《中考复习:规律探究》课件
中考数学复习 专题2 规律探索型问题数学课件

2.解图形规律探索题的方法: 第一步:标序号:记每组图形的序数为“1,2,3,…,n”; 第二步:数图形个数:在图形数量变化时,要记出每组图形的表示个数; 第三步:寻找图形数量与序号数 n 的关系:针对寻找第 n 个图形表示的数量时,先将后 一个图形的个数与前一个图形的个数进行比对,通常作差(商)来观察是否有恒定量的变化, 然后按照定量变化推导出第 n 个图形的个数; 函数法:若当图形变化规律不明显时,可把序号数 n 看作自变量,把第 n 个图形的个数 看作函数,设函数解析式为 y=an2+bn+c(初中阶段设二次函数完全可以解决),再代入三组 数值进行计算出函数解析式(若算出 a=0 就是一次函数)即可.
【点评】本题考查了图形的变化类问题,解题的关键是能够仔细读题,找到图形内和图 形外格点的数目.
[对应训练] 4.在由 m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小 正方形个数 f, (1)当 m,n 互质(m,n 除 1 外无其他公因数)时,观察下列图形并完成下表:
[对应训练] 2.(2015·咸宁)古希腊数学家把数 1,3,6,10,15,21,…叫做三角数,它有一定的规 律性.若把第一个三角数记为 a1,第二个三角数记为 a2…,第 n 个三角数记为 an,计算 a1+ a2,a2+a3,a3+a4,…由此推算 a399+a400=__1.6×105 或 160_000__.
1.(2015·德州)一组数 1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的 两个数之和”,那么这组数中 y 表示的数为( A )
A.8 B.9 C.13 D.15 2.(2015·河南)如图所示,在平面直角坐标系中,半径均为 1 个单位长度的半圆 O1,O2,
初三数学中考专题复习 握手问题的探究与应用 课件(共26张PPT)

【实际问题】
班级迎新晚会上,全班同学两两 握手一次致意,那么他们共握手多少 次?
合作探究:
小组进行握手游戏,合作寻找握手的 内在规律。
请思考:若4位同学两两握手共握手多
少次?5位呢?8位呢?…n位呢?
( 小组展示握手探究过程,小组代表讲解探究过程)
【问题解决】
班级迎新晚会上,n位同学 两两握手一次致意,那么他们共
握手 n(n 1) 次. 2
实 【思考1】 数线段
际
应 小明在纸上画了一条直线,
用
小红又拿起了笔,在小明画的直 线上点了8个点,“你知道现在 这条直线上有多少条线段吗?” 同学们,你能帮小明快速回答这 个问题吗?
【思考1】
小明在纸上画了一条直线,小红又拿起了笔, 在小明画的直线上点了8个点,“你知道现在这条 直线上有多少条线段吗?” 同学们,你能帮小明 快速回答这个问题吗?
2
平面内确定直线条数
不在同一条直线上的3个点,过任意两点 一共可以画 3 条直线; 平面内4个点(任意三点不在同一条直线 上),过任意两点一共可以画 6 条直线; 5个点呢? 在同一平面内有n个点(任意三个点都不 在同一条直线上)过这n个点中的任意两 点画直线,一共能画出 n(n 1) 条直线?
下一张
【思考2】
往返于青岛、北京南的D336动车,中途 经过胶州北、潍坊、昌乐、淄博、济南、德 州东、沧州西、天津南、廊坊站点,(只考 虑站点)那么该列火车需要安排多少种不同 的车票?
【解析】把每个站点看成每位同学,共 11个站点就是11位同学;每2个站点 的火车票种类可以看作2位同学握手, 火车票种类便是平面内,由不在同一条直线上
但有公共端点的n条射线所组成的图形中,
青岛中考数学复习课件 题型1 规律探索题

3.等式规律探索题:
第一步:标序数; 第二步:对比式子与序号,即分别比较等式中各部分与序数(1,
2,3,4,…,n)之间的关系,把其蕴含的规律用含序数的式子表
示出来.通常方法是将式子进行拆分,观察式子中数与序号是否存 在倍数或者次方的关系;
第三步:根据找出的规律得出第n个等式,并进行检验.
