《流体力学》典型例题
流体力学例题

2013-8-1
6
图2-18
2013-8-1 7
【例2-4】 已知密闭水箱中的液面高度h4=60mm,测 压管中的液面高度h1=100cm,U形管中右端工作介质高 度,如图2-19所示。试求U形管中左端工作介质高度h3为 多少? 【解】 列1—1截面等压面方程,则 p 0 p a H 2 0 g (h1 h4 )
h4=300mm,h5=500mm,ρ1=1000㎏/m3,ρ2=800㎏
/m3,ρ3=13598㎏/m3,试确定A和B两点的压强差。
【解】 根据等压面条件,图中1—1,2—2,3—3均 为等压面。可应用流体静力学基本方程式(2-11)逐步推 算。 P1=p2+ρ1gh1 p2=p1-ρ3gh2 p3=p2+ρ2gh3
2013-8-1 23
由连续性方程:
d2 V1 V 2 d 1
2
将已知数据代入上式,得
V22 1 V22 20 2 15 0 16 2 g 2g
19.6 7 16 V2 12.(m/s) 1 15
管中流量
qV
4
2 d 2 V2
Ax=2sin300×1
2013-8-1 13
则气体作用在单位长度圆柱体上的垂直分力为
Fz=pAx=35×2sin300×1=35(kN) (b) Fx=ρghcAx=9.81×(1/2×3.73) ×(3.73×1)
×1000=68.1(kN)
Fz=ρgVp=9.81×1000×(2100/3600×22+1/2×1 ×1.732+1×2) ×1=100.5(KN)
《流体力学》试题及答案

《流体力学》试题及答案一、选择题(每题5分,共25分)1. 下列哪个选项不属于流体力学的三大基本方程?A. 连续性方程B. 动量方程C. 能量方程D. 牛顿第二定律答案:D2. 在不可压缩流体中,流速和压力之间的关系可以用下列哪个方程表示?A. 伯努利方程B. 欧拉方程C. 纳维-斯托克斯方程D. 帕斯卡方程答案:A3. 下列哪个现象表明流体具有粘性?A. 流体流动时产生涡旋B. 流体流动时产生湍流C. 流体流动时产生层流D. 流体流动时产生摩擦力答案:D4. 在下列哪种情况下,流体的动能和势能相等?A. 静止流体B. 均匀流动的流体C. 垂直下落的流体D. 水平流动的流体答案:C5. 下列哪个因素不会影响流体的临界雷诺数?A. 流体的粘度B. 流体的密度C. 流体的流速D. 流体的温度答案:D二、填空题(每题5分,共25分)6. 流体力学是研究______在力的作用下运动规律的科学。
答案:流体7. 不可压缩流体的连续性方程可以表示为______。
答案:ρV = 常数8. 在恒定流场中,流体质点的速度矢量对时间的导数称为______。
答案:加速度矢量9. 伯努利方程是______方程在不可压缩流体中的应用。
答案:能量10. 流体的湍流流动特点为______、______和______。
答案:随机性、三维性、非线性三、计算题(每题25分,共50分)11. 一个直径为10cm的管道,流体的流速为2m/s,流体的密度为800kg/m³,求管道中流体的流量。
解:流量Q = ρvA其中,ρ为流体密度,v为流速,A为管道截面积。
A = π(d/2)² = π(0.05)² = 0.00785m²Q = 800kg/m³ 2m/s 0.00785m² = 12.44 kg/s答案:管道中流体的流量为12.44 kg/s。
12. 一个直径为20cm的圆柱形储罐,储罐内充满水,水面高度为1m。
《流体力学》典型例题

《例题力学》典型例题例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。
已知平板与斜面之间的油层厚度δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。
求油的动力粘性系数。
解:由牛顿内摩擦定律,平板所受的剪切应力du Udy τμμδ== 又因等速运动,惯性力为零。
根据牛顿第二定律:0m ==∑F a ,即:gsin 0m S θτ-⋅=()324gsin 59.8sin 301100.1021N s m 1406010m U S θδμ--⋅⨯⨯⨯⨯==≈⋅⋅⨯⨯⨯ 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=⋅的油,若轴的转速200rpm n =。
求克服油的粘性阻力所消耗的功率。
