解三角形经典例题及解答
解三角形知识点汇总和典型例题 完美

解三角形解三角形的必备知识和典型例题及详解一、知识必备:1.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
2.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;3.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角.第2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.4.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
2sin 2cos ,2cos 2sinCB AC B A =+=+; (2)判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式5.求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图; (3)求解:正确运用正、余弦定理求解; (4)检验:检验上述所求是否符合实际意义。
解直角三角形.doc 例题

解直角三角形经典例题精析类型一、锐角三角函数1.(1)在△ABC中,∠C=90°.若sinA=,则tanA=______.【考点】锐角三角函数的定义与特殊角三角函数值.【解析】设∠A的对边为(也可设为1),则斜边为2,由勾股定理得邻边为,所以由tanA===(也可由sinA=得∠A=30°,则tan30°=).【答案】.(2)(2010哈尔滨)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为().(A) 7sin35°(B)(C)7cos35°(D)7tan35°【考点】锐角三角函数的定义.【答案】C2.已知:cos=,则锐角的取值范围是( )A.0°<<30°B.45°<<60°C.30°<<45°D.60°<<90°【思路点拨】cos60°=,cos45°=,因为<<所以45°<<60°.【答案】B.3.当45°<<90°时,下列各式中正确的是( )A.tan>cos>sinB.sin>cos>tanC.tan>sin>cosD.cos>sin>tan 【考点】同一锐角不同三角函数比较大小.【提示】当一锐角在45°~90°范围内,正切值>1,1>正弦值>,>余弦值>0.【答案】C.4.Rt△ABC中,如果一条直角边和斜边的长度都缩小至原来的,那么锐角A的各个三角函数值( )A.都缩小B.都不变C.都扩大5倍D.无法确定【考点】三角函数值与角的度数有关,与边的比值有关.【思路点拨】因为一条直角边和斜边的长度都缩小至原来的,但各边的比值不变.【答案】B.5.1-cos234°-cos256°=__________.【考点】(1) sin2A+cos2A=1;(2)互余两角的三角函数关系sinA=cos(90°-A)或cosA=sin(90°-A).【解析】1-cos234°-cos256°=1-(sin256°+cos256°)=1-1=0.【答案】0.6.方程有实数根,求锐角的取值范围.【考点】锐角三角函数的增减性及特殊角的三角函数值.【解析】∵方程有实数根∴△=≥0,即≤,∴0°<≤30°.总结升华:应掌握特殊角的三角函数值及各个锐角三角函数之间的联系,注意锐角三角函数概念的理解领会及运用. 举一反三:【变式1】已知为锐角,下列结论正确的有( )(1)(2)如果,那么(3)如果,那么(4)A. 1个B. 2个C. 3个D. 4个【思路点拨】利用三角函数的增减性和有界性即可求解.【解析】由于为锐角知(1)不成立当时,有,即(2)正确当时,,即(3)成立又,即正确,即(4)成立.【答案】C.【变式2】A、B、C是△ABC的三个内角,则等于( )A. B. C. D.【考点】互余两角正余弦关系.【思路点拨】===.【答案】A.【变式3】已知△ABC中,∠C=90°,若∠A、∠B的余弦值是关于的方程的两个根.且△ABC的周长为24.试求BC的长度.【考点】锐角三角函数概念的理解和运用.【解析】∵∠A、∠B的余弦值是关于的方程的两个根∴由根与系数的关系得:又∵A+B=900 ∴①平方并把②代入得:整理得:解得=3,=19当=3时,因=<1不符题意,故舍去.∴=19此时原方程为:解得=,=又设>∴设=,那么=,=∵=24 ∴=24 解得=2∴△ABC的斜边BC==10.类型二、解直角三角形7.(1)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=5,BD=3,则sinA=_____,cosA=_____,tanA=_____,tanB=_____.【考点】解直角三角形,利用已知元素求两锐角的三角函数值.【思路点拨】由∠ACB=90°,CD⊥AB可知,∠A=∠DCB,∵BC=5,BD=3 ∴由勾股定理得CD=4所以sinA=sin∠DCB==, cosA=cos∠DCB==tanA=tan∠DCB==, tanB==【答案】sinA=,cosA=,tanA=,tanB=.(2)如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为()(A) 2 (B)(C)(D)1【考点】解直角三角形、勾股定理.【思路点拨】过D作DE⊥AB于E,因为∠A=45°,设AE=DE=x, AD =x由tan∠DBA=,得BE=5x, AC=6AB=,即5x+x=,x=,AD =x=2.【答案】A8.如图,在中,AD是BC边上的高,.(1)求证:AC=BD; (2)若,求AD的长.【考点】利用锐角三角函数知识和已知条件解直角三角形.【思路点拨】由于AD是BC边上的高,则有和,这样可以充分利用锐角三角函数的概念使问题求解.【解析】(1)在中,有,中,有(2)由可设由勾股定理求得即.9.如图,沿AC方向开山修路,为了加快施工速度,要在小山的另一边同时施工.从AC上的一点B,取米,.要使A、C、E成一直线,那么开挖点E离点D的距离是( )A.米B.米C.米D.米【思路点拨】在中可用三角函数求得DE长.【解析】A、C、E成一直线在中,米,米 .【答案】B.总结升华:任何锐角都可以求三角函数值,并非只能在直角三角形中的锐角才可求三角函数值,此处易混淆.解直角三角形的关键是正确地选择公式,为了迅速准确地优选所需公式,应依题意画出图形,便于分析,并尽量利用原始数据,避免积累误差或链式错误.举一反三:【变式1】在△ABC中,∠C=30°,∠BAC=105°,AD⊥BC,垂足为D,AC=2cm,求BC的长.【思路点拨】在Rt△ADC中,利用sinC=,求出AD=1cm,cosC=,求出CD=在Rt△ABD中,利用tan∠BAD=,求出BD=1,所以BC=BD+CD=1+.【答案】(1+)cm.【变式2】如图,已知△ABC中,∠ACB=90°,根据下列条件解直角三角形.(1)∠A=60°,CD⊥AB于D,CD=;(2)a=2,CD⊥AB于D,BD=.【考点】解直角三角形中运用已知元素求未知元素,恰当选用锐角三角函数求值.【解析】(1)∵ CD⊥AB,∠A=60°,CD=∴在Rt△CDA中,AC=∴在Rt△ABC中,∠B=90°-∠A=30°,AB=2AC=4,BC=ABsinA=4×=2;(2)∵BC=a=2,CD⊥AB于D,BD=,∴cosB=,∴∠B=30°∴在Rt△ABC中,∠A=90°-∠B=60°,∴AB=, AC=AB=.总结升华:大胆正确应用,虽然方法很多,但要总结最优解法.【变式3】某片绿地形状如图,其中AB⊥BC,CD⊥AD,∠A=60°,AB=200m,CD=100m,•求AD、BC的长.【思路点拨】设法补成含60°的直角三角形再求解.【解析】延长BC,AD交于E,∠E=30°在Rt△ABE中,在Rt△CDE中,AD=AE-DE=400-100,BC=BE-CE=200-200.类型三、解直角三角形的实际应用10.(1)(2010 山东东营)如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方向走了m米,到达点C,测得∠ACB=,那么AB等于()(A) m·sin米 (B) m·tan米 (C) m·cos米(D) 米【考点】解直角三角形与实际问题.【答案】B(2)已知,如图:AB∥DC,∠D=900,BC=,AB=4,=,求梯形ABCD的面积.【考点】解直角三角形在实际中的应用.【思路点拨】过B作BE⊥CD于E,设BE=,则结合=得CE=3,又BC=,利用勾股定理求,从而可求梯形ABCD的面积.【解析】过B作BE⊥DC于E,∵tanC=,∴设BE=,则EC=在Rt△BEC中,由勾股定理得:,即解得:=1,∴BE=1,EC=3,∴==.11.如图,在湖边高出水面50m的山顶A处看见一架直升机停留在湖面上空某处,观察到飞机底部标志P处的仰角为45°,又观察到其在湖中之像的俯角为65°,试求飞机距湖面的高度h.(精确到0.01m) tan65°≈2.145【考点】利用三角形函数解实际问题.【思路点拨】通过作点P至湖面的对称点P′,根据方向角平面成像的知识解决问题.【解析】作点P至湖面的对称点P′,连接AP′,设AE=x,在Rt△AEP中∠PAE=45°,则∠P=45°,所以PE=AE=x,由平面成像知识可得OP′=OP=PE+EO=x+50,•在Rt△AP′E中,tan∠EAP′==tan65°,又EP′=OE+OP′=x+100,所以=tan65°≈2.145,解得x≈87.34,所以OP=x+50≈137.34(m),即飞机距湖面的高度h约为137.34m.12.已知:如图,山顶建有80米高的铁塔BC,为了测量山的高度,测量人员在一个小山坡的P处,测得塔的底部B点的仰角为45°,塔顶C的仰角为60°,若小山坡的坡角为30°,坡长MP=40米,请问,测量人员用这种方法能测量出山的高度吗?如果能,山的高度是多少?(精确到1米,参考数据)【思路点拨】如果能由已知数据计算出山高AB,那么该测量人员的方法可行,另外为计算方法,可将问题抽象成几何计算题【解析】这种方法可以测量出山高,理由如下:如图,作PE⊥AM的延长线于点E,设P点的水平视线与AB交于D点,由已知可得,∠C=30°,∠PBD=45°,BD=DP设BD=x米,则即又答:该测量人员用他的方法能测量出山的高度,其高度约为129米.13.