数据的采集与语音信号的频谱分析
声音信号的频谱分析与频率测量方法

声音信号的频谱分析与频率测量方法声音是我们日常生活中不可或缺的一部分,我们通过声音来交流、表达情感,甚至通过声音来判断事物的性质。
然而,声音是如何产生的?我们如何对声音进行分析和测量呢?本文将介绍声音信号的频谱分析与频率测量方法。
声音信号是由空气中的振动引起的,当物体振动时,会产生压力波,通过空气传播出去,我们就能听到声音。
声音信号可以通过振动的频率和振幅来描述,其中频率是指振动的周期性,而振幅则是指振动的强度。
频谱分析是一种将声音信号分解成不同频率成分的方法。
它可以帮助我们了解声音信号的频率分布情况,从而更好地理解声音的特性。
频谱分析的基本原理是将声音信号转换为频域表示,即将信号从时域转换为频域。
这可以通过傅里叶变换来实现。
傅里叶变换是一种将时域信号转换为频域信号的数学方法。
它将信号分解成一系列正弦波的叠加,每个正弦波都有不同的频率和振幅。
通过傅里叶变换,我们可以得到声音信号的频谱图,从而了解声音信号中不同频率成分的贡献程度。
频谱图通常以频率为横轴,振幅或能量为纵轴,通过不同的颜色或灰度表示不同频率成分的强度。
频谱图可以直观地展示声音信号的频率分布情况,帮助我们分析声音的特性。
例如,在音乐领域,频谱分析可以用来研究音乐的音色特点,判断乐器的类型等。
除了频谱分析,频率测量是对声音信号进行定量分析的重要方法。
频率是声音信号中最基本的特征之一,它决定了声音的音调高低。
频率测量可以通过多种方法实现,其中一种常用的方法是自相关法。
自相关法是一种基于信号自身的周期性特点进行频率测量的方法。
它通过计算信号与自身的延迟版本之间的相似程度来确定信号的周期性。
具体而言,自相关法将信号与其自身进行延迟,然后计算它们之间的相关性。
通过寻找最大相关性的延迟值,我们可以得到信号的主要频率成分。
除了自相关法,还有一些其他的频率测量方法,如峰值检测法、零交叉法等。
这些方法在不同的应用场景下有着各自的优势和适用性。
例如,峰值检测法适用于测量周期性信号的频率,而零交叉法适用于测量非周期性信号的频率。
语音信号的采集与分析

南昌工程学院《语音信号的采集与分析》课程设计题目语音信号的采集与分析课程名称语音信号处理系院信息工程学院专业通信工程班级 10通信工程2班学生姓名刘敏学号 2010103362设计地点电子信息楼指导教师邹宝娟设计起止时间:2013年12月9日至2013年12月20日目录一、需求分析 (4)1.1选题背景及意义 (4)1.2设计要求 (4)二、系统总体设计 (4)2.1 系统设计思路 (4)2.2 功能结构图及功能说明 (4)2.3 工作原理 (6)三、系统详细设计 (6)3.1 语音信号的matlab仿真的数据分析 (6)3.2 程序代码分析 (12)四、调试与维护 (14)4.1 调试过程的问题与维护 (14)五、结束语 (15)六、参考文献 (16)七、指导教师评阅(手写) (17)一、需求分析1.1选题背景及意义该设计主要是介绍语音信号的采集与分析方法,通过PC机录制自己的一段声音,运用Matlab提供的函数进行仿真分析,并画出采样后语音信号的时域波形和频谱图,对所采集的语音信号加入干扰随机高斯噪声,对加入噪声的信号进行播放,并进行时域和频谱分析;对比加噪前后的时域图和频谱图,分析讨论采用什么样的滤波器进行滤除噪声。
1.2设计要求(1)通过PC机录制自己的一段声音“南昌工程学院刘敏”;(2)运用MATLAB中信号处理相关的函数对语音信号进行时域、频域上的分析,如短时能量,短时平均过零率,语谱图等;(3)运用MATLAB对语音信号进行综合与分析,包括语音信号的调制,叠加,和滤波等。
二、系统总体设计2.1 系统设计思路系统的整体设计思路包括语音信号的录制,语音信号的采集,语音信号的分析,其中语音信号的分析又包括了语音信号的时域分析和频域分析,语音信号的加噪处理和滤噪设计分析。
2.2 功能结构图及功能说明实际工作中,我们可以利用windows自带的录音机录制语音文件,声卡可以完成语音波形的A/D转换,获得WAVE文件,为后续的处理储备原材料。
语音信号的采集与频谱分析(附代码)

《信号与系统》大作业语音信号的采集与频谱分析——基于Matlab的语音信号处理学生姓名:学号:专业班级:电子工程学院卓越班指导老师:2015年6月22日摘要本设计用苹果手机自带的录音设备采集了原始语音,并导入了电脑转成wav格式,然后用MATLAB和Adobe audition对其进行时域分析。
接着利用傅里叶变换进行了频域分析,绘制频谱图,再录制一段加上歌曲的伴奏的语音与原唱进行了对比分析,得出了我与歌星在频域上的差别。
本设计给信号加了两种噪声并通过观察加噪后的频谱和试听回放效果比较加噪前后的差别,最后,设计了FIR数字低通滤波器和带通滤波器,分析滤波前后的频谱。
