matlab语音信号采集与初步处理要点
Matlab实验——语音信号的录制和处理

基于 MATLAB 的语音信号分析与处理的实验设计1.实验目的综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。
2.实验基本要求①学会 MATLAB 的使用,掌握 MATLAB 的程序设计方法。
②掌握在 Windows 环境下语音信号采集的方法。
③掌握数字信号处理的基本概念、基本理论和基本方法。
④掌握 MATLAB 设计 FIR 和 IIR 数字滤波器的方法。
⑤学会用 MATLAB 对信号进行分析和处理。
3.实验内容录制一段自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法或双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的语音信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;最后,用MATLAB 设计一信号处理系统界面。
4、采集系统说明:MATLAB函数;麦克风输入方式MATLAB中提供了强大的数据采集工具箱(DAQ-Data Acquisition Toolbox),可满足控制声卡进行数据采集的要求:%记录声音 wavrecord(n,fs,ch,dtype)%发送向量信号 waveplay(y,fs)%读取wave文件 wavread(file)%写wave文件 wavwrite(file),文件的后缀名为.wav%sound(y,fs) %向扬声器送出音频信号滤波函数说明:采用Kaiser Window FIR:Sampling Frequency: 8192Type:LowpassFc:956.6Beta:5。
基于MATLAB的语音信号的采集与处理详解

数字信号处理课程设计题目:基于MATLAB的语音信号的采集与处理学院:皖西学院专业:通信工程班级:通信1001班学号:2010013461 2010013494姓名:刘敏纵大庆指导教师:何富贵摘要:本次课程设计题目为<<基于MATLAB的语音信号的采集与处理>>。
首先我们利用计算机上的录音软件获得语音信号,然后利用MATLAB对语音信号进行分析和处理,采集语音信号后,利用MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号!1.背景2. 设计目的 (2)3. 设计原理 (2)4. 设计过程 .......................................... ,,, 35. 实验代码及结果 (4)5.1 语音信号的采集 (4)5.2 语音信号加噪与频谱分析 ..................................... ,,,, 7 5.3 巴特沃斯滤波器的设计 .. (9)5.4 比较滤波前后语音信号波形及频谱 (10)6. 收获与体会 (12)参考文献 (13)1. 引言数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。
它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。
具有灵活、精确、抗干扰强、度快等优点。
数字滤波器,是数字信号处理中及其重要的一部分。
随着信息时代和数字技术的发展,受到人们越来越多的重视。
数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。
数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应(FIR, Finite Impulse Response)滤波器和无限冲激响应(IIR,Infin ite Impulse Resp on se) 滤波器。
MATLAB处理语音信号

MATLAB处理语⾳信号⼀、实验项⽬名称语⾳信号的处理⼆、实验⽬的综合运⽤数字信号处理课程的理论知识进⾏频谱分析以及滤波器设计,通过理论推导得出相应结论,并进⾏计算机仿真,从⽽复习巩固了课堂所学的理论知识,提⾼了对所学知识的综合应⽤能⼒。