解:由牛顿内摩擦定律,轴与轴承之间的剪切应力()60d d n d uy πτμμδ==粘性阻力(摩擦力):F S dl ττπ=⋅= 克服油的粘性阻力所消耗的功率:()()3223223230230603.140.360.732001600.231050938.83(W)d d n d n n lP M F dl πππμωτπδ-==⋅⋅=⨯⨯=⨯⨯⨯=⨯⨯=例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。
解:根据牛顿黏性定律 d d 2d r r F A r r ωωμμπδδ== 2d d 2d r T F r r r ωμπδ=⋅=42420d d 232dd d T T r r πμωπμωδδ===⎰432d Tπμωδ=例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。
流体力学例题(动力学部分)

1000
q
49 7 m / s
d 2
4
v2
0 .12
4
7 55 10
3
m /s
3
2
6.一个100N的重物恰被一垂直水射 流所支承,其中d=6cm,出口速度 v=8m/s,不计沿程损失,求Y=? 解:水流接触重物后动量发生了变化
Fiy q ( 2 v y 2 1 v y 1 )
Fiy 100 N q v y2
d 2
4 0
v
0 . 06 2
z1 z 2 z
v2 q2
v1
q1
由伯努利方程: v1 v 2 v
v1 q1
令: 1 由动量方程:
v
A
F i 0 q1v q 2 v qv cos
q1 q 2 q cos v 2 q2 由连续性方程:q1 q 2 q
2 gH v
令: 2 1 1
带入动量方程: F q ( 2 v z 2 1v z1 )
F av ( v a A 2 gH v )
2
水流对水桶的作用为-F
W W 0 F W 0 av ( v a A 2 gH v )
4
8 0 . 0226 m / s
3
令: 2 1 1
则:
v y1
F
q
100 1000 0 . 0226
4 . 42 m / s
由出口和重物底面的伯努利方程:
z1 p
g
v1
流体力学例题及解答(一)

其它性质与水接近。试选择适宜管径。
选取φ108×4mm的无缝钢管(d=0.1m)。 核算流速:
【例2】20℃的空气在直径为80mm的水平管流过。现于 管路中接一文丘里管,如本题附图所示。文丘里管的 上游接一水银U管压差计,在直径为20mm的喉颈处接一 细管,基下部插入水槽中。空气流过文丘里管的能量 损失可忽略不计。当U管压差计读数R=25mm、h=0.5m时, 试求此时空气的流量为若干m3/h。当大气压强为 101.33×103Pa。 解:该题有两项简化,即 (1)当理想流体处理,Σhw=0 (2)可压缩流体当不可压缩流体对 待,取平均密度ρm。
(4)用连续性方程式确定u1与u2之 间关系,即
【例2】20℃的空气在直径为80mm的水平管流过。现于 管路中接一文丘里管,如本题附图所示。文丘里管的 上游接一水银U管压差计,在直径为20mm的喉颈处接一 细管,基下部插入水槽中。空气流过文丘里管的能量 损失可忽略不计。当U管压差计读数R=25mm、h=0.5m时, 试求此时空气的流量为若干m3/h。当大气压强为 101.33×103Pa。 (5)联立上两式解得 : 于是 :
【例2】20℃的空气在直径为80mm的水平管流过。现于 管路中接一文丘里管,如本题附图所示。文丘里管的 上游接一水银U管压差计,在直径为20mm的喉颈处接一 细管,基下部插入水槽中。空气流过文丘里管的能量 损失可忽略不计。当U管压差计读数R=25mm、h=0.5m时, 试求此时空气的流量为若干m3/h。当大气压强为 101.33×103Pa。 计算的基本过程是: (1)根据题意,绘制流程图,选取 截面和基准水平面,确定衡算范围。
确定管道中流体的流量
【例1】精馏塔进料量为 Wh=50000kg/h,ρ=960kg/s,
流体力学例题

1、叉管间距L=0.07m 的U 形管放在车内。
车等加速水平直线运动时,U 形管两端高度差H=0.05m ,求车此时的加速度。
g a =αtan LH =αtan 2/78.907.005.0s m g L H a =⨯==2、滚动轴承的轴瓦长L =0.5m ,轴外径m d 146.0=,轴承内径D=0.150m ,其间充满动力黏度=μ0.8Pa ·s 的油,如图所示。