再次试听回放效果,得出结论。
关键词:语音、FFT、频谱图、噪声、滤波器AbstractThis design is based on the general function of Matlab and Adobe edition to deal with Audio signals. The original signals are collected by iPhone’s built-in recording equipment.First,I compare the file generated by myself with that of thesame song sang by a famous singer.The emphasis is generally laid on analysing the difference in frequncy domain,but time domain will be included too.After that,two noise signals are added to the original signal respectively and let them pass a filter to analyse it.In the two process mentioned before,I make comparison between the before and after frequency domain.Sampling Theorem is the base of my design.It is by sampling we can get discrete signals from the original one and draw the image in time domain.Also,fast fourier transform is employed(FFT)to get the signals in frequency domain.The ayalysis of frequency domain is the highlight of this design.Through this design,I can deepen my comprehension of principles of audio signals and I have learnt how to deal with it.Through met with much hindrance,I improved my skills finally.Keywords: audio signal、TTT、noise、filter1 绪论1.1课题的研究意义语音信号处理属于信息科学的一个重要分支,它是研究用数字信号处理技术对语音信号进行处理的一门新兴学科,同时又是综合性的多学科领域和涉及面很广的交叉学科,因此我们进行语言信号处理具有时代的意义。
语音信号的频域分析概述

第3页
2021年12月8日星期三
从广义上讲,语音信号的频域分析包括语音信号的 频谱、频谱包络、功率谱、倒频谱等。常用的频域分析 方法有带通滤波器组法、傅里叶变换法、线性预测法等 几种。本节介绍语音信号的傅里叶分析法。
短时傅里叶变换最重要的应用是语音分析与合成系 统,因为由短时博里叶变换可以精确地恢复语音波形。
第4页
2021年12月8日星期三语音信号及单片机处理语音信号及单片机处理
语音信号的频域分析概述
在语音信号处理中,傅里叶表示一直起主要作用。 其原因在于:一方面,稳态语音的生成模型由线性系统 组成,此系统由一个随时间周期变化或随机变化的源所 激励,因而系统输出频谱反映了激励与声道频率响应特 性;另一方面,语音信号的频谱具有非常明显的语言声 学意义,可以获得某些重要的语音特征(如共振峰频率 和带宽等)。
第2页
2021年12月8日星期三
语音信号是非平稳信号,其非平稳性是由发音器官 的物理运动过程而产生的。这个运动过程与声波振动 的速度比起来要缓慢得多,因此可以假定它在10~30 ms这样短的时间段内是平稳的。所以对语音信号处理 来说,短时分析的方法是有效的。短时分析应用于频 域分析就是短时傅里叶变换,相应的频谱称为“短时 谱”,即有限长度的傅里叶变换。
语音信号采集与时频域分析正文

第一章引言语音信号是一种非平稳的时变信号,它携带着各种信息。
在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。
语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。
语音信号分析可以分为时域和频域等处理方法。
语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。