如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,看旗杆顶部的仰角为45;小红的眼睛与地面的距离(CD)是1.5m,看旗杆顶部的仰角为.两人相距28米且位于旗杆两侧(点在同一条直线上).请求出旗杆的高度.(参考数据:,,结果保留整数)【解析】解法一:过点作于,过点作于,则在中,,设(不设参数也可), 5分在中,,7分答:旗杆高约为12米.解法二:过点作于,过点作于,则,在中,,设,则在中,,解得答:旗杆高约为12米.总结升华:在运用本单元内容时要运用转化思想将所求问题转化到直角三角形中,利用三角函数建立已知与结论的联系,另外,在实际问题时,要注意分类讨论.举一反三:【变式1】如图所示的燕服槽是一个等腰梯形,外口AD宽10cm,燕尾槽深10cm,AB的坡度i=1:1,求里口宽BC及燕尾槽的截面积.【考点】坡度的概念.【解析】如下图,作DF⊥BC于点F.由条件可得四边形AEFD是矩形,AD=EF=10.AB的坡角为1:1,所以=1,所以BE=10.同理可得CF=10.里口宽BC=BE+EF+FC=30(厘米).截面积为×(10+30)×10=200(平方厘米).【变式2】如图,AB是江北岸滨江路一段,长为3千米,C为南岸一渡口,•为了解决两岸交通困难,拟在渡口C处架桥.经测量得A在C北偏西30°方向,B在C的东北方向,从C处连接两岸的最短的桥长多少?(精确到0.1)【考点】方向角的应用.【解析】过点C作CD⊥AB于点D.CD就是连接两岸最短的桥.设CD=x米.在直角三角形BCD中,∠BCD=45°,所以BD=CD=x.在直角三角形ACD中,∠ACD=30°,所以AD=CD×tan∠ACD=x·tan30°=x.因为AD+DB=AB,所以x+x=3,x=≈1.9(米).【变式3】气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点)的南偏东方向的点生成,测得.台风中心从点以40km/h的速度向正北方向移动,经5h后到达海面上的点处.因受气旋影响,台风中心从点开始以30km/h的速度向北偏西方向继续移动.以为原点建立如图所示的直角坐标系.(1)台风中心生成点的坐标为,台风中心转折点的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点)位于点的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?【考点】利用三角函数解决实际问题.【解析】解:(1),;(2)过点作于点,如图,则.在中,,,..,,台风从生成到最初侵袭该城要经过11小时.相似经典例题精析类型一、图形的相似1.在比例尺1:10 000 000的地图上,量得甲、乙两个城市之间的距离是8 cm,那么甲、乙两个城市之间的实际距离应为__________km.考点:比例性质.思路点拨:地图上的比例尺是一种比例关系,即图上距离与实际距离的比.解析:1:10 000 000=8:80 000 000,即实际距离是80 000 000cm=800km.2.(1)将一个菱形放在2倍的放大镜下,则下列说法不正确的是( )A.菱形的各角扩大为原来的2倍B.菱形的边长扩大为原来的2倍C.菱形的对角线扩大为原来的2倍D.菱形的面积扩大为原来的4倍考点:相似图形的定义和性质.解析:从放大看到的菱形和原来的菱形相似,放大镜只能放大边长,而不能放大角.所以B、C正确,A不正确.D 中相似图形的面积比等于相似比的平方,所以D也正确.故选A.(2)(2010山西)在R t△ABC中,∠C=90º,若将各边长度都扩大为原来的2倍,则∠A的正弦值()A.扩大2倍B.缩小2倍C.扩大4倍D.不变考点:相似图形的性质.答案:D3.(1)在同一时刻物高与影长成比例,小华量得综合楼的影长为6 米,同一时刻她量得身高 1.6米的同学的影长为0.6 米,则可知综合楼高为__________.考点:比例线段的基本性质,同一时刻物高与影长的比相等.解析:,则楼高==16,故填16米.(2)(2010四川内江)如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距6m、与树相距15m,则树的高度为______________m.解析:答案:74.若四边形ABCD∽四边形,且AB:=1:2 ,已知BC=8,则的长是( ) A.4 B.16C.24D.64考点:相似图形的性质,相似四边形对应边的比等于相似比.解析:因为四边形ABCD∽四边形,所以AB:=BC:=1:2即=2BC=2×8=16,故选B.5.下列多边形中,一定相似的是( )A.两个矩形B.两个菱形C.两个正方形D.两个平行四边形考点:多边形相似的定义.解析:A中两个矩形只能满足对应角相等,而对应边不一定成比例;B中两个菱形只满足对应边成比例,而对应角不一定相等;D中两个平行四边形对应边不一定成比例,对应角也不一定相等;C中两个正方形满足对应角相等,对应边成比例.故选C.举一反三:【变式1】下列命题中正确的命题是( )A.相似多边形是全等多边形B.不全等的图形不是相似多边形C.全等多边形是相似多边形D.不相似的图形可能是全等图形解析:全等多边形是特殊的相似多边形,相似比为1.故选C.【变式2】证明:正六边形ABCDEF与正六边形相似.考点:边数相同的正多边形相似的判定.证明:∵正六边形的每个内角都等于120°∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∠D=∠D′,∠E=∠E′,∠F=∠F′又∵AB=BC=CD=DE=EF=FA=====∴=====∴正六边形ABCDEF∽正六边形.总结升华:边数相同的正多边形都相似.【变式3】两地的距离是500 米,而地图上的距离为10 厘米,则这张地图的比例尺为()A.1:50B.1:500 C.1:5000 D.1:50000解析:图上距离与实际距离的比等于比例尺,即比例尺为10:50000=1:5000,故选C.【变式4】如图,在一张长10cm,宽6cm的矩形纸片上,剪下一个矩形,若剩下的矩形(图中阴影部分)和原来的矩形相似,那么剩下的矩形的面积是多少cm2?思路点拨:已知两个矩形相似,则它们的长的比等于宽的比.因此只能是矩形ABCD的长AD对应矩形CDEF的长CD,矩形ABCD的宽CD对应矩形CDEF的宽DE.解析:∵矩形ABCD∽矩形CFED,∴即解得DE=3.6,∴S矩形CDEF=CD×DE=6×3.6=21.6cm2.类型二、相似三角形6.(1)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有( )(A)1对(B)2对(C)3对(D)4对考点:本题考查三角形相似的基本定理与判定定理的运用.思路点拨:有两角对应相等的两个三角形相似.解析:△ADE∽△ABC,△ACD∽△ABC,△ADE∽△ACD,△DCE∽△CBD,故选D.(2)(2010北京)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD∶AB=3∶4,AE=6,则AC 等于( )A.3 B.4 C.6 D.8解析:△ADE∽△ABC答案:D7.下列判断中,正确的是()(A)各有一个角是67°的两个等腰三角形相似(B)邻边之比都为2:1的两个等腰三角形相似(C)各有一个角是45°的两个等腰三角形相似(D)邻边之比都为2:3的两个等腰三角形相似考点:本题要求运用相似三角形的判定定理.思路点拨:设计出反例淘汰错误的选项.解析:A不成立的原因是当底角为67°时,顶角为46°,另一个三角形的顶角为67°时,底角为66.5°,这两个等腰三角形不相似.B两个等腰三角形的邻边之比都为2:1,结合三角形三边关系可知,这两邻边只能是腰和底的比为2:1,每个三角形三边之比均为腰:腰:底=2:2:1.C不成立的原因也是顶角不等.D不成立的原因是当一个等腰三角形的腰与底的比是2:3时,另一个等腰三角形的腰与底的比为3:2,它们三边之比分别为2:2:3与3:3:2.故选B.8.如图,在Rt△ABC中,CD是斜边AB上的高,则图中的相似三角形共有( )A.1对B.2对C.3对D.4对思路点拨:利用两组角对应相等的两个三角形相似判定.解析:考虑Rt△ABC与Rt△ACD和Rt△CBD相似情况.除直角外,∠A为Rt△ABC和Rt△ACD的公共角,故Rt△ABC∽Rt△ACD,又∠B为Rt△ABC和Rt△CBD的公共角,故Rt△ABC∽Rt△CBD,可得Rt△ACD∽Rt△CBD,故选C.9.如果两个相似三角形对应角平分线的比为16:25,那么它们的面积比为( )A.4:5B.16:25C.196:225 D.256:625考点:相似三角形的性质.思路点拨:相似三角形对应角平分线的比等于相似比,面积比等于相似比的平方,所以相似三角形的面积比等于对应角平分线的比的平方.答案:D.10.如图,在边长为1的正方形网格上有P、A、B、C四点.(1)求证:△PAB∽△PCA;(2)求证:∠APB+∠PBA=45°.考点:相似三角形的判定.思路点拨:判定方法:两个三角形的三组对应边的比相等,那么这两个三角形相似,或两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.解析:(1)∵PC=1,PA=,PB=5,∵∠APC=∠BPA,∴△PAB∽△PCA;(2)∵∠B=∠PAC∠ACB=45°,∴∠APB+∠PBA=∠APB+∠PAC=∠ACB=45°.11.如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED.考点:利用相似三角形的性质和判定解决实际问题.思路点拨:过A点作AH⊥ED,构造三角形,并证明△AFG∽△AEH,再利用相似三角形的对应边的比相等求出结论.解:过A点作AH⊥ED,交FC于G,交ED于H.由题意,可得:△AFG∽△AEH,∴,即,解得:EH=9.6米.∴ED=9.6+1.6=11.2米.总结升华:判断两个多边形是否相似,必须同时具备对应角相等,对应边成比例.举一反三:【变式1】在△ABC中,DE∥BC,,若,求.考点:比例的基本性质及相似三角形的面积比等于相似比的平方.思路点拨:由得出,再利用DE∥BC可得△ADE∽△ABC解:∵,∴.∵在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,即,∴.