三、实验内容1. 语⾳信号的采集2. 语⾳信号的频谱分析3. 设计数字滤波器和画出频率响应4. ⽤滤波器对信号进⾏滤波5. ⽐较滤波前后语⾳信号的波形及频谱6. 回放语⾳信号四、实验具体⽅案1.语⾳信号采集录制⼀段语⾳信号并保存为⽂件,长度控制在1秒,并对录制的信号进⾏采样;录制时使⽤Windows⾃带的录⾳机。
采样是将⼀个信号(即时间或空间上的连续函数)转换成⼀个数值序列(即时间或空间上的离散函数)。
采样定理指出,如果信号是带限的,并且采样频率⾼于信号带宽的两倍,那么,原来的连续信号可以从采样样本中完全重建出来。
如果信号带宽不到采样频率的⼀半(即奈奎斯特频率),那么此时这些离散的采样点能够完全表⽰原信号。
⾼于或处于奈奎斯特频率的频率分量会导致混叠现象。
⼤多数应⽤都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。
⽤Windows⾃带录⾳机录⼊⼀段⾳乐,2秒钟,⽤audioread读取⾳频内容,这⾥不使⽤waveread是因为他要求⾳频⽂件格式为.wav ,并且我进⾏了尝试但没有成功,画出⾳频信号的时域波形图[y1,fs]=audioread('F:\MATLAB\ren.m4a');figure(1);plot( y1 );title('Ô原语⾳信号时域波形图');xlabel('单位');ylabel('幅度');2.语⾳信号频谱分析⾸先画出语⾳信号的时域波形,然后对语⾳信号进⾏频谱分析。
在matlab中利⽤fft对信号进⾏快速傅⾥叶变换,得到信号的频谱特性。
Matlab的信号处理⼯具箱中的函数FFT可⽤于对序列的快速傅⾥叶变换分析,其调⽤格式是y=fft(x,N),其中,x是序列,y是序列的FFT变换结果,N为整数,代表做N点的FFT,若x为向量且长度⼩于N,则函数将x补零⾄长度N;若向量x长度⼤于N,则截断x使之长度为N。
基于MATLAB的语音信号的采集与分析

基于MATLAB的语音信号的采集与分析摘要:我们通过学习使用MA TLAB仿真软件实现语音信号分析,加深对信号与系统这门课程所学习内容的理解,锻炼自学能力和动手能力。
我们通过电脑的声卡采集声音信号,借助已有的知识和MATLAB对采集的声音信号进行时域波形和频域频谱的显示,研究男女声信号的差别,通过查找资料提取声音信号的基音频率,并通过大量测试确定门限值来自动判别男女声信号,最后对信号进行降采样处理并播放,重新绘制频谱图分析,验证抽样定理。
关键词:MA TLAB仿真、频谱分析、基音频率、降采样、抽样定理。
1.音频信号的采集我们所要分析的语音信号需要自行采集,所以信号分析的第一步就是采集音频信号。
实现音频信号的采集最简单的办法就是通过电脑的声卡直接进行采集,这样采集到的音频信号虽然已经被转化成了数字量存储在电脑中,但通过查询我们了解到电脑录音所使用的采样频率是为44100Hz,完全保证了人类耳朵能听到所有声音频率分量的无失真采集,如果通过MA TLAB软件采集还能够调节采样频率,所以能够完全满足我们实验的要求。
1.1使用MATLAB采集语音信号通过上网查询,我们了解到MATLAB有自带的音频信号采集函数audiorecord(),通过它可以在程序运行时即时采集音频信号进行存储并处理,并且可以通过改变输入参数来改变采样频率,可以直接模拟降采样的过程,直观地验证抽样定理。
但鉴于我们需要重复进行试验和演示,即时采集信号显得繁琐且不必要,而且会增加我们非界面化编程的难度,所以我们放弃了这种方法。
1.2使用电脑录音机采集语音信号通过电脑自带的录音机软件可以实现更简单的音频信号采集操作,虽然采样频率不可调节,但其固有的采样频率完全满足了我们对所采集信号的要求,可以通过MATLAB的降采样处理的到较低采样频率的信号。
这样采集的音频信号会直接以文件的形式存储在电脑中,方便我们随时进行调用,方便分析与演示,所以我们决定采用这种方式实现语音信号的采集。
MATLAB语音信号采集与处理

MATLAB课程设计报告课题:语音信号采集与处理目录一、实践目的 (3)二、实践原理: (3)三、课题要求: (3)四、MATLAB仿真 (4)1、频谱分析: (4)2、调制与解调: (5)3、信号变化: (8)快放: (8)慢放: (8)倒放: (8)回声: (8)男女变声: (9)4、信号加噪 (10)5、用窗函数法设计FIR滤波器 (11)FIR低通滤波器: (12)FIR高通滤波器: (13)FIR带通滤波: (14)一、实践目的本次课程设计的课题为《基于MATLAB的语音信号采集与处理》,学会运用MATLAB的信号处理功能,采集语音信号,并对语音信号进行滤波及变换处理,观察其时域和频域特性,加深对信号处理理论的理解,并为今后熟练使用MATLAB进行系统的分析仿真和设计奠定基础。