求轴以n=min /300r 的转速匀速旋转时所需的力矩。
、s m dnv /29.260==πN d D v dL dydu A T 2102=--==μπμm N dT M ⋅==3.1523、如图,在两块相距20mm 的平板间充满动力粘度为0.065Pa ·s 的油,如果以1m/s 速度拉动距上平板5mm ,面积为0.5m 2的薄板(不计厚度),求需要的拉力dy du AT μ= N huA dy du AT 5.61===μμ N hH u A dy du AT 17.22=-==μμ N T T T 67.821=+=4、用复式U 形管差压计测量A 、B 两点的压力差。
已知:mm h 3001=,mm h 5002=。
水31000m kg =ρ,水银内313600m kg m =ρ,3800m kg ='ρ。
求B A p p -。
A B p h h h g gh h h p =+∆++'-∆-)(211ρρρPa p p B A 32144-=-5、有一敞口容器,长=L 2米,高=H 1.5米,等加速水平直线运动,求当水深h 分别为1.3米和0.5米时,使容器中的液体开始溢出的最大加速度。
g a =αtan L h H )(2tan -=α 2/96.1)(2s m g Lh H a =-= xH hL 21=34=x x H g a ==αtan s m g a /11892==6、有一敞口容器,长2米,高1.3 米,宽B=1m ,等加速水平直线运动,水深0.5米。
流体力学考试试题(附答案)剖析

可编辑修改精选全文完整版流体力学考试试题(附答案)1、如图所示,有一直径=d 12cm 的圆柱体,其质量=m 5kg ,在力=F 100N 的作用下,当淹深=h 0.5m 时,处于静止状态,求测压管中水柱的高度H 。
解: 圆柱体底面上各点所受的表压力为:3.131844/12.014.3806.951004/22=⨯⨯+=+=d mg F p g π(Pa )由测压管可得:)(h H g p g +=ρ则:84.05.0806.910003.13184=-⨯=-=h gp H gρ(m )2、为测定90º弯头的局部阻力系数,在A 、B 两断面接测压管,流体由A 流至B 。
已知管径d =50 mm ,AB 段长度L AB = 0.8 m ,流量q = 15 m 3/h ,沿程阻力系数λ=0.0285,两测压管中的水柱高度差Δh = 20 mm ,已知水银的密度为13600kg/m 3,求弯头的局部阻力系数ξ。
解:)/(12.2405.0360015422s m d q v v v v B A =⨯⨯====ππ 对A 、B 列伯努利方程:f BB B A A A h gv z g P g v z g P +++=++2222水水ρρ 2211z gPz g P z g Pz g P B B A A +=++=+水水水水ρρρρf BA h gv z g P g v z g P +++=++∴22222211水水ρρ vv v B A == 又64.005.08.00285.0)1100013600(12.202.08.92)(2)2(222)(22222221212211=--⨯⨯⨯=-∆-∆=-=∴+=+=∆-∆=-+-=+-+=∴d l h h v g g v d l h v g gv g v d l h h h h gh g z z g P P z gP z gP h f f f λρρλξξλρρρρρξλ水汞水汞水水水又3、一变直径管段AB ,内径d A =0.2m ,d B =0.4m ,高度差Δh =1m ,压强表指示p A =40kPa ,p B =70kPa ,已知管中通过的流量q v =0.2m 3/s ,水的密度ρ=1000kg/m 3,试判断管中水流的方向。
流体力学练习题库+参考答案

流体力学练习题库+参考答案一、单选题(共50题,每题1分,共50分)1、离心泵抽空、无流量,其发生的原因可能有:①启动时泵内未灌满液体;②吸入管路堵塞或仪表漏气;③吸入容器内液面过低;④泵轴反向转动;⑤泵内漏进气体;⑥底阀漏液。
你认为可能的是( )A、①③⑤B、全都是C、全都不是D、②④⑥正确答案:B2、用离心泵向高压容器输送液体,现将高压容器改为常压容器,其它条件不变,则该泵输送液体流量( ),轴功率()。
