语音信号采集与时频域分析正文

合集下载

语音信号的采集和频谱分析

语音信号的采集和频谱分析

语音信号的采集和频谱分析:[y,fs,bits]=wavread('voice'); %读取音频信息(双声道,16位,频率44100Hz)sound(y,fs,bits); %回放该音频Y=fft(y,4096); %进行傅立叶变换subplot(211);plot(y);title('声音信号的波形');subplot(212)plot(abs(Y));title('声音信号的频谱');窗函数设计低通滤波器:fp=1000;fc=1200;as=100;ap=1;fs=22000;wp=2*fp/fs;wc=2*fc/fs;N=ceil((as-7.95)/(14.36*(wc-wp)/2))+1;beta=0.1102*(as-8.7);window=Kaiser(N+1,beta);b=fir1(N,wc,window);freqz(b,1,512,fs);结果:滤波:[y,fs,bits]=wavread('voice');d=filter(b,a,y);D=fft(d);subplot(211)plot(d);title('滤波后的声音波形')subplot(212)plot(abs(D))title('滤波后的声音频谱')回放:sound(d,fs,bits)与滤波之前相比,噪音明显降低了许多。

过零率的计算要用下面的代码:zcr = zeros(size(y,1)1);delta= 0.02;for i=1:size(y,1)x=y(i,:);for j=1;length(x)-1if x(j)*x(j+1)<0 &abs(x(j)-x(j+1))>deltazcr(i)=zcr(i)+1;endendend其中设置了门限delta=0.02。

这是个经验值,可以进行细微的调整。

语音信号处理实验报告实验二

语音信号处理实验报告实验二

语音信号处理实验报告实验二一、实验目的本次语音信号处理实验的目的是深入了解语音信号的特性,掌握语音信号处理的基本方法和技术,并通过实际操作和数据分析来验证和巩固所学的理论知识。

具体而言,本次实验旨在:1、熟悉语音信号的采集和预处理过程,包括录音设备的使用、音频格式的转换以及噪声去除等操作。

2、掌握语音信号的时域和频域分析方法,能够使用相关工具和算法计算语音信号的短时能量、短时过零率、频谱等特征参数。

3、研究语音信号的编码和解码技术,了解不同编码算法对语音质量和数据压缩率的影响。

4、通过实验,培养我们的动手能力、问题解决能力和团队协作精神,提高我们对语音信号处理领域的兴趣和探索欲望。

二、实验原理(一)语音信号的采集和预处理语音信号的采集通常使用麦克风等设备将声音转换为电信号,然后通过模数转换器(ADC)将模拟信号转换为数字信号。

在采集过程中,可能会引入噪声和干扰,因此需要进行预处理,如滤波、降噪等操作,以提高信号的质量。

(二)语音信号的时域分析时域分析是对语音信号在时间轴上的特征进行分析。

常用的时域参数包括短时能量、短时过零率等。

短时能量反映了语音信号在短时间内的能量分布情况,短时过零率则表示信号在单位时间内穿过零电平的次数,可用于区分清音和浊音。

(三)语音信号的频域分析频域分析是将语音信号从时域转换到频域进行分析。

通过快速傅里叶变换(FFT)可以得到语音信号的频谱,从而了解信号的频率成分和分布情况。

(四)语音信号的编码和解码语音编码的目的是在保证一定语音质量的前提下,尽可能降低编码比特率,以减少存储空间和传输带宽的需求。

常见的编码算法有脉冲编码调制(PCM)、自适应差分脉冲编码调制(ADPCM)等。

三、实验设备和软件1、计算机一台2、音频采集设备(如麦克风)3、音频处理软件(如 Audacity、Matlab 等)四、实验步骤(一)语音信号的采集使用麦克风和音频采集软件录制一段语音,保存为常见的音频格式(如 WAV)。

语音信号的时域及频域特征

语音信号的时域及频域特征

( 3)
6
3. 语音信号的短时谱特征
3.1. 短时傅立叶谱分析
对于能量受限的时域信号 f (t ) ,它的傅立叶变换可以写成

ˆ f ( )