【变式2】如图,△ABC是一块直角三角形的木块,∠C=90°,AC=3cm,BC=4cm,AB=5cm,要利用它加工成一块面积最大的正方形木块,问按正方形CDEF加工还是按正方形PQRS加工?说出你的理由.思路点拨:要加工成一块面积最大的正方形木块,有两种方法,利用相似三角形的判定和性质求出两个正方形的边长,比较大小即可.解:(1)如图1,设正方形CDEF的边长为x,则有,得x=cm;(2)如图2,设正方形PQRS的边长为y,作CN⊥AB于N交RS于M,而知CN=,同样有得(cm),x-y=>0,故x>y,所以按正方形CDEF加工,可得面积最大的正方形.【变式3】已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s 的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?思路点拨:用运动的时间t和速度表示线段的长,当△PBQ与△BDC相似时,利用对应边的比相等求出时间.解析:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD= 90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即∴经过秒或2秒,△PBQ∽△BCD.类型三、位似12.下列图形中不是位似图形的是( )考点:位似图形的定义.解析:A是以圆心为位似中心的图形,B、D根据定义可判断.C是相似但不是位似的图形.故选C.13.(1)(2010广东茂名)如图,已知△与△是相似比为1:2的位似图形,点O为位似中心,若△内一点(x,y)与△内一点是一对对应点,则点的坐标是_________.考点:位似图形的性质.答案:(-2x,-2y)(2)如图,直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).请在图中画出△ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);考点:位似图形的画法思路点拨:连接位似中心P和△ABC的各顶点,并延长,使PA′=3PA,PB′=3PB,PC′=3PC连接、、,则得到所要画的图形.解:画出,如图所示.14.如图,D,E分别AB,AC上的点.(1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?(2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?考点:会利用位似图形的定义判定两个图形是位似图形,会利用位似图形的性质解决问题.思路点拨:(1)可先证明△ADE和△ABC相似,对应边在同一直线上或平行,再找出对应顶点的连线交于一点A 可判定是位似图形.(2)利用位似图形的性质,位似图形是相似图形.从而得到对应角相等,可得DE∥BC.解:(1)△ADE和△ABC是位似图形.理由是:DE∥BC,所以∠ADE和=∠B,∠AED=∠C,∴△ADE∽△ABC.又∵点A是△ADE和△ABC的公共点,点D和点B是对应点,点E和点C是对应点,直线BD与CE交于点A,∴△ADE和△ABC是位似图形.(2)DE∥BC.理由是:△ADE和△ABC是位似图形,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC.总结升华:位似图形重点考查学生理解图形变换的意义,利用数形结合的思想解决问题.举一反三:【变式1】如图,在边长均为1的小正方形网格纸中,△OAB的顶点O,A,B均在格点上,且O是直角坐标系的原点,点A在x轴上.以O为位似中心将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2:1,画出△OA1B1(所画△OA1B1与△OAB在原点两侧);考点:位似图形坐标变换规律.思路点拨:问题关键是确定位似图形各个顶点的坐标:如果位似变换是以原点为位似中心,相似比为2,那么位似图形对应点的坐标的比等于2或-2.由图形可知,A点坐标为(-2,0),B点坐标为(-1,2),要求所画△OA1B1与△OAB 在原点两侧,所以相似比为-2,即A1点坐标为(4,0),B1点坐标为(2,-4).解:如图,△OA1B1就是△OAB放大后的图象.【变式2】如图,用下面的方法可以画出△AOB的“内接等边三角形”,•阅读后证明相应的问题.画法:(1)在△AOB内画等边△CDE,使点C在OA上,点D在OB上;(2)连结OE并延长,交AB于点E′,过E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;(3)连结C′D′,则△C′D′E′是△AOB的内接三角形.请判断△C′D′E′是否是等边三角形,并说明理由.考点:重点考查阅读理解能力和知识的迁移能力.思路点拨:由画法可知,△CDE和△C′D′E′是位似图形.答:△C′D′E′是等边三角形.证明:∵C′E′∥CE,∴△OEC∽△OE′C′,∴,∠C′E′D′=∠CED=60°,∴△C′D′E′∽△CDE.∵△CDE为等边三角形,•∴△C′D′E′为等边三角形.。
解三角形专项练习以及答案

解三角形专项练习以及答案一、选择题1.在△ABC中,sinA=sinB,则△ABC是A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形答案D2.在△ABC中,若acosA=bcosB=ccosC,则△ABC是A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形答案B解析由正弦定理知:sinAcosA=sinBcosB=sinCcosC,∴tanA=tanB=tanC,∴A=B=C.3.在△ABC中,sinA=34,a=10,则边长c的取值范围是A.152,+∞B.10,+∞C.0,10D.0,403答案D解析∵csinC=asinA=403,∴c=403sinC.∴04.在△ABC中,a=2bcosC,则这个三角形一定是A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案A解析由a=2bcosC得,sinA=2sinBcosC,∴sinB+C=2sin Bcos C,∴sin Bcos C+cos Bsin C=2sin Bcos C,∴sinB-C=0,∴B=C.5.在△ABC中,已知b+c∶c+a∶a+b=4∶5∶6,则sin A∶sin B∶sin C等于A.6∶5∶4B.7∶5∶3C.3∶5∶7D.4∶5∶6答案B解析∵b+c∶c+a∶a+b=4∶5∶6,∴b+c4=c+a5=a+b6.令b+c4=c+a5=a+b6=k k>0,则b+c=4kc+a=5ka+b=6k,解得a=72kb=52kc=32k.∴sinA∶sinB∶sinC=a∶b∶c=7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为A.1B.2C.12D.4答案A解析设三角形外接圆半径为R,则由πR2=π,得R=1,由S△=12absinC=abc4R=abc4=14,∴abc=1.二、填空题7.在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.答案23解析∵cosC=13,∴sinC=223,∴12absinC=43,∴b=23.8.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60°,a=3,b=1,则c=________.答案2解析由正弦定理asinA=bsinB,得3sin60°=1sinB,∴sinB=12,故B=30°或150°.由a>b,得A>B,∴B=30°,故C=90°,由勾股定理得c=2.9.在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA+b2sinB+2csinC=________.答案7解析∵△ABC的外接圆直径为2R=2,∴asinA=bsinB=csinC=2R=2,∴asinA+b2sinB+2csinC=2+1+4=7.10.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.答案12 6解析a+b+csinA+sinB+sinC=asinA=6332=12.∵S△ABC=12absinC=12×63×12sinC=183,∴sinC=12,∴csinC=asinA=12,∴c=6.三、解答题11.在△ABC中,求证:a-ccosBb-ccosA=sinBsinA.证明因为在△ABC中,asinA=bsinB=csinC=2R,所以左边=2RsinA-2RsinCcosB2RsinB-2RsinCcosA=sinB+C-sinCcosBsinA+C-sinCcosA=sinBcosCsinAcosC=sinBsinA=右边.所以等式成立,即a-ccosBb-ccosA=sinBsinA.12.在△ABC中,已知a2tanB=b2tanA,试判断△ABC的形状.解设三角形外接圆半径为R,则a2tanB=b2tanA⇔a2sinBcosB=b2sinAcosA⇔4R2sin2AsinBcosB=4R2sin2BsinAcosA⇔sinAcosA=sinBcosB⇔sin2A=sin2B⇔2A=2B或2A+2B=π⇔A=B或A+B=π2.∴△ABC为等腰三角形或直角三角形.能力提升13.在△ABC中,B=60°,最大边与最小边之比为3+1∶2,则最大角为A.45°B.60°C.75°D.90°答案C解析设C为最大角,则A为最小角,则A+C=120°,∴sinCsinA=sin120°-AsinA=sin120°cosA-cos120°sinAsinA=32tanA+12=3+12=32+12,∴tanA=1,A=45°,C=75°.14.在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=π4, cosB2=255,求△ABC的面积S.解cosB=2cos2B2-1=35,故B为锐角,sinB=45.所以sinA=sinπ-B-C=sin3π4-B=7210.由正弦定理得c=asinCsinA=107,所以S△ABC=12acsinB=12×2×107×45=87.1.在△ABC中,有以下结论:1A+B+C=π;2sinA+B=sin C,cosA+B=-cos C;3A+B2+C2=π2;4sin A+B2=cos C2,cos A+B2=sin C2,tan A+B2=1tan C2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.感谢您的阅读,祝您生活愉快。