此次实习课程主要是为了进一步熟悉对matlab软件的使用,以及学会利用matlab对声音信号这种实际问题进行处理,将理论应用于实际,加深对它的理解。
二、实践原理:利用MATLAB对语音信号进行分析和处理,采集语音信号后,利用MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。
语音信号的“短时谱”对于非平稳信号, 它是非周期的, 频谱随时间连续变化, 因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性。
如果利用加窗的方法从语音流中取出其中一个短断, 再进行傅里叶变换, 就可以得到该语音的短时谱。
三、课题要求:○1利用windows 自带的录音机或者其它录音软件,录制几段语音信号(要有几种不同的声音,要有男声、女声)。
○2对录制的语音信号进行频谱分析,确定该段语音的主要频率范围,由此频率范围判断该段语音信号的特点(低沉or 尖锐)。
○3利用采样定理,对该段语音信号进行采样,观察不同采样频率(过采样、欠采样、临界采样)对信号的影响。
matlab语音信号采集与处理

matlab语音信号采集与处理Matlab是一种功能强大的数学软件,特别适合音频信号的处理和分析。
本文将介绍Matlab如何用于音频信号采集和处理的方法。
1. 音频信号采集Matlab可以在Windows和Mac OS X操作系统上直接访问音频硬件,比如麦克风。
Matlab的音频输入功能允许用户在Matlab中直接访问音频硬件,并处理输入的信号。
Matlab提供了许多函数和工具箱,方便用户采集和处理音频信号。
可以使用Matlab 的命令窗口和MATLAB代码框架,采集音频信号数据并保存为.mat文件。
以下是在Matlab中实现音频采集的示例代码:%% 定义音频采样率Fs和采样时间TFs = 8000; % HzT = 2; % s%% 创建一个录音器对象recorderrecorder = audiorecorder(Fs, 16, 1);%% 开始录制音频disp('开始录制音频...');recordblocking(recorder, T);%% 将信号保存为.mat文件disp('将信号保存为.mat文件...');filename = 'audioData.mat';save(filename, 'audioData', 'Fs');在这个示例代码中,定义音频采样率Fs和采样时间T。
开始录制音频,使用recordblocking函数,它采样时间为T。
使用getaudiodata函数获取录音器对象recorder的音频数据。
最后,使用save函数将音频数据保存为.mat文件。
Matlab是一种强大的工具,可用于处理和分析音频信号,例如过滤,时域和频域分析,频谱分析和语音识别等。
%% 加载.mat文件,分别为音频数据audioData和采样率Fsload('audioData.mat');%% 频谱分析disp('进行频谱分析...');N = length(audioData);xf = fft(audioData);Pxx = 1/(Fs*N) * abs(xf).^2;f = linspace(0, Fs/2, N/2+1);%% 滤波器设计disp('设计一个50Hz低通滤波器...');fc = 50; % HzWn = fc/(Fs/2);[b,a] = butter(4, Wn, 'low');%% 信号滤波disp('低通滤波信号...');y = filter(b, a, audioData);%% 绘图figure();subplot(2,1,1);plot(audioData);title('原始信号');xlabel('时间(s)')ylabel('幅值')在这个示例代码中,首先使用load函数加载以前保存的音频数据,分别为音频数据audioData和采样率Fs。
基于MATLAB的语音信号采集与处理.

基于MATLAB的语音信号采集与处理.