A、增加B、不确定、不变C、减小D、增加、增加正确答案:D3、转子流量计的设计原理是依据 ( )A、液体对转子的浮力B、流动时在转子的上、下端产生了压强差C、流体的密度D、流动的速度正确答案:B4、为防止离心泵发生气缚现象,采取的措施是( )。
A、降低被输送液体的温度B、降低泵的安装高度C、关小泵出口调节阀D、启泵前灌泵正确答案:D5、单级单吸式离心清水泵,系列代号为( )A、ISB、DC、SHD、S正确答案:A6、某塔高30m,进行水压试验时,离塔底l0m高处的压力表的读数为500kPa,(塔外大气压强为100kPa)。
那么塔顶处水的压强( )A、698.1kPaB、无法确定C、600kPaD、403.8kPa正确答案:D7、离心泵内导轮的作用是( )A、密封B、转变能量形式C、改变叶轮转向D、增加转速正确答案:B8、一台离心泵开动不久,泵入口处的真空度正常,泵出口处的压力表也逐渐降低为零,此时离心泵完全打不出水。
发生故障的原因是( )A、忘了灌水B、吸入管路堵塞C、吸入管路漏气D、压出管路堵塞正确答案:B9、某泵在运行的时候发现有汽蚀现象应( )A、检查进口管路是否漏液B、停泵向泵内灌液C、降低泵的安装高度D、检查出口管阻力是否过大正确答案:A10、离心泵在正常运转时,其扬程与升扬高度的大小比较是( )A、扬程<升扬高度B、扬程>升扬高度C、扬程=升扬高度D、不能确定正确答案:B11、离心通风机铭牌上的标明风压是100mmH2O意思是( )A、输任何条件的气体介质的全风压都达到l00mmH2OB、输送任何气体介质当效率最高时,全风压为l00mmH2OC、输送20℃,l01325Pa、的空气,在效率最高时全风压为l00mmH2OD、输送空气时不论流量的多少,全风压都可达到100mmH2O正确答案:C12、泵将液体由低处送到高处的高度差叫做泵的( )A、吸上高度B、升扬高度C、扬程D、安装高度正确答案:B13、离心泵在启动前应()出口阀,旋涡泵启动前应( )出口阀A、关闭,打开B、关闭,关闭C、打开,关闭D、打开,打开正确答案:A14、离心泵发生气蚀可能是由于( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《例题力学》典型例题例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。
已知平板与斜面之间的油层厚度δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。
求油的动力粘性系数。
解:由牛顿摩擦定律,平板所受的剪切应力du U dy τμμδ== 又因等速运动,惯性力为零。
根据牛顿第二定律:0m ==∑F a ,即:gsin 0m S θτ-⋅=()324gsin 59.8sin 301100.1021N s m 1406010m U S θδμ--⋅⨯⨯⨯⨯==≈⋅⋅⨯⨯⨯ 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=⋅的油,若轴的转速200rpm n =。
求克服油的粘性阻力所消耗的功率。
解:由牛顿摩擦定律,轴与轴承之间的剪切应力()60d d n d uy πτμμδ== 粘性阻力(摩擦力):F S dl ττπ=⋅= 克服油的粘性阻力所消耗的功率:()()3223223230230603.140.360.732001600.231050938.83(W)d d n d n n lP M F dl πππμωτπδ-==⋅⋅=⨯⨯=⨯⨯⨯=⨯⨯=例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。
解:根据牛顿黏性定律 d d 2d r r F A r r ωωμμπδδ==2d d 2d r T F r r r ωμπδ=⋅=42420d d 232d d d T T r r πμωπμωδδ===⎰432d Tπμωδ=例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。
水解:根据等压面的性质,采用相对压强可得:()()()123243g g g h h h h h h ρρρ---=-水水123432h h h h h h ρρ-+-=-水例题5:如图所示,U 型管中水银面的高差h =0.32 m ,其他流体为水。