f (t ) e
j t
dt
( 4)
以上这个傅立叶变换, 在 “宏观上” 给出信号 f (t ) 的频谱信息, 但是却无法确定某个 “局 部”时间段频谱的确切信息。在语音信号中,信息是按照特定的时间序列方式出现的。 如果谱分析不能确定这种时间序列的次序(即位置) ,那么这种信号分析的手段在应用 上就会受到限制。同时我们也希望能够通过观测到的局部时域信号的频谱信息来了解 (构造)整个 f (t ) 的频谱信息。为此我们引入了所谓的短时傅立叶谱分析技术。 有许多技术都可以用来完成信号的短时谱分析。 最典型的就是小波变换和我们现在 常采用的傅立叶短时谱分析技术。
第一章 语音信号的时域及频域特征
1. 语音信号的主要特点
1.1. 语音信号带宽
语音信号的带宽约为 5KHz , 主要能量集中在低频段。 上图为一段语音信号语谱图。
1
1.2. 语音信号是典型的随机信号
1)人的每次发音过程都是一个随机过程。很难得到两次完全相同的发音样本。 2)在信号处理中,通常假设语音信号是短时平稳的。例如,可以认为在语音的浊 音段部分,语音的二阶矩统计量是平稳的(在 5~10mS 内),即二阶矩平稳,或称为宽平 稳。
对于时域离散信号 x (n) ,短时傅立叶变换定义:
X n (e j )
m
x(m) w(n m) e
1, 0 n N 1 n 其它 0,

jm
这里 w( n) 为窗函数。例如,常用的窗函数有 矩形窗: w( n)

语音信号采样和频谱分析

语音信号采样和频谱分析

语音信号采样和频谱分析一.实验目的(1)掌握傅里叶变换的物理意义,深刻理解傅里叶变换的内涵;(2)了解MATLAB 对声音信号的处理指令;(3)了解计算机存储信号的方式及语音信号的特点;(4)加深对采样定理的理解;(5)加深学生对信号分析工程应用的理解,拓展学生在信号分析领域的综合应用能力。

二.实验内容本实验利用MATLAB 指令录制一段语音信号,观察其时域波形并进行傅里叶变换,观察其频域的频谱。

根据该信号的频谱构成,选择三种不同的采样频率重新录制该语音信号,并试听回放效果,进行比较,以验证采样定理,并了解MATLAB 对声音信号的处理指令,加深对采样定理的理解。

关键词:傅里叶变换 信号采样三、实验原理语音信号是一种连续变化的模拟信号,而计算机只能处理和记录二进制的数字信号,因此,由自然音而得的音频信号必须用计算机的声音编辑工具,先进行语音采样,然后利用了计算机上的A/D 转换器,将模拟的声音信号变成离散的量化了的数字信号量化和编码,变成二进制数据后才能送到计算机进行再编辑和存储。

语音信号输出时,量化了的数字信号又通过D/A 转换器,把保存起来的数字数据恢复成原来的模拟的语音信号。

(1)应用MATLAB 进行声音的录制 (2)应用MATLAB 进行声音的播放 (3)语音信号的频谱分析 。

傅里叶变换建立了信号频谱的概念。

所谓傅里叶分析即分析信号的频谱(频率构成)、频带宽度等。

对语音信号的分析也不例外,也必须采用傅里叶变换这一工具。

对于连续时间信号)(t f ,其傅里叶变换)(ωF 为:⎰∞∞--=dt e t f F t j ωω)()(四、实验任务(1)应用MATLAB 进行声音的录制在MATLAB 命令窗口中键入“y=wavrecord(8000,8000,1)”,并按回车键,此时刻以后的1(8000/8000)秒时段内的声音信号将以y 为文件名,以数字声音信号.wav 格式存储在MATLAB 的工作空间里。

语音信号的采集与频谱分析(附代码)

语音信号的采集与频谱分析(附代码)
First,I compare the file generated by myself with that of thesame song sang by a famous singer.The emphasis is generally laid on analysing the difference in frequncy domain,but time domain will be included too.
After that,two noise signals are added to the original signal respectively and let them pass a filter to analyse it.In the two process mentioned before,I make comparison between the before and after frequency domain.
本设计给信号加了两种噪声并通过观察加噪后的频谱和试听回放效果比较加噪前后的差别,
最后,设计了FIR数字低通滤波器和带通滤波器,分析滤波前后的频谱。再次试听回放效果,得出结论。
关键词:语音、FFT、频谱图、噪声、滤波器
Abstract
This design is based on the general function of Matlaband Adobeedition to deal with Audio signals. The original signals are collected by iPhone’s built-in recording equipment.
Sampling Theorem is the base of my design.It is by sampling we can get discrete signals from the original one and draw the image in time domain.Also,fast fourier transform is employed(FFT)to get the signals in frequency domain.The ayalysis of frequency domain is the highlight of this design.