09解三角形(含经典例题+答案)

解三角形例1:在△ABC 中,若 sinA ﹣sinAcosC=cosAsinC ,则△ABC 的形状是( ) A .正三角形 B .等腰三角形C .直角三角形 D .等腰直角三角形解:解:∵sinA ﹣sinAcosC=cosAsinC ,∴sinA=sinAcosC+cosAsinC=sin (A+C )=sinB∴A=B (A+B=π舍去),是等腰三角形故选B例2:在△ABC 中,已知(a 2+b 2)sin (A ﹣B )=(a 2﹣b 2)sin (A+B ),则△ABC 的形状( )解:∵(a 2+b 2)(sinAcosB ﹣cosAsinB )=(a 2﹣b 2)(sinAcosB+cosAsinB ),∴a 2sinAcosB ﹣a 2cosAsinB+b 2sinAcosB ﹣b 2cosAsinB=a 2sinAcosB+a 2cosAsinB ﹣b 2sinAcosB ﹣b 2cosAsinB ,整理得:a 2cosAsinB=b 2sinAcosB ,在△ABC 中,由正弦定理sin sin a b A B==2R 得:a =2RsinA ,b=2RsinB ,代入整理得:sinAcosA=sinBcosB ,∴2sinAcosA=2sinBcosB ,∴sin2A=sin2B ,∴2A=2B 或者2A=180°﹣2B , ∴A=B 或者A+B=90°.∴△ABC 是等腰三角形或者直角三角形.故选D .A .锐角三角形B .直角三角形C .钝角三角形D .不确定解:△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,∵bcosC+ccosB=asinA ,则由正弦定理可得 sinBcosC+sinCcosB=sinAsinA ,即 sin (B+C )=sinAsinA ,可得sinA=1,故A=2π,故三角形为直角三角形,故选B .由于是选填,此题可以利用推导公式cos cos sin sin 1a b C c B a A A =+=⇒=,会更快。
解三角形经典例题

解三角形1.1正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1在ABC中,已知A:B:C=1:2:3,求a :b :c.【点拨】本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。
解:【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。
例2在ABC中,已知c=+,C=30°,求a+b的取值范围。
【点拨】此题可先运用正弦定理将a+b表示为某个角的三角函数,然后再求解。
解:∵C=30°,c=+,∴由正弦定理得:∴ a=2(+)sinA,b=2(+)sinB=2(+)sin(150°-A).∴a+b=2(+)[sinA+sin(150°-A)]= 2(+)·2sin75°·cos(75°-A)=cos(75°-A)1 当75°-A=0°,即A=75°时,a+b取得最大值=8+4;2 ∵A=180°-(C+B)=150°-B,∴A<150°,∴0°<A<150°,∴-75°<75°-A<75°,∴cos75°<cos(75°-A)≤1,∴>cos75°=×=+.综合①②可得a+b的取值范围为(+,8+4>考察点2:利用正弦定理判断三角形形状例3在△ABC中,·tanB=·tanA,判断三角形ABC的形状。
【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。
解:由正弦定理变式a=2RsinA,b=2RsinB得:,即,,.∴为等腰三角形或直角三角形。
【解题策略】“在△ABC中,由得∠A=∠B”是常犯的错误,应认真体会上述解答过程中“∠A=∠B或∠A+∠B=”的导出过程。
(完整版)解三角形练习题及答案

第一章解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为().A.90°B.120°C.135°D.150°2.在△ABC中,下列等式正确的是().A.a∶b=∠A∶∠B B.a∶b=sin A∶sin BC.a∶b=sin B∶sin A D.a sin A=b sin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ).A.1∶2∶3 B.1∶3∶2C.1∶4∶9 D.1∶2∶34.在△ABC中,a=5,b=15,∠A=30°,则c等于( ).A.25B.5C.25或5D.10或55.已知△ABC中,∠A=60°,a=6,b=4,那么满足条件的△ABC的形状大小 ( ).A.有一种情形B.有两种情形C.不可求出D.有三种以上情形6.在△ABC中,若a2+b2-c2<0,则△ABC是( ).A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定7.在△ABC中,若b=3,c=3,∠B=30°,则a=( ).A.3B.23C.3或23D.28.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为23,那么b=().A.231+B.1+3C.232+D.2+39.某人朝正东方向走了x km后,向左转150°,然后朝此方向走了3 km,结果他离出发点恰好3km,那么x的值是( ).A.3B.23C.3或23D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为( ).A .603米B .60米C .603米或60米D .30米 二、填空题11.在△ABC 中,∠A =45°,∠B =60°,a =10,b = .12.在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .13.在△ABC 中,∠A =60°,a =3,则C B A c b a sin sin sin ++++= . 14.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = . 15.平行四边形ABCD 中,AB =46,AC =43,∠BAC =45°,那么AD = .16.在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值= .三、解答题17. 已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.18.在△ABC 中,已知b =3,c =1,∠B =60°,求a 和∠A ,∠C .19. 根据所给条件,判断△ABC 的形状.(1)a cos A =b cos B ;(2)A a cos =B b cos =Cc cos .20.△ABC 中,己知∠A >∠B >∠C ,且∠A =2∠C ,b =4,a +c =8,求a ,c 的长.第一章 解三角形参考答案一、选择题1.B解析:设三边分别为5k ,7k ,8k (k >0),中间角为, 由cos =k k k k k 85249-64+25222⨯⨯=21,得 =60°,∴最大角和最小角之和为180°-60°=120°.2.B 3.B4.C5.C6.C7.C8.B解析:依题可得:⎪⎪⎩⎪⎪⎨⎧︒︒30cos 2-+=23=30sin 212=+222ac c a b ac b c a ⇒⎪⎩⎪⎨⎧ac ac c a b ac b c a 3-2-)+(=6=2=+22 代入后消去a ,c ,得b 2=4+23,∴b =3+1,故选B .9.C10.A二、填空题11.56.12.2.13.23.解析:设A a sin =B b sin =C c sin =k ,则C B A c b a +sin +sin sin ++=k =A a sin =︒60sin 3=23. 14.32π.15.43.16.-41.三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C =26sin 45°=26·22=23. ∵c sin A =6×22=3,a =2,c =6,3<2<6, ∴本题有二解,即∠C =60°或∠C =120°,∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°.故b =Aa sin sin B ,所以b =3+1或b =3-1, ∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.解法2:由余弦定理得b 2+(6)2-26b cos 45°=4,∴b 2-23b +2=0,解得b =3±1. 又(6)2=b 2+22-2×2b cos C ,得cos C =±21,∠C =60°或∠C =120°,所以∠B =75°或∠B =15°.∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.18.解析:已知两边及其中一边的对角,可利用正弦定理求解. 解:∵B b sin =Cc sin , ∴sin C =b B c sin ⋅=360sin 1︒⋅=21. ∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°.由勾股定理a =22+c b =2,即a =2,∠A =90°,∠C =30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状.(1)解法1:由余弦定理得a cos A =b cos B ⇒a ·(bc a c b 2222-+)=b ·(acc b a 2222+-)⇒a 2c 2-a 4-b 2c 2+b 4=0, ∴(a 2-b 2)(c 2-a 2-b 2)=0,∴a 2-b 2=0或c 2-a 2-b 2=0,∴a =b 或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.