容器A 和容器B 中心的位置高差z =1 m 。
求A 、B 两容器中心处的压强差(取管中水的重度γ水=9810 N/m 3,水银的重度γ水银=133416 N/m 3)。
解:根据等压面的性质可得:A 11p p h γ=+水,12p p h γ=+水银,B 22p p h γ=+水()()()()A B 211334160.3298100.32129743.92Pa p p h h h h h z γγγγ-=--=-+=⨯-⨯+=水银水水银水例题6:如图所示,仅在重力场作用下的无盖水箱高H =1.2m ,长L =3m ,静止时盛水深度h =0.9m 。
现水箱以20.98m a =的加速度沿水平方向做直线运动。
若取水的密度31000kg m ρ=,水箱中自由水面的压强0p =98000Pa 。
试求: (1)水箱中自由水面的方程和水箱中的压强分布。
(2)水箱中的水不致溢出时的最大加速度max a 。
解:(1)如图所示,将固定在水箱上的运动坐标系的原点置于静止时自由水面的中点,z 轴垂直向上,x 轴与加速度的方向一致。
则水箱运动时单位质量水受到的质量力和水的加速度分量分别为0X a,Y ,Z g =-==-代入非惯性坐标系中的压力全微分公式()d d d d d p X x Y y Z z W ρρ=++=,得()d d d p a x g z ρ=-+ ①积分得 ()1p ax gz c ρ=-++利用边界条件确定积分常数1c :在坐标原点O (0x z ==)处,0p p =,得10c p =由式①可得水箱的压强分布()()098000100009898980009809800p p ax gz .x .z x z ρ=-+=-+=-- 对于水箱中的等压面,有d 0p =,所以由式①可得等压面的微分方程d d a x g z =-积分得 2az x c g=-+上式给出了一簇斜率为a g -的倾斜平面,就代表水箱加速运动的一簇等压面,自由水面是等压面中的一个,因自由水面通过坐标原点,可确定积分常数20c =。
因此自由水面方程为0980198a .z x x .x g .=-=-=- (2)假设水箱以加速度max a 运动时,其中的水刚好没有溢出,且此时水箱右侧水的深度为h ',则根据加速前后水的体积不变的性质可得()2h H LL h '+⋅⋅=②又根据水箱作水平等加速直线运动时,自由表面的斜率与几何长度之间的关系max g a H h L'-= ③②和③式联立求解,得:()()()2max22 1.20.9g 9.8 1.96m s 3H h a L -⨯-==⨯=例题7:有一盛水的旋转圆筒,直径D =1 m ,高H =2 m ,静止时水深为h =1.5 m 。
求: (1)为使水不从筒边溢出,旋转角速度ω应控制在多大?(2)当ω=6 rad/s 时,筒底G 、C 点处的相对压强(相对于自由水面)分别为多少?C解:(1)若将坐标原点放在筒底的中心位置,并假设自由表面最低点的高度为00,r z H ==,则由:()22,,d d d d X x Y y Z gp X x Y y Z z ωωρ⎧===-⎪⎨=++⎪⎩,可推出自由水面(为一等压面)的方程:2202g r z H ω=+ 根据在水没有溢出的情况下,旋转前后水的体积不变的性质,可得:2222002d 2g 4D r D r H r h ωππ⎛⎫⋅+=⎪⎝⎭⎰由此可求得:22016gD H h ω=-,带入自由表面方程得:2222g 8D z h r ω⎛⎫=+- ⎪⎝⎭若使ω达到某一最大值而水不溢出,则有2r D =时,z H =,带入上式,得()8.854rad s ω===(2)旋转容器中任意一点的相对压强可表达为2222220g g 2g 2g 16g r r D p H z h z ωωωρρ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭将G 点条件:0,0r z ==带入得:2222G 61g 10009.8 1.512450Pa 16g 169.8D p h ωρ⎛⎫⎛⎫⨯=-=⨯⨯-= ⎪ ⎪⨯⎝⎭⎝⎭同理,将C 点条件:2,0r D z ==带入得:222222C 61g10009.8 1.516950Pa 8g 16g 169.8D D p h ωωρ⎛⎫⎛⎫⨯=+-=⨯⨯+= ⎪ ⎪⨯⎝⎭⎝⎭例题8:如图所示为一圆柱形容器,直径为300mm d =,高500mm H =,容器装水,水深为1300mm h =,使容器绕垂直轴做等角速旋转,试确定水正好不溢出来的转速1n 。