任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。
时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。
频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。
主要分析的特征参数:短时谱、倒谱、语谱图等。
本文采集作者的声音信号为基本的原始信号。
对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。
整体设计框图如下图所示:图1.1时频域分析设计图图1.2加噪滤波分析流程图第二章 语音信号时域分析语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。
2.1窗口选择由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。
通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。
两种窗函数的时域波形如下图2.1所示:samplew (n )samplew (n )图2.1 矩形窗和Hamming 窗的时域波形矩形窗的定义:一个N 点的矩形窗函数定义为如下{1,00,()n Nw n ≤<=其他(2.1)哈明窗的定义:一个N 点的哈明窗函数定义为如下0.540.46cos(2),010,()n n NN w n π-≤<-⎧⎨⎩其他= (2.2)这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。
“数字信号处理”课程综合性实验教学探索

“数字信号处理”课程综合性实验教学探索发布时间:2021-03-30T05:51:55.569Z 来源:《科技新时代》2021年1期作者:张湃[导读] 数字信号处理课程为通信及电子信息专业学生解决复杂工程问题提供理论基础,在理论课程结束后,开展综合性实验教学能够促进学生对知识的理解,提高其解决问题能力。
(唐山学院智能与信息工程学院,河北唐山063000 )摘要:数字信号处理课程为通信及电子信息专业学生解决复杂工程问题提供理论基础,在理论课程结束后,开展综合性实验教学能够促进学生对知识的理解,提高其解决问题能力。
本文设计了“数字信号处理”课程综合性实验教学——“语音信号处理与滤波分析”。
该综合性实验通过对语音信号的处理与滤波,将快速傅里叶变换、常用滤波器的设计等理论问题引入到实验中,能够帮助学生通过将理论知识转化为实践,锻炼和培养了学生的工程意识,以及解决综合性工程问题的能力。
关键字:数字信号处理;综合性实验;滤波器前沿:数字信号处理课程是通信及电子信息专业一门重要的专业基础课程。
该课程可为后续课程DSP处理、通信原理、多媒体数字技术等课程打下良好的基础「1-2」。
由于该课程思维新颖,理论难度较大,不少学生在学习中遇到瓶颈,因此该门课程期末考核通过率较低。
为进一步帮助学生加深对“数字信号处理”课程理论知识的掌握,提高其解决实际问题的能力,提出了“数字信号处理”课程综合性实验教学——“语音信号处理与滤波分析”。
采用FIR窗函数法设计滤波器,并对语音信号进行处理,得出不同滤波器下信号对应的频率响应;并对滤波前后的信号进行对比,分析信号的变化;回放语音信号。
综合运用本课程的理论知识进行频谱分析以及滤波器设计,通过理论推导得出相应结论,并利用MATLAB作为工具进行实现「3」。
一、设计要求:(1)语音信号的采集熟悉并掌握MATLAB中有关声音(wave)录制、播放、存储、和读取的函数,在MATLAB环境中,使用声音相关函数录制6-8秒音乐的声音。
语音信号采样和频谱分析

语音信号采样和频谱分析一.实验目的1掌握傅里叶变换的物理意义,深刻理解傅里叶变换的内涵;2了解MATLAB对声音信号的处理指令;3了解计算机存储信号的方式及语音信号的特点;4加深对采样定理的理解;5加深学生对信号分析工程应用的理解,拓展学生在信号分析领域的综合应用能力;二.