语音信号采集和分析报告

语音信号采集和分析报告

语音信号的采集与分析一、背景介绍1、语音信号处理的相关内容通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音内容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。

语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话内容,进行语音增强等.语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系.语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值.2、工作流程:相关的信号与系统知识:傅里叶变换在信号处理中具有十分重要的作用,它通常能使信号的某些特性变得很明显,而在原始信号中这些特性可能含糊不清或至少不明显.在语音信号处理中,傅里叶表示在传统上一直起主要作用.其原因一方面在于稳态语音的生成模型由线性系统组成,此系统被一随时间作周期变化或随机变化的源所激励.因而系统输出频谱反映了激励与声道频率响应特性.另一方面,语音信号的频谱具有非常明显的语音声学意义,可以获得某些重要的语音特征(如共振峰频率和带宽等).根据语音信号的产生模型,可以将其用一个线性非时变系统的输出表示,即看作是声门激励信号和声道冲激响应的卷积.在语音信号数字处理所涉及的各个领域中,根据语音信号求解声门激励和声道响应具有非常重要的意义.例如,为了求得语音信号的共振蜂就要知道声道传递函数(共振峰就是声道传递函数的各对复共轭极点的频率).又如,为了判断语音信号是清音还是浊音以及求得浊音情况下的基音频率,就应知道声门激励序列.在实现各种语音编码,合成,识别以及说话人识别时无不需要由语音信号来求得声门激励序列和声道冲激响应. 3、相关MATLAB知识:MATLAB 语言是一种数据分析和处理功能十分强大的计算机应用软件 ,它可以将声音文件变换为离散的数据文件 , 然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等, 信号处理是MATLAB 重要应用的领域之一。

语音信号的采集与时频域分析系统的设计

语音信号的采集与时频域分析系统的设计

燕山大学课程设计说明书题目:语音信号的采集与时频域分系统的设计学院(系):电气工程学院年级专业: 09精仪一班学号: 0901********学生姓名:乔召杰指导教师:刘永红教师职称:副教授目录引言 (2)第1章语音信号时域分析 (3)1、1 窗口选择 (3)1、2 短时能量 (4)1、3短时平均过零率 (5)1、4 短时自相关函数 (6)1、5 时域分析方法的应用 (7)第2章语音信号频域分析 (8)2、1 短时傅里叶变换 (8)2、2 语谱图 (9)2、3 复倒谱和倒谱 (9)第3章加噪与滤波处理 (11)3、1 原始信号加噪处理 (11)3、2 加噪信号滤波处理 (12)第4章总结 (13)参考文献 (14)附录 (15)引言语音信号是一种非平稳的时变信号,它携带着各种信息。

在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。

语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。

语音信号分析可以分为时域和频域等处理方法。

语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。

任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。

时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。

频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。

主要分析的特征参数:短时谱、倒谱、语谱图等。

本文采集作者的声音信号为基本的原始信号。

对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。

整体设计框图如下图所示:图0.1时频域分析设计图图0.2加噪滤波分析流程图第一章 语音信号时域分析语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。

第5章 语音信号的频域分析

第5章 语音信号的频域分析

◆因 Xn(ejω) 是 x(m)w(n-m) 的 Fourier 变换, 则 Xn(ejω) 是 X(ejω) 与 ejωnW(e-jω) 的卷积,即
X n (e
j
)
1 2 1 2



e
j n
W (e
-j
) X (e
j( )
)d )d


e
-j n
x(n)
w(n) e-jωn 图5.5
Xn(ejωn)
STFT的线性滤波实现 赵晓群 教授
第5章
语音信号的频域分析
5.4
STFT 的实现
图5.5:STFT 的线性滤波实现
图5.6:图5.5方案的实数运算 ◆图5.6方案原理:
设:
X n (e
j
) a n ( ) j b n ( )
同济大学电子与信息工程学院
- 7 -
赵晓群 教授
第5章
语音信号的频域分析
5.3
短时 Fourier 变换(STFT)的定义和性质
根据 STFT,恢复原语音信号 x(m) 的方法:

X n (e
j
)

m
x ( m ) w ( n m )e
-j m
的逆变换为:
x(m )w (n m ) 1 2
同济大学电子与信息工程学院 - 11 赵晓群 教授
第5章
语音信号的频域分析
5.3
短时 Fourier 变换(STFT)的定义和性质
分析窗宽对短时频谱的影响:
图5.4(a):元音 [i] 的波形和短时频谱图。 ◆窗宽 6.4 ms,元音 [i] 的基音周期大约是 13 ms;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章引言语音信号是一种非平稳的时变信号,它携带着各种信息。

在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。

语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。

语音信号分析可以分为时域和频域等处理方法。

语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。

任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。

时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。

频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。

主要分析的特征参数:短时谱、倒谱、语谱图等。

本文采集作者的声音信号为基本的原始信号。

对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。

整体设计框图如下图所示:图1.1时频域分析设计图图1.2加噪滤波分析流程图第二章 语音信号时域分析语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。