解法2:由正弦定理得sin A cos A =sin B cos B⇒sin 2A =sin 2B⇒2∠A =2∠B 或2∠A =-2∠B ,∠A ,∠B ∈(0,)⇒∠A =∠B 或∠A +∠B =2π, ∴△ABC 是等腰三角形或直角三角形.(2)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C 代入已知等式,得A A R cos sin 2=BB R cos sin 2=C C R cos sin 2, ∴A A cos sin =B B cos sin =CC cos sin , 即tan A =tan B =tan C .∵∠A ,∠B ,∠C ∈(0,π),∴∠A =∠B =∠C,∴△ABC 为等边三角形.20.解析:利用正弦定理及∠A =2∠C 用a ,c 的代数式表示cos C ;再利用余弦定理,用a ,c 的代数式表示cos C ,这样可以建立a ,c 的等量关系;再由a +c =8,解方程组得a ,c . 解:由正弦定理A a sin =Cc sin 及∠A =2∠C ,得 C a 2sin =C c sin ,即C C a cos sin 2⋅=Cc sin , ∴cos C =ca 2. 由余弦定理cos C =abc b a 2222-+, ∵b =4,a +c =8,∴a +c =2b ,∴cos C =)()(c a a c c a a +-4++222=)())((c a a c a c a +4+3-5=a c a 43-5, ∴c a 2=ac a 43-5, 整理得(2a -3c )(a -c )=0,∵a ≠c ,∴2a =3c . 又∵a +c =8,∴a =524,c =516.。
中考数学关于解直角三角形的18道经典题

中考数学关于解直角三角形的18道经典题1、如图,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米) 解:延长CD 交AB 于G ,则CG=12(千米)依题意:PC=300×10=3000(米)=3(千米) 在Rt △PCD 中: PC=3,∠P=60° CD=PC ·tan ∠P =3×tan60°=33∴12-CD=12-33≈6.8(千米) 答:这座山的高约为6.8千米.2、如图,水坝的横断面是梯形,背水坡AB 的坡 角∠BAD=60,坡长AB=m 320,为加强水坝强度, 将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F= 45,求AF 的长度(结果精确到1米,参考数据: 414.12≈,732.13≈).答案:(10分)解:过B作BE ⊥AD 于E在Rt △ABE 中,∠BAE= 60, ∴∠ABE= 30 ∴AE =21AB31032021=⨯=∴BE ()()303103202222=-=-=AE AB∴在Rt △BEF 中, ∠F= 45, ∴EF =BE =30 ∴AF=EF-AE=30-310∵732.13=, ∴AF =12.68≈133、施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米.参考数据cos20°≈0.94, sin20°≈0.34, sin18°≈0.31, cos18°≈0.95AB12千米P C D G60°(1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?解:(1) cos ∠D =cos ∠ABC =BC AB =25.44≈0.94, …………………………………3分 ∴∠D ≈20°. ………………………………………………………………………1分 (2)EF =DE sin ∠D =85sin20°≈85×0.34=28.9(米) , ……………………………3分 共需台阶28.9×100÷17=170级. ………………………………………………1分4、在玉溪州大河旁边的路灯杆顶上有一个物体,它的抽象几何图形如图, 若 60ABC 10,AC 4,AB =∠==, 求B 、C 两点间的距离.解:过A 点作AD ⊥BC 于点D , …………1分在Rt △ABD 中,∵∠ABC=60°,∴∠BAD=30°. …………2分 ∵AB=4,∴BD=2, ∴AD=23. …………4分 在Rt △ADC 中,AC=10,∴CD=22AD AC -=12100-=222 . …………5分 ∴BC=2+222 . …………6分 答:B 、C 两点间的距离为2+222. …………7分5、在东西方向的海岸线l 上有一长为1km 的码头MN(如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东NM 东北BCAlCBA17cm(第19题) A BCF60°,且与A相距83的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.答案解:(1)由题意,得∠BAC=90°,………………(1分)∴2240(83)167BC=+=.…………(2分)∴轮船航行的速度为41671273÷=时.……(3分)(2)能.……(4分)作BD⊥l于D,CE⊥l于E,设直线BC交l于F,则BD=AB·cos∠BAD=20,CE=AC·sin∠CAE=43,AE=AC·cos∠CAE=12.∵BD⊥l,CE⊥l,∴∠BDF=∠CEF=90°.又∠BFD=∠CFE,∴△BDF∽△CEF,……(6分)∴,DF BDEF CE=∴3220343EFEF+=,∴EF=8.……(7分)∴AF=AE+EF=20.∵AM<AF<AN,∴轮船不改变航向继续航行,正好能行至码头MN靠岸.6、如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)答案(1)如图,作AD⊥BC于点D……………………………………1分Rt△ABD中,AD=AB sin45°=42222=⨯……2分在Rt△ACD中,∵∠ACD=30°FEDlAC北东M NABE FQ P ∴AC =2AD =24≈6.5………………………3分即新传送带AC 的长度约为6.5米. ………………………………………4分 (2)结论:货物MNQP 应挪走. ……………………………………5分 解:在Rt △ABD 中,BD =AB cos45°=42222=⨯……………………6分 在Rt △ACD 中,CD =AC cos30°=622324=⨯∴CB =CD —BD =)26(22262-=-≈2.1∵PC =PB —CB ≈4—2.1=1.9<2 ………………………………7分 ∴货物MNQP 应挪走. …………………………………………………………8分7、如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km .(1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)答案 (1)相等30,6030BEQ BFQ EBF EF BF ∠=∠=∴∠=∴=....................................2分 又6060AF P BFA ∠∠=∴∠=在AEF 与△ABF 中,,EF BF AFE AFB AF AFAFE AFB AE AB=∠=∠=∴≅∴=...........................................................................5分 (2)法一:作AH PQ ⊥,垂足为H 设 AE=x 则AH=xsin74°HE= xcos74° HF=xcos74°+1 ...............................................................................................7分tan60Rt AHF AH HF=中,所以xsin74°=(xcos74°+1)tan60°即0.96x=(0.28x+1)×1.73所以 3.6x≈即AB 3.6km≈法二:设AF与BE的交点为G,在Rt△EGF中,因为EF=1, 所以 EG=3在Rt△AEG中376,cos760.24 3.6 AEG AE EG∠==÷=÷≈答: 两个岛屿A与B之间的距离约为3.6km8、在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01 m;参考数据:sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)解:(1)分别过A,B作地面的垂线,垂足分别为D,E.在Rt△ADC中,∵AC﹦20,∠ACD﹦60°,AB45°60°C E D∴AD ﹦20×sin 60°﹦103≈17.32m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴BE ﹦24×sin 45°﹦122≈16.97 m∵17.32>16.97∴风筝A 比风筝B 离地面更高. ……………………………………………3分 (2)在Rt △ADC 中,∵AC ﹦20,∠ACD ﹦60°, ∴DC ﹦20×cos 60°﹦10 m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴EC ﹦BC ≈16.97 m∴EC -DC ≈16.97-10﹦6.97m即风筝A 与风筝B 的水平距离约为6.97m .…………………………………3分9、为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.解:∵在Rt △ADB 中,∠BDA =45°,AB =3 ∴DA =3 …………2分 在Rt △ADC 中,∠CDA =60°∴tan60°=CAAD∴CA =33 …………4分 ∴BC=CA -BA =(33-3)米答:路况显示牌BC 的高度是(33-3)米 ………………………6分10、永乐桥摩天轮是天津市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒. 求该兴趣小组测得的摩天轮的高度AB (3 1.732≈,第19题图A45°60°结果保留整数).