日趋重要。
信息技术走进了日常教学中,改变了传统的教学模式。
将信息技术与教学相整合,提高教学效率以及培养学生的整体素质和全面能力都具有重要意义。
利用现代化的教育教学工具,寓教于乐,以提高教学的实效性。
信息技术在教学中的有效运用已经成为一个热点问题,它将成为课堂教学中不可缺少的一部分,成为学生学习、研究、探索知识的有力工具。
二、信息技术手段在教学中使用的必要性
1、运用现代信息技术资源备课,为课堂教学打下坚实的基础。
备课是教学中的一个重要环节,授课教师要熟悉教材、钻研教材、考虑教法、学法,提高教学实效的基础。
由于条件比较差,与教材有关的资料比较少。
再加上孩子见得少。
这就要求教师课前必须做好充分的准备,多准备与课文有关的资料,选择适合学生的教学方法。
教师备课前先熟悉钻研教材,再上网查阅优秀教师的备课。
网上的备课各式各样,一。