2.1窗口选择由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。

通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。

两种窗函数的时域波形如下图2.1所示:samplew (n )samplew (n )图2.1 矩形窗和Hamming 窗的时域波形矩形窗的定义:一个N 点的矩形窗函数定义为如下{1,00,()n Nw n ≤<=其他(2.1)哈明窗的定义:一个N 点的哈明窗函数定义为如下0.540.46cos(2),010,()n n NN w n π-≤<-⎧⎨⎩其他= (2.2)这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。

因此在语音频谱分析时常使用哈明窗,在计算短时能量和平均幅度时通常用矩形窗。

表2.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。

图2.2 矩形窗和哈明窗的频率响应 表2.1 矩形窗和哈明窗的主瓣宽度和旁瓣峰值2.2短时能量短时能量主要分析语音信号能量随时间的变化,由于语音信号的清音和浊音之间能量有较大的差距,进而可通过短时能量对语音的清浊音进行分析。

定义短时能量为:221[()()][()()]nn m m n N E x m w n m x m w n m ∞=-∞=-+=-=-∑∑(2.3)其中N 为窗长,当选用矩形窗时则有:2()n m E xm ∞=-∞=∑ (2.4)由式(2.3)能量函数反应语音信号的幅度,同时由图2.3~2.4可知窗长对能量函数起着决定性作用。

窗长太大,不能反应能量n E 的变化,窗长太小,不能得到平滑的能量函数。

短时能量函数的应用:1)可用于区分清音段与浊音段。

n E 值大对应于浊音段,n E 值小对应于清音段。

2)可用于区分浊音变为清音或清音变为浊音的时间(根据n E 值的变窗函数主瓣宽度 旁瓣峰值 矩形窗4*pi/N 13.3dB 哈明窗 8*pi/N42.7dB化趋势)。

3)对高信噪比的语音信号,也可以用来区分有无语音(语音信号的开始点或终止点)。

无信号(或仅有噪声能量)时,nE值很小,有语音信号时,能量显著增大。

图2.3 不同矩形窗长的短时能量函数图2.4 不同哈明窗长的短时能量函数2.3短时平均过零率短时过零率可以粗略估计语音的频谱特性。

高频率对应着高过零率,低频率对应着低过零率,那么过零率与语音的清浊音就存在着对应关系:清音的过零率高,浊音的过零率低。

定义短时平均过零率:sgn[[]sgn[(1)]()nmZ x m x m w n m∞=-∞=---∑(2.5)其中sgn[]为符号函数,{1,()01,()0sgn()x nx nx n≥-=p。

在矩形窗条件下,可以简化为:11sgn[()sgn[(1)]2nnm n NZ x m x mN=-+=--∑(2.6)图2.5 矩形窗(N=320)条件下的短时平均过零率由图2.5可知为某一语音在矩形窗条件下求得的短时能量和短时平均过零率。

分析可知:清音的短时能量较低,过零率高,浊音的短时能量较高,过零率低。

清音的过零率为0.5左右,浊音的过零率为0.1左右,两但者分布之间有相互交叠的区域,所以单纯依赖于平均过零率来准确判断清浊音是不可能的,在实际应用中往往是采用语音的多个特征参数进行综合判决短时平均过零率的应用:1)区别清音和浊音。

例如,清音的过零率高,浊音的过零率低。

此外,清音和浊音的两种过零分布都与高斯分布曲线比较吻合。

2)从背景噪声中找出语音信号。

语音处理领域中的一个基本问题是,如何将一串连续的语音信号进行适当的分割,以确定每个单词语音的信号,亦即找出每个单词的开始和终止位置。

3)在孤立词的语音识别中,可利用能量和过零作为有话无话的鉴别。

2.4短时自相关函数自相关函数用于衡量信号自身时间波形的相似性。

浊音的时间波形呈现出一定的周期性,波形之间相似性较好;清音的时间波形呈现出随机噪声的特性,样点间的相似性较差。

因此,我们用短时自相关函数来测定语音的相似特性。

短时自相关函数定义为: ()()()()()n m R k x m w n m x m k w n m k ∞=-∞=-+--∑ (2.7)令'm n m =+´,并且'()()w m w m -=,可以得到:''()[()()][()()]n m R k x n m w m x n m k w m k ∞=-∞=++++∑ (2.8)进而则有:1''()[()()][()()]N kn m R k x n m w m x n m k w m k --==++++∑ (2.9)自相关函数常用来作以下两种语音信号特征的估计: 1) 区分语音是清音还是浊音:清音的短时自相关函数不具有周期性,浊音是周期信号 2)估计浊音语音信号的基音周期。