MATLAB是一种非常有用的工具,可以用于语音信号的采集和处理。
语音信号的采集和处理对于语音识别、音频转换和人机交互等领域非常重要。
MATLAB提供了许多工具和函数进行语音信号的采集和处理。
语音信号的采集可以通过外部设备实现,如麦克风或录音设备。
MATLAB可以通过音频输入功能进行语音信号的采集和处理。
该功能提供了多个采样率和位深度设置,可以按照需要进行设置。
采集的语音信号可以通过MATLAB的图形用户界面进行实时显示和处理。
MATLAB提供了很多工具和函数进行语音信号的处理,如语音分析、信号过滤、音量调整和时域和频域分析等。
MATLAB的语音信号处理工具箱提供了很多预处理和分析函数,可以进行预处理、语音识别、特征提取等操作。
这些工具和函数可以帮助开发人员更好地理解和分析语音信号,提高语音识别的准确性和鲁棒性。
MATLAB还提供了图形用户界面(GUI)、应用程序接口(API)、命令行和脚本等方式进行语音信号处理。
GUI可以方便地进行交互式处理和调试,API可以方便地集成到其他应用程序中,命令行和脚本可以进行批处理和复杂的操作。
MATLAB的语音信号处理工具还可以与其它工具箱,如数字信号处理工具箱和统计学工具箱进行整合,以开发更强大和可靠的语音处理应用程序。
MATLAB语音信号处理

MATLAB语⾳信号处理数字信号处理课设,我们使⽤MATLAB对语⾳信号进⾏了⼀系列处理,并将其所有功能集中于下图界⾯中:这个界⾯涉及功能众多,其中包括语⾳信号的观察分析、⾳⾊变换、AM调制解调、减抽样、加噪去噪、相频分析和幅频滤波等,最重要的是对MATLAB中函数的掌握,通过不同函数的组合实现你想要实现的功能。
本篇不会给出整个界⾯的程序,下⾯会分块给出每个功能的程序,整个界⾯只需GUI设计界⾯⽂件、定义结构体并把对应键程序打进去即可。
1、语⾳信号的采集1.1题⽬要求使⽤windows下的录⾳机录制⼀段语⾳信号、⾳乐信号或者采⽤其他软件截取⼀段⾳乐信号(要求:时间不超过5s,⽂件格式为WAV。
)①请每位同学都参与录⾳,内容⾃定。
②使⽤wavread语句读取语⾳/⾳乐信号获取抽样率;(注意:读取的信号是双声道信号,即为双列向量,需要分列处理);③输出时域语⾳/⾳乐信号的波形。
④实现对录⾳信号的声⾳⼤⼩的调节。
⑤实现对两种语⾳/⾳乐信号的混⾳⾳效。
⑥实现⾳乐信号的回⾳⾳效。
1.2设计内容及⽅案①读取⾳频信号:我是通过wavread函数读取.wav⽂件的⽅式来获得,当然⾸先要⾃⼰创建⼀个.wav⾳频,我是通过电脑录⾳⽣成.mp3然后格式⼯⼚转成.wav的,需保存到同⼀⽂件夹下。
②分声道处理:⼀般⾳乐和语⾳信号都是双声道信号,时域和频谱图会有两个颜⾊,所以要取单列来分析,通过x1=x(:,1)语句来实现。
③画时域波形图:⽤plot函数来画图,注意横坐标为时间t。
④⾳量⼤⼩调节:通过将⾳频直接乘⼀个系数来实现调⾳量。
⑤混⾳和回声:混⾳即将两个⾳频相加,要相加就得保证矩阵⼀样,所以要通过截取并补零矩阵来实现;回声是把三个信号叠加,这三个信号在不同位置补零⾳量也逐渐变⼩,就可以实现回声。
⑥播放声⾳:本题我使⽤wavplay来播放声⾳,会有警告,后⾯的题我⽤sound⽐较好。
1.3程序源码及注释clear[x,fs] = wavread('beautiful.wav');%⾳乐信号[y,fs1]= wavread('1.wav');%⼥⽣声⾳[z,fs2]= wavread('2.wav');%男⽣声⾳%输出频率fsfs1fs2%⾳乐语⾳信号分声道处理x1=x(:,1);y1=y(:,1);z1=z(:,1);%画⾳乐信号时域图n1=length(x1);%length取数列长度即元素个数figure(1)t1=(0:(n1-1))/fs;plot(t1,x1);axis([0,5,-1,1]);xlabel('时间t');title('⾳乐信号时域波形');%画语⾳信号时域图n2=length(y1);figure(2)subplot(2,1,1);t2=(0:(n2-1))/fs1;plot(t2,y1);%⼥⽣axis([0,4,-0.5,0.5]);xlabel('时间t');ylabel('幅度');title('⼥⽣语⾳信号时域波形');n3=length(z1);subplot(2,1,2);t3=(0:(n3-1))/fs2;plot(t3,z1);%男⽣axis([0,4,-0.5,0.5]);xlabel('时间t');ylabel('幅度');title('男⽣语⾳信号时域波形');%对语⾳信号声⾳⼤⼩调节wavplay(y,fs1); %播放原语⾳y11=10*y;wavplay(y11,fs1); %加⼤⾳量播放y22=0.5*y;wavplay(y22,fs1); %减⼩⾳量播放%两种语⾳信号的混⾳[m,n]=size(y1);%size取矩阵的⾏列数[m0,n0]=size(z1);a=zeros(abs(m-m0),n);%两矩阵⾏数差为零矩阵⾏数if