例1►观察下列等式: 第1个等式: 第2个等式: 第3个等式: 第4个等式: …… 请解答下列问题: (1)按以上规律列出第5个等式:a5=________=________; (2)用含n的代数式表示第n个等式:an=________=_______(n 为正整数); (3)求a1+a2+a3+a4+…+a100的值.
第1个等式: 第2个等式: 第3个等式:
第4个等式:
…… 分析►等式的左边分子为1,分母是两个连续奇数的乘积, 其中第一个奇数比算式的序号(个数)的2倍小1;等式的右边 是 与两个分数差的乘积,两个分数的分子均为1,分母分 别为等式左边分母中的两个奇数.
1 2
(1)按以上规律列出第5个等式:a5=
题型1
规律探索题
题 型 概 述 ►规律探究问题是中考数学中的长青树,多以填空中的 压轴题形式命题,也在23题中有所体现.本题型一般是给出一组 具有某种特定关系的数、式、图形,或是给出与图形有关的操作
变化过程,或某一具体的问题情境,要求通过观察、分析、推理
,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.其解 题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜
想得出结论→验证结论.近几年青岛中考中,规律题目每年都涉
及,主要包括图形、图象、数字(式)的规律猜想.
类型1
数式规律
数式规律探索主要有以下3类: 1.数的规律探索题: (1)当所给的一组数是整数时,先观察这组数是自然数列、正整 数列、奇数列、偶数列,还是正整数列经过平方、平方加1或减1等 运算后的数列,然后再看这组数的符号,判断数符号的正负是交替 出现还是只出现一种符号,如果是交替出现的可用(-1)n表示数的 符号,最后把数的规律和符号规律结合起来从而得到结果; (2)当数是分数和整数结合的时候,先把这组数据的所有整数写 成分数,然后分别推断出分子和分母的数的规律(其方法同(1)), 从而得出分子和分母的规律,最后得到该组第n项的规律. (3)当所给的代数式含有系数时,先观察其每一项的系数之间是 否有自然数列、正整数列、奇数列、偶数列或交替存在一定的对称 性,然后观察其指数是否存在相似的规律,最后将系数和指数规律 结合起来求得结果.
2020年中考复习《规律探究题专练》及答案 (3)

中考复习《规律探究题专练》1.(2014年福建南平4分)如图,将三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是()A. B. C. D.2.(2014年湖南永州3分)在求1+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A. B. C. D.3.(2014年山东日照4分)下面是按照一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…依此规律,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A.第10个数 B.第11个数 C.第12个数 D.第13个数4.(2013年山东泰安3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.75.(2012江苏扬州3分)大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是()A.43 B.44 C.45 D.466.(2014年福建漳州4分)已知一列数2,8,26,80.…,按此规律,则第n个数是.(用含n的代数式表示)7.(2014年甘肃白银、定西、平凉、酒泉、临夏4分)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103= .8.(2014年广西百色3分)观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为.9.(2014年广西桂林3分)观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82014的和的个位数字是.10.(2014年贵州铜仁4分)一列数:0,﹣1,3,﹣6,10,﹣15,21,…,按此规律第n 的数为.11.(2014年黑龙江大庆3分)有一列数如下:1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,…,则第9个1在这列数中是第个数.12.(2014年湖北黄石3分)观察下列等式:第一个等式:a1=;第二个等式:;第三个等式:;第四个等式:.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n= = ;(2)式子a1+a2+a3+…+a20= .13.(2014年湖南常德3分)已知:;计算: = ;猜想: = .14.