实验内容本实验利用MATLAB指令录制一段语音信号,观察其时域波形并进行傅里叶变换,观察其频域的频谱;根据该信号的频谱构成,选择三种不同的采样频率重新录制该语音信号,并试听回放效果,进行比较,以验证采样定理,并了解MATLAB对声音信号的处理指令,加深对采样定理的理解;关键词:傅里叶变换信号采样三、实验原理语音信号是一种连续变化的模拟信号,而计算机只能处理和记录二进制的数字信号,因此,由自然音而得的音频信号必须用计算机的声音编辑工具,先进行语音采样,然后利用了计算机上的A/D转换器,将模拟的声音信号变成离散的量化了的数字信号量化和编码,变成二进制数据后才能送到计算机进行再编辑和存储;语音信号输出时,量化了的数字信号又通过D/A转换器,把保存起来的数字数据恢复成原来的模拟的语音信号;1应用MATLAB 进行声音的录制 2应用MATLAB 进行声音的播放 3语音信号的频谱分析 ;傅里叶变换建立了信号频谱的概念;所谓傅里叶分析即分析信号的频谱频率构成、频带宽度等;对语音信号的分析也不例外,也必须采用傅里叶变换这一工具; 对于连续时间信号)(t f ,其傅里叶变换)(ωF 为:⎰∞∞--=dt e t f F t j ωω)()( 四、实验任务1应用MATLAB 进行声音的录制在MATLAB 命令窗口中键入“y=wavrecord8000,8000,1”,并按回车键,此时刻以后的18000/8000秒时段内的声音信号将以y 为文件名,以数字声音信号.wav 格式存储在MATLAB 的工作空间里;纪录长度为80000,采样频率为8000Hz,声道数为1;图为录制的语音:“信号与系统”;2应用MATLAB 进行声音的播放在MATLAB 命令窗口中键入“soundy,Fs ”,按下回车键就能听到回放的声音;当Fs=8000时,听到的是原来未失真的声音;当Fs=6000时,听到的声音比较低沉;当Fs=10000时,听到的声音很尖锐;3语音信号的频谱分析在MATLAB 命令窗口中键入“p=ffty;plotabsp ”按下回车键后出现如图所示图形: 从图中可以看出该音频的上限频率为4000Hz;4采样定理一个频谱受限的信号ft,如果频谱只占据m m ωω+-~的范围,则信号)(t f 可以用等间隔的抽样值唯一地表示;而抽样间隔必须不大于mf 21其中m m f ⋅=πω2,或者说,最低抽样频率为m f 2;低抽样频率为m f 2;该实验中,音频的上限频率为4000Hz,所以采用的抽样信号的频率为该频率的两倍8000Hz;当采用小于8000Hz 的频率抽样时,回放声音低沉;当采用大于8000Hz的频率采样时,回放声音尖锐; 结论:本次试验是进行语音信号的采集和频谱分析,实验纪录了长度为80000,采样频率为8000Hz采样一段音频,并进行频谱分析,最终经过分析得只有以两倍上限频率回放音频时才会得到原音频信号,否则都会失真;本次试验不仅学习到了新知识,而且复习到了抽样定理的许多内容,加深了对这些内容的理解,受益很多。
实验二 用FFT分析语音信号的频谱

实验二用FFT分析语音信号的频谱
一、实验目的
1、分析实际工程中一个语音信号的频谱。
2、掌握FFT反变换的意义。
二、实验内容
1、实际中通过一个语音信号进行采样,获得数字信号对频谱信号进行FFT进行
分析。
2、去除频谱中幅值小于1的系数进行反变换,重构原来语音进行对比分析。
3、
三、实验用设备仪器及材料
P4计算机MATLAB软件
四、实验原理
实验程序如下:
[x,f,n,o]=wavread(‘bird.wav’);
subplot(2,2,1);plot(x);title(‘原始语音信号’);
y=fft(x);subplot(2,2,2);plot(abs(y));title(‘FFT变换’);
y(abs(y)<1)=0;x=ifft(y);
subplot(2,2,3);plot(abs(y));title(‘去掉幅值小于1的FFT变换值’);
subplot(2,2,4);plot(real(x));title(‘重构语音信号’);
wavwrite(x,f,’bird1.wav’);
五、实验步骤和及方法
1、对一个语音进行FFT,画出其频谱。
2、去掉幅值小于1的系数,进行傅立叶变换。
3、给出一个语音信号,用MATLAB进行FFT分析。
六、实验报告要求
1、对FFT变换及IFFT有一定的认识。
2、了解数据压缩的意义。
3、画出语音信号时频图、及重构语音图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中北大学课程设计说明书学生姓名:吕涛学号:10050644X23 学生姓名:王丽学号:10050644X09学生姓名:赵芳学号:10050644X15 学生姓名:孟庆慧学号:10050644X05 学院:信息商务学院专业:电子信息工程题目:信息处理综合实践:数据的采集与语音信号的频谱分析指导教师:金永职称: 副教授2013 年 6 月 28 日中北大学课程设计任务书12/13 学年第二学期学院:信息商务学院专业:电子信息工程学生姓名:吕涛学号:10050644X23 学生姓名:王丽学号:10050644X09学生姓名:赵芳学号:10050644X15 学生姓名:孟庆慧学号:10050644X05 课程设计题目:信息处理综合实践:数据的采集与语音信号的频谱分析起迄日期:2013年6月7日~2013年6月28日课程设计地点:学院楼201、510、608实验室指导教师:金永系主任:王明泉下达任务书日期: 2013 年6月7 日1.设计目的:(1)掌握USB总线或PCI总线的基本结构,了解基于USB总线或PCI总线A/D卡的通用结构;(2)掌握数据采集卡采集数据的过程和原理;(3)了解MATLAB的信号处理技术;(4)掌握MATLAB 实现音乐信号的读取、保存、拼接与频谱分析。