length(y1)<length(z1)y2=[y1;a];y3=y2+z1;%两个矩阵⾏数⼀样才能相加,所以要补零elsey2=[z1;a];y3=y2+y1;%y1和z1中长的那个不变,短的那个补零end;wavplay(y3,fs1) ;%播放混⾳语⾳%画混⾳波形figure(3)subplot(2,1,1);t4=(0:(max(n2,n3)-1))/fs1;plot(t4,y3);axis([0,4.5,-0.5,0.5]);xlabel('时间');ylabel('幅度');title('两语⾳信号叠加后时域波形');%⾳乐信号的回⾳x11=x1(1:200000);%截取部分x11=x11';%因为输出为⼀列所以要转置成⼀⾏int0=zeros(1,20000);%1⾏2000列的零矩阵temp1=[x11,int0,int0];temp2=[int0,0.6*x11,int0];temp3=[int0,int0,0.3*x11];%通过补零实现延时,同时声⾳⼀个⽐⼀个⼩hui=temp1+temp2+temp3;%三重声⾳相加实现回声N=length(hui);wavplay(hui,fs1);%播放回⾳⾳乐%画回声波形subplot(2,1,2);t1=(0:(N-1))/fs;plot(t1,hui);axis([0,4.5,-1,1]);xlabel('时间');ylabel('幅度');title('回声时域波形');1.4运⾏结果仿真结果分析:我听到了原声和⾳量放⼤减⼩的声⾳,也听到了混⾳和回声的效果,变化明显;本题我画了⾳乐和两个语⾳信号的时域波形以及混⾳回声的时域波形,⾳乐信号幅度⽐语⾳信号⾼且连贯性⾼,混⾳之后幅度叠加,回声之后幅度也增⼤,波形有很明显的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《matlab与信号系统》实验报告学院:学号:姓名:考核实验——语音信号采集与处理初步一、课题要求1.语音信号的采集2.语音信号的频谱分析3.设计数字滤波器和画出频率响应4.用滤波器对信号进行滤波5.比较滤波前后语音信号的波形及频谱6.回放和存储语音信号(第5、第6步我放到一起做了)二、语音信号的采集本段音频文件为胡夏演唱的“那些年”的前奏(采用Audition音频软件进行剪切,时长17秒)。
运行matlab软件,在当前目录中打开原音频文件所在的位置,采用wavread函数对其进行采样,并用sound函数可进行试听,程序运行之后记下采样频率和采样点。
利用函数wavread对语音信号的采集的程序如下:clear;[y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放程序运行之后,在工作区间中可以看到采样频率fs=44100Hz,采样点bits=16三、语音信号的频谱分析先画出语音信号的时域波形,然后对语音号进行快速傅里叶变换,得到信号的频谱特性。
语音信号的FFT频谱分析的完整程序如下:clear;[y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放n = length (y) ; %求出语音信号的长度Y=fft(y,n); %傅里叶变换subplot(2,1,1);plot(y);title('原始信号波形');subplot(2,1,2);plot(abs(Y)); title('原始信号频谱');程序结果如下图:四、设计数字滤波器和画出频率响应根据语音信号的特点给出有关滤波器的性能指标:1)低通滤波器性能指标,fp=1000Hz,fc=1200 Hz,As=100dB,Ap=1dB;2)高通滤波器性能指标,fc=4800 Hz,fp=5000 Hz As=100dB,Ap=1dB。