(2014年湖南湘潭3分)如图,按此规律,第6行最后一个数字是,第行最后一个数是2014.15.(2014年江苏扬州3分)设是从这三个数中取值的一列数,若,,则中为0的个数.n=1n=2a2=b1+2c1b2=c1+2a1c2=a1+2b1n=3a3=b2+2c2b3=c2+2a2c=a2+2b2…………满足的n可以取得的最小整数是.17.(2014年内蒙古呼伦贝尔3分)一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第9个等式.18.(2014年山东滨州4分)计算下列各式的值:观察所得结果,总结存在的规律,运用得到的规律可得= _.19.(2014年山东东营4分)将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为.20.(2014年山东菏泽3分)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n>3)行从左向右数第个数是.(用含n的代数式表示)21.(2014年河北省3分)如图,点O,A在数轴上表示的数分别是0,0.1,将线段OA分成100等份,其分点由左向右依次为M1,M2 (99)将线段OM1分成100等份,其分点由左向右依次为N1,N2 (99)将线段ON1分成100等份,其分点由左向右依次为P1,P2 (99)则点P37所表示的数用科学计数法表示为.22.(2014年云南省3分)观察规律并填空;;;;…= .(用含n的代数式表示,n是正整数,且n≥2)23.(2014年浙江台州5分)有一个计算程序,每次运算都是把一个数先乘以2,再乘以它与1的和,多次重复进行这种运算的过程如下∶则第n次的运算结果=(含字母x和n的代数式表示).参考答案1.B.【解析】观察数列,可得,每三个数一循环,,(8,2)在数列中是第(1+7)×7÷2+2=30个,∵30÷3=10,∴(8,2)表示的数正好是第10轮的最后一个,即(8,2)表示的数是.(2014,2014)在数列中是第(1+2014)×2014÷2=2029105个,∵2029105÷3=676368…1,∴(2014,2014)表示的数正好是第676369轮的第一个数,即(2014,2014)表示的数是1.∴.故选B.考点:探索规律题(数字的变化类----循环问题).2.B.【解析】仿照例题,设S=1+a+a2+a3+a4+…+a2014,①在①式的两边都乘以a,得:aS=a+a2+a3+a4+…+a2014+a2015,②,②﹣①得:(a﹣1)S=a2015﹣1,∴S=,即1+a+a2+a3+a4+…+a2014=.故选B.考点:1.阅读理解型问题;2.探索规律题(数字的变化类);3.同底数幂的乘法.3.A.【解析】通过计算找出规律,求得第10个数、第11个数、第12个数、第13个数的得数,通过比较得出答案:第1个数:;第2个数:;第3个数:;…第n个数:∴第10个数、第11个数、第12个数、第13个数分别为,其中最大的数为,即第10个数最大.故选A.考点:1.探索规律题(数字的变化类);2.有理数的大小比较.4.C【解析】观察所给等式,寻找规律:3n (n=1,2,3,……)的末位数字分别是:3,9,7,1,3,……,四个数一循环,末位数字和为0,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3。
中考数学专题复习数形结合-从简单处着手找规律公开课PPT课件

二、深入探究
......
例2 用大小相等的小正方形拼成大正方形,拼第1个正方形需要4个
小正方形,拼第2个正方形需要9个小正方形,......按照这样的方法, 拼
成第n个正方形比第(n-1)个正方形多几个小正方形?
......
第1个正方形 第2个正方形
第3个正方形
第4个正方形
多了(1+2×2)个 多了(1+2×3)个 多了(1+2×4)个
特殊→一般→特殊
例1 用同样大小的棋子按图所示的方式摆图形,按照这样的规律摆
下去,则第n个图需棋子
枚(用含n的代数式表示).
......
①
②
③
从“形”的角度解答图形规律题
①
②
由_1 个 和(n-1) 个 组成
4+33(n+n1-1 )
③
第n个图形
一、例题精讲
方法一:从“数”的角度解答图形规律题
特殊→一般→特殊
椅子 20
把.
2、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)
上有n(n≥2)个圆点时,图案的圆点数为Sn.按此规律推断Sn关于n的关系式为:
Sn= 4n-4
.
谢谢聆听
1、一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配
椅子
把.
2、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)
上有n(n≥2)个圆点时,图案的圆点数为Sn.按此规律推断Sn关于n的关系式为:
Sn=
.