解:根据题意,可知45ACB ∠=︒,60ADB ∠=︒,50DC =.在Rt △ABC 中,由45BAC BCA ∠=∠=︒,得BC AB =. 在Rt △ABD 中,由tan ABADB BD∠=, 得3tan tan 60AB AB BD AB ADB ===∠︒. ..............................6分 又 ∵ BC BD DC -=,∴ 350AB AB -=,即(33)150AB -=. ∴ 11833AB =≈-.答:该兴趣小组测得的摩天轮的高度约为118 m. .....................8分11、小明想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.25.连结AN 、BQ∵点A 在点N 的正北方向,点B 在点Q 的正北方向 ∴l AN ⊥ l BQ ⊥--------------------------1分 在Rt △AMN 中:tan ∠AMN=MNAN∴AN=360-----------------------------------------3分 在Rt △BMQ 中:tan ∠BMQ=MQBQ∴BQ=330----------------------------------------5分 过B 作BE ⊥AN 于点E 则:BE=NQ=30∴AE= AN -BQ -----------------------------------8分 在Rt △ABE 中,由勾股定理得:222BE AE AB +=22230)330(+=AB∴AB=60(米)12、我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A 处于同一水平线上,视线恰好落在装饰画中心位置E 处,且与AD 垂直.已知装饰画的高度AD 为0.66米, 求:⑴ 装饰画与墙壁的夹角∠CAD 的度数(精确到1°);⑵ 装饰画顶部到墙壁的距离DC (精确到0.01米).解:⑴ ∵AD =0.66,∴AE =21CD =0.33. 在Rt △ABE 中,………………1分 ∵sin ∠ABE =AB AE =6.133.0, ∴∠ABE ≈12°. ………………4分∵∠CAD +∠DAB =90°,∠ABE +∠DAB =90°, ∴∠CAD =∠ABE =12°.∴镜框与墙壁的夹角∠CAD 的度数约为12°. ………………5分 ⑵ 解法一:在Rt △∠ABE 中, ∵sin ∠CAD =ADCD, ∴CD =AD ·sin ∠CAD =0.66×sin12°≈0.14. ………………7分ACD EBABCD第19题图解法二: ∵∠CAD =∠ABE , ∠ACD =∠AEB =90°,∴△ACD ∽△BEA. ………………6分 ∴AB ADAE CD =. ∴6.166.033.0=CD . ∴CD ≈0.14. ………………7分∴镜框顶部到墙壁的距离CD 约是0.14米.………………8分13、如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.第23题图解:过M 作MN ⊥AC ,此时MN 最小,AN =1500米1、(2010山东济南)图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC 3求线段AD 的长.解:∵△ABC 中,∠C =90º,∠B =30º,∴∠BAC =60º,∵AD 是△ABC 的角平分线,∴∠CAD =30º, ··················· 1分 ∴在Rt △ADC 中,cos30ACAD =︒············· 2分=3×3··········· 3分=2 . ·············· 4分14、热气球的探测器显示,从热气球A 处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,A 处与高楼的水平距离为60m ,这栋高楼有多高?(结果精确到0.1m ,参考数据:2 1.414,3 1.732≈≈)答案: 解:过点A 作BC 的垂线,垂足为D 点 ……………1分由题意知:∠CAD = 45°, ∠BAD =60°, AD = 60m在Rt △ACD 中,∠CAD = 45°, AD ⊥BC∴ CD = AD = 60 ……………………3分 在Rt △ABD 中,∵BDtan BAD AD∠=……………………4分 ∴ BD = AD ·tan ∠BAD= 603 ……………………5分∴BC = CD+BD= 60+603 ……………………6分≈ 163.9 (m) …………………7分答:这栋高楼约有163.9m . …………………8分 (本题其它解法参照此标准给分)15、如图,直角ABC ∆中,90C ∠=︒,25AB =,5sin B =,点P 为边BC 上一动点,PD ∥AB ,PD 交AC 于点D ,连结AP . (1)求AC 、BC 的长;(2)设PC 的长为x ,ADP ∆的面积为y .当x 为何值时,y 最大,并PD CBA求出最大值.22.(1)在Rt ABC ∆中,5sin B =,25AB =, 得5AC AB =,∴2AC =,根据勾股定理得:4BC =. …… 3分(2)∵PD ∥AB ,∴ABC ∆∽DPC ∆,∴12DC AC PC BC == 设PC x =,则12DC x =,122AD x =- ∴2211111(2)(2)122244ADP S AD PC x x x x x ∆=⋅=-⋅=-+=--+ ∴当2x =时,y 的最大值是1. ……… 8分16、小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)答案:解:设CD = x .在Rt △ACD 中,tan37AD CD︒=, 则34AD x=, ∴34AD x =. 在Rt △BCD 中,tan48° = BD CD, 则1110BD x=, ∴1110BD x =. ∵AD +BD = AB , B37° 48° D CA 第19题图∴31180 410x x+=.解得:x≈43.17、在市政府广场进行了热气球飞行表演,如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan,80.037cos,60.037sin≈︒≈︒≈︒73.13≈)解:过A作AD⊥CB,垂足为点D.………………………1分在Rt△ADC中,∵CD=36,∠CAD=60°.∴AD=31233660tan==︒CD≈20.76.……5分在Rt△ADB中,∵AD≈20.76,∠BAD=37°.∴BD=37tan⨯AD≈20.76×0.75=15.57≈15.6(米).………8分答:气球应至少再上升15.6米.…………………………9分18、图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.【答案】解:根据题意得:DE=3.5×16=56,AB=EF=16∵∠ACB=∠CBG-∠CAB=15°,∴∠ACB =∠ CAB∴CB=AB=16.∴CG=BCsin30°=8CH=CG+HG=CG+DE+AD=8+56+5=69.∴塔吊的高CH的长为69m.BACD。
解三角形(中线问题)(典型例题+题型归类练)(解析版)

专题04 解三角形(中线问题)(典型例题+题型归类练)一、必备秘籍1、向量化(三角形中线问题)如图在ABC∆中,D为CB的中点,2AD AC AB=+(此秘籍在解决三角形中线问题时,高效便捷)2、角互补∠+∠=ADC ADBADC ADBπ∠+∠=⇒cos cos0二、典型例题例题1.如图,在ABC ∆中,已知2AB =,62AC =,45BAC ∠=︒,BC ,AC 边上的两条中线AM ,BN 相交于点P .求BAM ∠的正弦值;思路点拨:本题涉及三角形中线问题,可以考虑中线向量化,也可以考虑角互补的技巧.解答过程:由,,,利用余弦定理在中,由余弦定理,得,在中,由余弦定理,得,与互补,则,解得解法1:角互补解法2:中线向量化由题意可得,,由为边上的中线,则,两边同时平方得,,故在中,由余弦定理,得,因为,所以.【答案】35解:解法1、由余弦定理得222cos AC AB AC C B BA BC A +-⋅⋅∠=,即(22222252BC =+-⨯⨯=,所以BC =所以12BM CM BC === 在ABM 中,由余弦定理,得2222cos2BM AM AB BMA BM AM +-∠==⋅,在ACM △中,由余弦定理,得2222cos2CM AM AC CMA CM AM +-∠==⋅BMA ∠与CMA ∠互补,则cos cos 0BMA CMA ∠+∠=,解得5AM =,在ABM 中,由余弦定理,得2224cos 25AB AM BM BAM AB AM +-∠==⋅,因为0,2BAM π⎛⎫∠∈ ⎪⎝⎭,所以3sin 5BAM ∠==.解法2、由题意可得,cos 4512AB AC AB AC ⋅=⨯⨯︒=, 由AM 为边BC 上的中线,则()12AM AB AC =+, 两边同时平方得,22211125442AM AB AC AB AC =++⋅=,故5AM =, 因为M 为BC 边中点,则ABM 的面积为ABC 面积的12, 所以111sin sin 222AB AM BAM AB AC BAC ⨯⨯∠=⨯⨯⨯∠,即11125sin 2sin 45222BAM ⨯⨯⨯∠=⨯⨯⨯︒, 化简得,3sin 5BAM ∠=.例题2.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2,5,1a b c ===. (1)求sin ,sin ,sin A B C 中的最大值; (2)求AC 边上的中线长.【答案】(1)最大值为2sin 2B =(2)12 (1)521>>,故有sin sin sin b a c B A C >>⇒>>,由余弦定理可得222(2)1(5)2cos 2221B +-==-⨯⨯,又(0,)B π∈,34B π∴=,故2sin 2B =.(2)设AC 边上的中线为BD ,则1()2BD BA BC =+, 2222223(2)()2cos 1(2)212cos 14BD BA BC c a ca B π∴=+=++=++⨯⨯⨯=, 1||2BD ∴=,即AC 边上的中线长为12.第(2)问思路点拨:本题涉及三角形中线问题,可以考虑中线向量化,也可以考虑角互补的技巧.