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):(1)查阅相关资料,撰写关于基于USB总线或PCI总线A/D卡的报告;(2)采用麦克采集本组各个同学的语音信号;(3)采用MATLAB读取采集的语音信号,截取各信号中的一段进行拼接,并进行频谱分析;(4)保存拼接后的语音信号,并进行播放证实存储的正确性,同时对拼接后信号与原有信号的频谱作对比;(5)提高内容:编写语音采集数据程序。
3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:(1)要求设计组的每个成员都要了解设计的要求和思路;(2)MATLAB数据处理部分要求有正确的运行结果及结果分析;(3)总线部分和A/D采集卡部分要求每位同学有自己的理解;(4)每位同学针对上述内容撰写设计说明书(每人1份)。
4.主要参考文献:要求按国标GB 7714—87《文后参考文献著录规则》书写,例:1 傅承义,陈运泰,祁贵中.地球物理学基础.北京:科学出版社,1985(5篇以上)5.设计成果形式及要求:课程设计说明书程序运行结果6.工作计划及进度:2013年6月7日~ 6月15日:查资料,了解基于USB总线或PCI总线A/D卡的通用结构以及A/D采集卡的应用;6月15日~ 6月25日:MATLAB 实现语音信号的读取、保存、拼接与频谱分析;6月26日~ 6月27日:撰写课程设计说明书;6月28日:答辩系主任审查意见:签字:年月日目录摘要 (2)1基于USB总线A/D卡的报告 (2)1.1 USB总线介绍 (2)1.2 USB接口电路设计 (3)1.3 接口的数据采集系统的设计实现 (3)1.4 A/D转换电路 (4)2 设计方案简介 (5)3 语音信号的采集 (5)4 语音信号的分析 (6)4.1语音信号时域分析 (6)4.2语音信号频域分析 (6)5 程序设计及仿真图 (7)6语音信号的读取、拼接、保存与频谱分析 (9)6.1设计条件及主要参数表 (9)6.2设计主要参数计算 (11)6.3设计结果 (12)7设计体会 (13)8 参考文献 (14)摘要语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。
该设计主要介绍语音信号的采集与分析方法,通过PC机录制自己的一段声音,运用Matlab提供的函数进行仿真分析,并画出采样后语音信号的时域波形和频谱图,对所采集的语音信号加入干扰随机高斯噪声,对加入噪声的信号进行播放,并进行时域和频谱分析;对比加噪前后的时域图和频谱图,分析讨论采用什么样的滤波器进行滤除噪声。
关键词:语音信号;采集与分析;Matlab一基于USB总线A/D卡的报告B总线介绍USB总线为通用串行总线,USB接口位于PS/2接口和串并口之间,允许外设在开机状态下热插拔,最多可串接下来127个外设,传输速率可达480Mb/S,P它可以向低压设备提供5伏电源,同时可以减少PC机I/O接口数量。
USB是基于通用连接技术,实现外设的简单快速连接,达到方便用户、降低成本、扩展PC连接外设范围的目的。
数据采集就是把来自各种传感器的信号数据实时地、准确地测量或汇集起来,用计算机进行实时处理或记录存储,实时完成测试和控制功能。
数据采集系统结构通过微机的标准接口连接各种功能模块、仪器仪表和传感器,组成测量系统。
2.USB接口电路设计R3是上拉电阻器,它可使USB口的D+端上拉到DS2490S的VB端,表示USB主机系统是高速设备,同时这个上拉电阻器告诉主机有USB设备插入。
该上拉电阻器的设置对适配器的影响很大,它的负载值和1-Wire网络的总长决定1-Wire总线电压上升到5 V的速度。
经过实验测试选择R3的阻值为27 Ω±lO%。
R1、R2为USB数据线保护电阻器。
L、L2具有禁止高频干扰并且减弱EMI辐射的功能。
LF33CV为3.3 V电压稳压器,与周围元件C1、C2组成强上拉部分,给EEPROM 或温度传感器等器件提供额外的电源。
B接口的数据采集系统的设计实现数据采集系统使用采集卡进行数据采集,然后经过A/D转换器供计算机加工处理。
基于USB接口的数据采集与频谱分析系统本系统结构由硬件部分和软件部分组成,硬件部分主要有计算机、I/ O 接口设备. 计算机作为硬件平台的核心可采用台式机,系统采用的I/ O 设备为A/ D 数据采集卡,该采集卡是一种基于USB 总线数据采集产品,可与带USB 接口的各种台式计算机、笔记本电脑、工控机连接构成高性能的数据采集测量系统.整个系统主要由4部分组成:USB接口芯片及外围电路、控制电路、数据缓冲电路和A/D转换电路。