要求学生分别用窗函数法和双线性变换法设计上面要求的两种滤波器,在MATLAB中,可以利用函数fir1设计FIR滤波器;用函数butte设计IIR滤波器;最后,利用MATLAB中的函数freqz画出各滤波器的频率响应。
分析如下:函数fir1默认的设计滤波器的方法为窗函数法,其中可选的窗函数有Rectangular Barlrtt Hamming Hann Blackman窗,其相应的都有实现函数。
函数butter,cheby1和ellip设计IIR滤波器时都是默认的双线性变换法,所以在设计滤波器时只需要代入相应的实现函数即可。
1、IIR低通滤波器:Ft=8000;Fp=1000;Fs=1200;wp=2*pi*Fp/Ft;ws=2*pi*Fs/Ft;fp=2*Ft*tan(wp/2);fs=2*Fs*tan(wp/2);[n11,wn11]=buttord(wp,ws,1,50,'s'); %求低通滤波器的阶数和截止频率[b11,a11]=butter(n11,wn11,'s'); %求S域的频率响应的参数[num11,den11]=bilinear(b11,a11,0.5); %利用双线性变换实现频率响应S域到Z域的变换[h,w]=freqz(num11,den11); %根据参数求出频率响应plot(w*8000*0.5/pi,abs(h));title('IIR低通滤波器');legend('用butter设计');grid;Ft=8000;Fp=5000;Fs=4800;wp1=tan(pi*Fp/Ft);%高通到低通滤波器参数转换ws1=tan(pi*Fs/Ft);wp=1;ws=wp1*wp/ws1;[n13,wn13]=cheb1ord(wp,ws,1,100,'s'); %求模拟的低通滤波器阶数和截止频率[b13,a13]=cheby1(n13,1,wn13,'s'); %求S域的频率响应的参数[num,den]=lp2hp(b13,a13,wn13);%将S域低通参数转为高通的[num13,den13]=bilinear(num,den,0.5); %利用双线性变换实现频率响应S域到Z域转换[h,w]=freqz(num13,den13);plot(w*21000*0.5/pi,abs(h));title('IIR高通滤波器');legend('用cheby1设计');axis([0 12000 0 1.5]);grid;用窗函数设计低通滤波器的程序如下:Ft=8000;Fp=1000;Fs=1200;wp=2*Fp/Ft;ws=2*Fs/Ft;rp=1;rs=100;p=1-10.^(-rp/20); %通带阻带波纹s=10.^(-rs/20);fpts=[wp ws];mag=[1 0];dev=[p s];[n21,wn21,beta,ftype]=kaiserord(fpts,mag,dev);%由kaiserord求滤波器的阶数和截止频率b21=fir1(n21,wn21,Kaiser(n21+1,beta)); %由fir1设计滤波器[h,w]=freqz(b21,1); %得到频率响应plot(w/pi,abs(h));title('FIR低通滤波器');grid;高通滤波器的性能指标:fp=3500Hz,fc=4000Hz,As=50dB,Ap=1dB;(由于边界频率必须位于采样频率的中间值,此时指标略微有些改动,望老师见谅)Ft=8001;Fp=4000;Fs=3500;wp=2*Fp/Ft;ws=2*Fs/Ft;rp=1;rs=100;p=1-10.^(-rp/20); %通带阻带波纹s=10.^(-rs/20);fpts=[ws wp];mag=[0 1];dev=[p s];[n23,wn23,beta,ftype]=kaiserord(fpts,mag,dev);b23=fir1(n23,wn23,'high',Kaiser(n23+1,beta)); %由fir1设计滤波器[h,w]=freqz(b23,1); %得到频率响应plot(w*12000*0.5/pi,abs(h));title('FIR高通滤波器');axis([3000 6000 0 1.2]);grid;五、用滤波器对信号进行滤波比较两种滤波器(FIR和IIR)的性能,然后用性能好的各滤波器(低通、高通)分别对采集的信号进行滤波,在MATLAB中,FIR滤波器利用函数fftfilt 对信号进行滤波,IIR滤波器利用函数filter对信号进行滤波。