本题提供中线向量化方法由(1)知,设边上的中线为,则(注:中线向量化的技巧:两边同时平方,化向量为标量).,即边上的中线长为.配图两边同时平方例题3.在ABC 中,内角,,A B C 的对边分别是,,a b c ,且sin sin sin A B a cC a b--=+.(1)求角B 的大小;(2)若6b =,且AC 边上的中线长为4,求ABC 的面积.【答案】(1)3B π=(2)732(1)由正弦定理得a b a c c a b--=+,化简得222a c b ac +-=. 由余弦定理得2221cos 22a c b B ac +-==, 由()0,B π∈可得3B π=;(2)设AC 的中点为D ,由余弦定理得222cos 2BD AD AB ADB BD AD +-∠=⋅,222cos 2BD CD BC BDC BD CD +-∠=⋅,由ADB BDC π∠+∠=可得cos cos ADB BDC ∠=-∠,第(2)问思路点拨:本题涉及三角形中线问题,可以考虑中线向量化,也可以考虑角互补的技巧.本题提供角互补方法由(1)知,设的中点为,由余弦定理得,,由可得即即,所以. 又,,所以,所以.配图即22222222BD AD AB BD CD BC BD AD BD CD +-+-=-⋅⋅即2222224343243243c a +-+-=-⨯⨯⨯⨯, 所以2250a c +=.又222a c b ac +-=,6b =,所以14ac =,所以11sin 1422S ac B ==⨯=三、题型归类练1.已知ABC 的内角,,A B C 对的边分别为,,a b c , 2c =,cos sin 2a C C b =+. (1)求A ;(2)若BC 边上的中线AM b . 【答案】(1)π3A =(2)2b =(1)由cos sin 2a C C b =+,2c =,得cos sin 0a C C b c --=由正弦定理可得sin cos sin sin sin 0A C A C B C --=sin cos sin sin()sin 0A C A C A C C +-+-=sin cos sin sin cos cos sin sin 0A C A C A C A C C ---=sin cos sin sin 0A C A C C --=()0,,sin 0,C C π∈∴≠∴cos 1,A A -= ∴2sin()16A π-=()50,,,666A A ππππ⎛⎫∈∴-∈- ⎪⎝⎭, 66A ππ∴-=3A π∴=(2)因为AM 为BC 边上的中线, 所以()12AM AB AC =+, 所以()()222211244AM AB ACAB AB AC AC =+=+⋅+,所以2221222cos 43b b π⎛⎫=+⨯+ ⎪⎝⎭, 即2113142b b =++解得2b =或-4(舍去) 2b ∴=2.已知函数()()1sin cos 64f x x x x π⎛⎫=⋅--∈ ⎪⎝⎭R .(1)求()f x 的最小正周期和最大值:(2)设ABC 的三边a 、b 、c 所对的角分别为A 、B 、C ,且122C f ⎛⎫= ⎪⎝⎭,3b =,AB 边上的中线长为72,求ABC的面积.【答案】(1)πT =,最大值为12.(2)S =(1)()111sin cos sin sin 6424πf x x x x x x ⎫⎛⎫=⋅--=+-⎪ ⎪⎪⎝⎭⎝⎭12cos24x x =- 1πsin 226x ⎛⎫=- ⎪⎝⎭, 故2ππ2T ==,当ππ22π62x k -=+,即ππ3x k =+,k Z ∈时有最大值为12.(2)1π1sin 2262C f C ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即πsin 16C ⎛⎫-= ⎪⎝⎭,()0,πC ∈,故2π3C =.AB 边上的中线长72CD =,()12CD CA CB =+, 故()()222211492444CD CA CB CA CB CA CB =+=++⋅=, 故21923492a a ⎛⎫++⨯⨯-= ⎪⎝⎭,解得8a =或5a =-(舍去),11sin 3822S ab C ==⨯⨯= 3.在三角形ABC 中,有23sinsin sin 24B C B C -+=. (1)求角A ;(2)设CD 是AB 边上的中线,若45,2ABC AC ︒∠==,求中线CD 的长.【答案】(1)60;(2 (1)由已知,化简得1cos()3sin sin 24B C B C --+=,1cos cos sin sin 3sin sin 24B C B C B C --+=,整理得1cos cos sin sin 2B C B C -=-,即()12cos B C +=-,由于0B C π<+<,则23B C π+=,所以60A =.(2)由题意得,sin sin AC ABC B==又6cos cos 75ACB ∠==所以()22114622444CD CA CB ⎛=+=++⨯= ⎝⎭, 所以4CD =-4.在ABC 中,AD 是BC 边的中线,120BAC ∠=,且152AB AC ⋅=-.(1)求ABC 的面积; (2)若5AB =,求AD 的长. 【答案】(1;(2)2【详解】 (1)115cos12022AB AC AB AC AB AC ⋅=⋅=-⋅=-,则15AB AC ⋅=, 11sin 1522ABC S AB AC BAC∴=⋅∠=⨯=△; (2)由5AB =得3AC =,延长AD 到E ,使AD DE =,连接BE .由平面向量加法的平行四边形法则可得2AD AE AB AC ==+,所以,()2222422515919AD AB ACAB AB AC AC =+=+⋅+=-+=,192AD ∴=AD5.在∴ABC 中,内角A B C ,,所对的边分别为a b c ,,,cos cos sin a C c A B +,AB (1)求角C ;(2)若2a =,求∴ABC 的面积.【答案】(1)3C π=或23C π=;(2解(1)因为cos cos sin a C c A B +,由正弦定理知,sin cos sin cos sin A C C A C B +=.即()sin sin A C C B +,sin sin B C B ,又sin 0B ≠1C =,即sin C =在∴ABC 中,所以3C π=或23C π=. (2)记CD 是AB 边上中线,则有()12CD CA CB =+. ()2222127444CA CB CA CB CDCA CB ++⋅=+==,当3C π=时,有2427b b ++=,解得,1b =(负值舍去),此时∴ABC 的面积1sin 2ABCS CB CA C =⋅⋅ 当23C π=时,有2427b b +-=,解得,3b =(负值舍去),此时∴ABC 的面积1sin 2ABCSCB CA C =⋅⋅=;综上,∴ABC 6.已知,,a b c 是ABC 三内角,,A B C 的对边,且2cos 2b C c a +=. (1)求角B 的大小;(2)若2b =,且ABC ①ABC 周长;②AC 边的中线BD 的长度.【答案】(1)3π;(2)①2解:(1)由正弦定理:2sin cos sin 2sin B C C A +=, sin sin()sin()sin cos cosCsinB A A B C B C π=-=+=+,sin 2cos sin C B C ∴=,又1(0,),sin 0,cos 2C C B π∈≠∴=, 又(0,)B π∴∈,所以3B π=;(2)①由余弦定理:222222cos 4b a c ac B a c ac =+-=+-=(1),由三角形面积公式:1sin 2S ac B ===,即2ac =(2), 由(1)(2)2222()3()64a c ac a c ac a c +-=+-=+-=,所以a c +=2 ②在,ABD BCD 中分别使用余弦定理: 2222cos 42b bc BD BD ADB =+-⋅⋅∠(3)2222cos DB 42b ba BD BD C =+-⋅⋅∠(4)又因为,cos cos 0ADB CDB ADB CDB π∠+∠=∠+∠= (3)+(4)得222226242b BD ac =+-=-=所以BD =.7.在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,且2sin 5tan a B c C =. (1)求222a b c+的值; (2)记边AB 的中点为D ,若2AB =,求中线CD 的长度. 【答案】(1)6;(2(1)由题设条件可得:sin 2sin 5cos Ca B c C=⋅,即222252cab c a b c ab=+-即:2226a b c +=(2)222624,a b c +== 设CD x =,则在ACD ∆中,由余弦定理得,2222cos CD AD CD AD CDA AC +-⋅∠=, 即2212coscos x x CDA b +-∠=;①在BCD ∆中,由余弦定理得,2222cos CD BD CD BD CDB BC +-⋅∠=, 即2212coscos x x CDB a +-∠=;② 又cos cos 0CDA CDB ∠+∠=,① +②得,22222x a b +=+,故211x =,所以CD =因此,中线CD .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识回顾:4、理解定理(1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ksinA , ________________ , c ksinC ;(2)」 b J 等价于 ______________________sin A sin B sin C(3) 正弦定理的基本作用为:正弦、余弦定理1、直角三角形中,角与边的等式关系:在Rt ABC 中,设 BC=a ,AG=b , AB=c ,根据锐角三角函数中正弦函数的定义,有 -sin A ,- sin B ,又sinC 1 -,从而在直角三 cc c 角形ABC 中,-?-sin A b sin Bc si nC2、当ABC 是锐角三角形时,设边 AB 上的高是CD 根据任意角三角函数的定义,有 CD=asinB bsinA ,则 一-b,同理可得一sin A sin B sin Cb sin B从而」-sin A b sin Bc sin C3、正弦定理:在一个三角形中,各边和它所对角的____ 的比相等,即旦sin A b sin Bc sin Cc b a csin C sin B ' sin A sin C① 已知三角形的任意两角及其一边可以求其他边,如 a bsinA ; bsin B② 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如 sin A a sin B ; sinC.b(4) 一般地,已知三角形的某些边和角,求其它的边和角的过程叫作 解三角形•5、知识拓展6、 勾股定理: ___________________________________7、 余弦定理:三角形中 __________ 平方等于 _______________________ 减去 ___________________________ 的两倍,即a 2b 2 8、余弦定理的推论:cosC ____________________________ 。