解:以自由液面的最低处为坐标原点,自由液面方程为H gd gr z ===822222ωω旋转后无水的体积为:()2224222102d 2d 2644dd r d V z r r r r d H h ggωωππππ=⨯=⨯==-⎰⎰14187g(H h ).d ω⇒=-= ()rad s 1301783n .ωπ⇒== ()r min例9 已知平面直角坐标系中的二维速度场()()x t y t =+++u i j 。
试求: (1)迹线方程;d d d d x y z x y z t u u u === (2)流线方程;d d d x y zx y z u u u == (3)0t =时刻,通过(1,1)点的流体微团运动的加速度; (4)涡量,并判断流动是否有旋。
解:(1)将,x y u x t u y t =+=+代入迹线方程d d d d x y x yu ,u t t==得: d d d d x y x t,y t t t=+=+ 解这个微分方程得迹线的参数方程:1,1t t x ae t y be t =--=--其中,,a b 是积分常数(拉格朗日变数)。
消掉时间t ,并给定,a b 即可得到以,x y 表示的流体质点(),a b 的迹线方程。
例如:已知欧拉法表示的速度场22x y =-u i j ,求流体质点的迹线方程,并说明迹线形状。
将2,2x y u x u y ==代入迹线微分方程:d d d d x y x y u ,u t t ==,得: d d 22d d x y x,y t t == 分离变量并积分,得: 12ln 2ln 2x t c y t c =+⎧⎨=-+⎩从上两式中消去时间t 得迹线方程: 12xy c c =+ 即: xy c = 可见,该流场中流体质点的迹线为一双曲线。
(2)将,x y u x t u y t =+=+代入流线微分方程d d x y x y u u =得:d d x y x t y t=++ 将t 看成常数,积分上式得流线方程:()()ln ln ln x t y t c +=++ 或 ()()x t c y t +=+(3)由质点导数的定义可得流动在x 和y 方向的加速度分量分别为:D D x x x x x x y u u u ua u u t t x y∂∂∂==++∂∂∂()()110x t y t =++⨯++⨯1x t =++ D D y y y y y xyu u u u a u u ttxy∂∂∂==++∂∂∂()()101x t y t =++⨯++⨯1y t =++所以,0t =时刻,通过(1,1)点的流体微团运动的加速度为:()()D 1122D x x a a x t y t t==+=+++++=+ua i j i j i j (4)由涡量的定义,对于题中所给的平面流动有:0y x z u u x y Ω∂∂=∇⨯==-=∂∂⎛⎫⎪⎝⎭Ωu k k所以流动无旋。
例10 已知二维速度场为4x u x y =-,4y u y x =--。
(教材P68) (1)证明该速度分布可以表示不可压缩流体的平面流动; (2)求该二维流场的流函数; (3)证明该流动为势流; (4)求速度势函数。
解:(1)平面流动判定不可压缩流体平面流动的连续方程为0yx u u x y∂∂+=∂∂ 由已知条件可求()41x u x y x x∂∂=-=∂∂,()41y u y x y y ∂∂=--=-∂∂,可见速度分布满足连续方程。
故可以表示不可压缩流体的平面运动。
(2)流函数(,)x y ψ的确定 按流函数定义和已知条件有4x u x y yψ∂==-∂ (1) ()4y u y x xψ∂=-=-+∂ (2) 积分式(1)得 2d ()2()y f x xy y f x yψψ∂=+=-+∂⎰(3) 为确定函数)(x f ,将式(3)对x 求偏导,并按流函数定义令其等于y u -,即()4y y f x u y x xψ∂'=+=-=+∂ (4) 由式(4)可以判定x x f 4)(=',积分求)(x f 得c x x x x x f x f +=='=⎰⎰22d 4d )()( (5)其中c 为积分常数。