图2.6语音信号的自相关函数与平均过零率图(2.6)给出了语音采集信号N=460的短时自相关函数波形和平均过零率。

短时自相关函数波形分析可知:浊音是周期信号,浊音的短时自相关函数呈现明显的周期性,自相关函数的周期就是浊音信号的周期,根据这个性质可以判断一个语音信号是清音还是浊音,还可以判断浊音的基音周期。

浊音语音的周期可用自相关函数中第一个峰值的位置来估算。

反之,清音接近于随机噪声,清音的短时自相关函数不具有周期性,也没有明显突起的峰值,且随着延时k 的增大迅速减小。

2.5时域分析方法的应用 1)基音频率的估计a) 可利用时域分析判定某一语音有效的清音和浊音段。

b) 针对浊音段,可直接利用短时自相关函数估计基音频率。

2)语音端点的检测与估计可利用时域分析判定某一语音信号的端点,尤其在有噪声干扰时,如何准确检测语音信号的端点,这在语音处理中是富有挑战性的一个课题。

第三章 语音信号频域分析语音信号的频域分析主要应用傅立叶变换来分析,由于语音信号是随着时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。

由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。

3.1 短时傅立叶变换由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为:()()()jwjwmn m X e x m w n m e∞-=-∞=-∑ (3.1)其中w(n-m)是实窗口函数序列,n 表示某一语音信号帧。

令n-m=k',则得到(')'()(')(')jwjw n k n k X e w k x n k e∞--=-∞=-∑ (3.2)于是可以得到:()()()jw jwnjwkn k X e ew k x n k e∞-=-∞=-∑ (3.3)假定:()()()jwjwkn k X e w k x n k e∞=-∞=-∑ (3.4)则可以得到:()()jw jwn jw n n X e e X e -= (3.5)同样,不同的窗口函数,将得到不同的傅立叶变换式的结果。

由上式可见,短时傅立叶变换有两个变量:n 和ω,所以它既是时序n 的离散函数,又是角频率ω的连续函数。

与离散傅立叶变换逼近傅立叶变换一样,如令ω=2πk/N ,则得离散的短时傅立叶吧如下:2/2/()()()(),(01)j k N n n j km Nm X e X k x m w n m ek N ππ∞-=-∞==-≤≤-∑ (3.6)3.2 语谱图语谱图反映了语音信号的动态频率特性,在语音分析中具有重要的实用价值。

被成为可视语言。

语谱图的时间分辨率和频率分辨率是由窗函数的特性决定的。

时间分辨率高,可以看出时间波形的每个周期及共振峰随时间的变化,但频率分辨率低,不足以分辨由于激励所形成的细微结构,称为宽带语谱图;而窄带语谱图正好与之相反。

宽带语谱图可以获得较高的时间分辨率,反映频谱的快速时变过程;窄带语谱图可以获得较高的频率分辨率,反映频谱的精细结构。

两者相结合,可以提供带两与语音特性相关的信息。

语谱图上因其不同的灰度,形成不同的纹路,称之为“声纹”。

声纹因人而异,因此可以在司法、安全等场合得到应用。

语音采集信号的的语谱图如下图(3.1)所示图3.1语音信号的语谱图3.3复倒谱和倒谱复倒谱^()x n 是()x n 的Z 变换取对数后的逆Z 变换,其表达式如下:^1[ln [()]]x Z Z x n -= (3.7)倒谱()c n 定义为()x n 取Z 变换后的幅度对数的逆Z 变换,即1()[ln |()|]c n z X z -= (3.8)在时域上,语音产生模型实际上是一个激励信号与声道冲激响应的卷积。

对于浊音,激励信号可以由周期脉冲序列表示;对于清音,激励信号可以由随机噪声序列表示。

声道系统相当于参数缓慢变化的零极点线性滤波器。

这样经过同态处理后,语音信号的复倒谱,激励信号的复倒谱,声道系统的复倒谱之间满足下面的关系:^^^()()()s n e n v n =+ (3.9) 由于倒谱对应于复倒谱的偶部,因此倒谱与复倒谱具有同样的特点,很容易知道语音信号的倒谱,激励信号的倒谱以及声道系统的倒谱之间满足下面关系:()()()sevn n n c c c =+ (3.10)浊音信号的倒谱中存在着峰值,它的出现位置等于该语音段的基音周期,而清音的倒谱中则不存在峰值。

相关文档
最新文档