9、在 ABC 中,若a 2 b 2 c 2,则 ______________________ ,反之成立; 典型例题:a b sin A sin Bc si nC2R ,其中2R 为外接圆直径.c 2cosAcosB例1、在ABC中,已知A 45o, B 60o, a 42cm,解三角形.例2、(1)在厶ABC中,已知a=2, b= ' 2, c= ■ 3+1求cosB.(2)在厶ABC中,已知a=3'3, c=2 、B=15C°求b.(3)在厶ABC中,已知a=8, b= 4、2、B=3C0求 c. 例3、在ABC中,b , 3, B 60°,c 1,求a和代C解:.b csin B sinCsin C ..b2c2 2例4、ABC 中,c解:a csin A sinC600时,B 750,bb ,3 2450,a 2,求b和B,Ccsin A .6 sin 45 0 3a2 2csin B > 6 sin7503 1si nC sin 60°csin B 1,6, Asin C1 sin 600例5、在厶ABC中,求证:cosB cos A c(2 2 2证明:将cosB n厂,cosAb2 2 c2bc代入右边2 2.2 .2 得右边°(益亠- c2 a2) 2a2 2b22abc 2ab例6、证明:例7、2 2a b a b 亠、丄左边,ab b aa b , cosBb ;c(HT在锐角△ ABC中,求证:•••△ ABC是锐角三角形,• sin A sin(— B),2sin A sin B sinC在厶ABC中,证明:sin A sin• sin A 例8 在厶ABC中,cosA)asin A sinB sinC cosAB —,即一A —2 2 2即sinAcosA求证:sin A sin BcosB cosCcosB ;同理sin BcosB cosCcosC ; sin CA _ _sinC 4cos cos二cos二。
2cosAB sinc 2sin B sin(A2 2sin BABCsinC 4 cos cos cos—2 2 2B)1200,则求证:汽证明:要证一$b c a c 只要证ab2 2a acb be bc acc2即a2 b2 c2ab而I A B 1200, • C 600•原式成立。
C 例9、在厶ABC中,若 a cos2C22 Accos —23b,则求证: 2b2C 2 A 3b a cos ccos -2 2 21 cosC 1 cos A 3sin B--sin A ------------- sin C -------------- ------------2 2 2即 sin A sin AcosC sinC sinCcosA 3sinBsin A si nC sin (A C) 3s in B.等腰或直角三角形例11、中,a 、b 、c 分别为内角A B 、C 的对边,且 2 a si nA (2 b c)si nB (2 c b)si nC(I)求A 的大小;(U)若sin B sinC 1,试判断 ABC 的形状.解:(I)由已知,根据正弦定理得2a 2(2b c)b (2c即 a 2 b 2 c 2 bc由余弦定理得a 2 b 2 c 2 2bccosA即sin A sinC 2sin B ,二 a c 2b例10、在厶ABC 中,若(a 2 b 2)si n(A B) (a 2 b 2)si n(A B),请判断三角形的形状。
解:a 2b 2 a 2 b 222sin (A B) asi nAcosB sin A ,~22sin (A B) bcos As in B sin Bb)c1故 cos A, A 120 2(U)由(I)得 si n 1 2A si n 2 B si n 2c si nBsi n c.1又 sin B sinC 1,得 sin B sinC -2因为 0 B 90 ,0 C 90 ,故B C所以ABC 是等腰的钝角三角形。
例 12、在 ABC 内 接于半径为 R 的圆,且 2R(si n 2A sin 2C) (、..2a b)si n B,求厶ABC 的面积的最大值。
2cos(A+B)=1解: 2Rs in A si nA 2Rsi nC sinC (迈a b)sin B,例13、ABC 勺三边a b c 且a c2b, A C ,求 a: b: c2A C 解: si nA sine 2si nB ,2S inA cos —— 224sin —cos —2 2例 14、C 中, BC=a, AC=b, a, b 是方程x 22 3x2 0的两个根,且求(1)角C 的度数 (2) AB 的长度(3) △ ABC 的面积(2)由题设:a b 23a b 2••• AB=AC+BC?2AC?BC?osC a 2a 2b 2 ab (a b)2 ab (2..3)2 2 102b 2ab cos120(3)1S A AB (= absi nC2absi n12021 ,3 3 —2 ----- ------ 2 2 2课后小结:ab c sin Asin Bsin C2. 正弦定理的证明方法:①三角函数的定义,还有 ②等积法,③外接圆法,④向量法3 •应用正弦定理解三角形:① 已知两角和一边;② 已知两边和其中一边的对课后练习:一、选择题1. 在△ ABC 中,若 C 900,a 6,B 300,则 c b 等于(A. 1 B . 1 C . 2 3 D . 2 3即 AB=101.正弦定理:2•若A为厶ABC的内角,贝U下列函数中一定取正值的是(A. si nA B . cosA1C. tan A D . --------------tan A3. 在△ ABC中,角代B均为锐角,且cosA sin B,则厶ABC的形状是()A.直角三角形 B .锐角三角形C .钝角三角形D .等腰三角形4. 等腰三角形一腰上的高是,3,这条高与底边的夹角为600, 则底边长为()A. 2 B .三C . 3 D . 2 .325. 在△ ABC中,若b 2asinB,则A等于()A. 300或600 B . 450或60°C . 1200或600D . 300或15006 .边长为5,7,8的三角形的最大角与最小角的和是()A . 900B . 1200C. 135°D . 150°、填空题1. _________________________________________________________ 在Rt △ ABC中,C 90°,则sinAsin B的最大值是_________________________ 。
2. __________________________________________ 在△ ABC中,若a2 b2be c2,则A ____________________________________ 。
3. ______________________________________________ 在△ ABC中,若b 2,B 300,C 135°,则a ________________________________ 。
4. ______________________________________________________________ 在△ ABC中,若sin A : sinB : sinC 7 : 8 : 13,贝U C_______________________________________________________________。
5.在△ ABC中, AB 6 2, C 300,则AC BC的最大值是三、解答题15. 在△ ABC中,已知 b 2,c=1,B 45,求a,A,C.16. 在△ ABC中, a+b=1,A=60),B=45),求a,b17. 在厶ABC中, S VABC 12,3,ac 48,a c 2,求b.18.如图,在四边形ABC冲,△ ADF旦3,求AB的长.219、B C中,A吐5,AC=3,解:设BC边为x,则由D为BC中点,可得BD= DC=-,22 2 2在厶 ADC 中, cosADG= AD DC2 AD DC又/ AD 聊/ ADC= 180/. cosADB= cos (180°—/ ADC =— cosADC解得,x = 2,所以,BC 边长为2.、选择题b1. C - tan300,b atan30°2.3, c 2b 4 .N,c b 2 3a在厶ADB 中,cosADB= AD 2 BD 2 AB 22 AD BD42 (2)2 523.Ccos A sin( A)2sin辽A,B 都是锐角,则-AB,A B 2'C4.D 作出图形5.Db 2asin B,sin B12sin As in B,sin A A 30° 或 150026.B 设中间角为,则cos 52 8271 2600,1800 600 1200 为所求42 (2)2 32、填空题1 1sin AsinB sin AcosA -sin 2A -224. 120° a : b : c si nA : si nB : si nC 7 : 8 : 13,第二讲 正弦、余弦定理的应用例1、在某点B 处测得建筑物AE 的顶端A 的仰角为,沿BE 方向前进30m 至点C 处测得 顶端A 的仰角为2 ,再继续前进10.3m 至D 点,测得顶端A 的仰角为4 ,求的大小和 建筑物AE 的高。