1、双线性变换法:(1)低通滤波器:z11=filter(num11,den11,s);(2)高通滤波器:z12=filter(num12,den12,s);2、窗函数法:(1)低通滤波器:z21=fftfilt(b21,s);(2)高通滤波器:z22=fftfilt(b22,s);六、比较滤波前后语音信号的波形、频谱、声音的变化要求:(1)要求在一个窗口同时画出滤波前后的波形及频谱;(2)用函数sound对声音进行回放。
感觉滤波前后声音的变化;(3)用函数wavwrite对滤波后的文件进行存储存储1、双线性变换法——低通滤波器IIR低通:clear;[y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放n = length (y) ; %求出语音信号的长度Y=fft(y,n); %傅里叶变换Ft=8000;Fp=1000;Fs=1200;wp=2*pi*Fp/Ft;ws=2*pi*Fs/Ft;fp=2*Ft*tan(wp/2);fs=2*Fs*tan(wp/2);[n11,wn11]=buttord(wp,ws,1,50,'s'); %求低通滤波器的阶数和截止频率[b11,a11]=butter(n11,wn11,'s'); %求S域的频率响应的参数[num11,den11]=bilinear(b11,a11,0.5); %利用双线性变换实现频率响应S域到Z 域的变换[h,w]=freqz(num11,den11); %根据参数求出频率响应z11=filter(num11,den11,y);sound(z11);m11=fft(z11); %求滤波后的信号subplot(2,2,1);plot(abs(Y),'g');title('滤波前信号的频谱');grid;subplot(2,2,2);plot(abs(m11),'r');title('滤波后信号的频谱');grid;subplot(2,2,3);plot(y);title('滤波前信号的波形');grid;subplot(2,2,4);plot(z11);title('滤波后的信号波形');grid;wavwrite(y, 'IIR低通.wav');%滤波后的音频信号名为“IIR低通.wav”2、双线性变换法——高通滤波器IIR高通:clear;[y,fs,bits]=wavread('music.wav'); %x:语音数据;fs:采样频率;bits:采样点数sound(y,fs,bits); %话音回放n = length (y) ; %求出语音信号的长度Y=fft(y,n); %傅里叶变换Ft=8000;Fp=5000;Fs=4800;wp1=tan(pi*Fp/Ft);%高通到低通滤波器参数转换ws1=tan(pi*Fs/Ft);wp=1;ws=wp1*wp/ws1;[n12,wn12]=cheb1ord(wp,ws,1,100,'s'); %求模拟的低通滤波器阶数和截止频率[b12,a12]=cheby1(n12,1,wn12,'s'); %求S域的频率响应的参数[num,den]=lp2hp(b12,a12,wn12);%将S域低通参数转为高通的[num12,den12]=bilinear(num,den,0.5); %利用双线性变换实现频率响应S域到Z域转换[h,w]=freqz(num12,den12);z12=filter(num12,den12,y);sound(z12);m12=fft(z12); %求滤波后的信号subplot(2,2,1);plot(abs(Y),'g');title('滤波前信号的频谱');grid;subplot(2,2,2);plot(abs(m12),'r');title('滤波后信号的频谱');grid;subplot(2,2,3);plot(y);title('滤波前信号的波形');grid;subplot(2,2,4);plot(z12);title('滤波后的信号波形');grid;wavwrite(y, 'IIR高通.wav');%滤波后的音频信号名为“IIR高通.wav”高通滤波后,此时只有少许杂音,原因是低频分量被高通滤波器衰减,而人声部分正好是低频部分,所以只剩下杂音,或者发出高频杂音但人的耳朵听不到。