USB接口芯片选择了Cypress公司的EZ-USB 2131Q,该芯片内嵌8051控制器,因此整个系统以EZ-USB控制器为核心,由EZ-USB经控制电路实现对A/D 转换电路和数据缓冲电路的控制,模拟信号转换后的数据送入数据缓冲器,当数据缓冲器存满之后,通知EZ-USB控制器,由主机取出数据。
整个系统框图如图1所示。
4.A/D转换电路声卡是计算机对语音信号进行加工的重要部件,它具有对信号滤波、放大、采样保持、A/D和D/A转换等功能。
系统中A/D转换芯片采用了MAXIM公司的MAX122,该芯片是12 b的高速的A/D转换器。
在完全转换模式下,他的转换时间可以达到2.6μs,采样率为333 kS /s。
MAX122有5种工作模式,在数据采集系统中,采用了模式2即连续转换模式。
在这种模式下,每次转换需要13~14个时钟脉冲节拍,转换可以不间断地进行,但是需要提供开始转换使能信号,并且要保证使能信号和时钟信号同步,读信号和片选始终处于有效状态。
数据输出使能信号一直有效,在转换结束时产生新的数据。
二设计方案简介本实验通过应用MATLAB软件实现音乐信号的读取、拼接、保存与频谱分析。
将信号源发出的信号强度按频率顺序展开,使其成为频率的函数,并考察变化规律,称为频谱分析。
频谱分析主要分析信号是由哪些频率的正弦信号叠加得到的,以及这些正弦信号的振幅。
分析和处理音频信号,首先要对声音信号进行采集,MATLAB 的数据采集工具箱提供了一整套命令和函数,通过调用这些函数和命令,可直接控制声卡进行数据采集。
Windows自带的录音机程序也可驱动声卡来采集语音信号,并能保存为W A V格式文件,供MATLAB相关函数直接读取、写入或播放。
本实验以W A V格式音频信号作为分析处理的输入数据,用MATLAB处理音频信号的基本流程是:先将W A V格式音频信号经wavread 函数转换成MATLAB列数组变量;再用MATLAB强大的运算能力进行数据分析和处理,如时域分析、频域分析、数字滤波、信号合成、信号变换、识别和增强等等;处理后的数据如是音频数据,则可用wavwrite转换成W A V格式文件或用sound函数直接回放。
三语音信号的采集配置好数据采集设备的参数后,使用start命令便可启动声卡开始语音信号的采集。
采集到的数据被暂时存放在PC机的内存里,理论上可采集的最大数据量是由PC机的内存容量决定的,这一点相对于一般的数据采集系统而言有较强的优势。
MATLAB还可以记录采集过程中出现错误,如出错的时间、错误产生的来源以及数据采集设备的状态等信息都会被记录下来作为以后工作的参考。
Matlab自带的数据采集工具箱里面,提供了专门用于语音采集的命令和函数。
数据采集的硬件设备的内部特性对Matlab的接口完全是透明的,通过调用Matlab提供的语音采集函数和命令可以对其进行访问。
而且,Matlab可以对其采集的数据进行实时的分析,也可在存储后再进行处理。
四语音信号的分析1.语音信号时域分析MATLAB数据采集箱中提供的函数命令进行图像分析的函数命令: wavread :wavread 用于读取Microsoft 的扩展名为“.wav”的声音文件。
其调用形式为: y = wavread (file) 。
其作用是从字符串file 所指的文件路径读取wave 文件,将读取的采样数据送到y 中。
Y的取值范围: [ -1 ,1 ] 。
sound:音频信号是以向量的形式表示声音采样的。
sound 函数用于将向量转换为声音,其调用形式为:sound (y ,fs) ,作用是向扬声器送出向量y 中的音频信号(采样频率为fs) 。
将向量转换为声音,其调用形式为:sound (y ,fs) ,作用是向扬声器送出向量y 中的音频信号(采样频率为fs) 。
通过Wavread和plot(x)函数即可显示图像的时域波形。
2.语音信号频域分析FFT即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
在MATLAB的信号处理工具箱中函数FFT和IFFT用于快速傅立叶变换和逆变换。
函数FFT用于序列快速傅立叶变换,其调用格式为y=fft(x),其中,x是序列,y是序列的FFT,x可以为一向量或矩阵,若x为一向量,y是x的FFT且和x相同长度;若x为一矩阵,则y 是对矩阵的每一列向量进行FFT。
如果x长度是2的幂次方,函数fft 执行高速基-2FFT算法,否则fft执行一种混合基的离散傅立叶变换算法,计算速度较慢。
函数FFT的另一种调用格式为y=fft(x,N),式中,x,y意义同前,N为正整数。