四、课后作业
1、一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配
中考数学《规律探索》专题复习试题含解析

中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
【人教版】中考数学六大专题冲刺复习优质PPT课件
满分解答
变式训练
1.(2015•珠海)如图-3,在平面直角坐标系中, 矩形OABC的顶点A,C分别在x轴、y轴上,函数 y=k/x的图象过点P(4,3)和矩形的顶点B(m,n )(0<m<4). (1)求k的值; (2)连接PA,PB,若△ABP的面积为6,求直线BP 的表达式.
2.(2015•佛山)若正比例函数y=k 1x的图象与 反比例函数y=k2/x的图象有一个交点的坐标是(2,4). (1)求这两个函数的表达式; (2)求这两个函数图象的另一个交点的坐标.
试题分析
本题以一次函数与反比例函数的图象交点问题为背景, 考查学生利用轴对称求最短路线问题,具体分析如下: (1)根据点A的坐标以及AB=3BD先求出点D的坐标,再代 入反比例函数表达式即可求出k的值; (2)点C是直线与反比例函数图象的交点,由直线与反 比例函数的表达式联立方程组即可求出点C的坐标; (3)作点D关于y轴的对称点E,连接CE交y轴于点M,则 d=MC+MD最小.得到E(-1,1),求得直线CE的表达式为 y=(2√3-3)x+2√3-2,其与y轴的交点即为所求.
真题回顾
例 (2015•广东)如图-1,反比例函数y=k/x( k≠0,x>0)的图象与直线y=3x相交于点C,过直 线上点A(1,3)作AB⊥x轴于点B,交反比例函数 的图象于点D,且AB=3BD. (1)求k的值; (2)求点C的坐标; (3)在y轴上确定一点M,使点 M到C,D两点的距离之和d=MC+MD, 求点M的坐标.
解题策略:应用函数思想解题,确立变量之间的 函数表达式是关键步骤,主要分为下面四种情况 : (1)根据题意建立变量之间的函数表达式,把问 题转化为相应的函数问题; (2)用待定系数法求函数表达式; (3)利用两个三角形相似解决最值问题; (4)动点与图形面积的关系,动点与线段之和最 短问题的关系.
2014届中考专题复习《规律探究问题》 一B4版 3
B ACDA 1 A 22014届中考专题复习《规律探究问题》湖北省竹溪县城关中学 明道银中考数学规律探索型问题是近几年来中考的热点,需要敏锐的观察力和一定的推理、计算能力,利用从特殊到一般或从一般到特殊的方法来解决几何类规律探索型问题。
一 规律明显 数数看看定有发现例1、如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有 个。
解析:方法 :一数。
在数字中发现。
在开始的几幅图中把所要的问题分别数字记载,如1、3、5、7 、… ,发现奇数规律排列,猜想最终结果为2n-1 ;二看。
发现图形规律和结果数字规律。
直接由图序排列发现大小菱形逐次各自多1,得出所要的结果是:1、1+2、1+2+2、1+2+2+2、… ,再发现是1加上若干个2 组成,2的多少与序列号少1,于是得1+2(n-1)即2n-1 。
归纳方法:这类给定的图形或数字规律及寻找的数字规律容易发现,通过一看二数三变的方法即可解决问题。
二 规律隐含 算算数量待发现 例2、如图,在△ABC 中,∠A =α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; ……;∠A 2009BC 与∠A 2009CD 的平分线相交于点A 2010,得∠A 2010,则∠A 2010= .方法:利用三角形的内角和或外角和的性质及角平分线性质,采取从特殊到一般的数学思想解决问题,逐次探究出∠A 1 ;∠A 2 ;∠A 3 ;… ;∠A n 与∠A 的关系,∠A n = 12∠A三、练习 第一类: 数字类1、(2012四川巴中)观察下面一列数:1,-2,3,-4,5,-6,……,根据你发现的规律,第2012个数是2、(2012广东肇庆)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 .3. (2012贵州安顺)已知2+23=22×23,3+38=32×38,4+415=42×415…,若8+a b =82×a b (a ,b 为正整数),则a +b = . 4. (2012内蒙古赤峰)将分数67化为小数是0.857142,则小数点后第2012位上的数是 . 5.(2013·泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( )A .0B .1C .3D .76. (2012山东滨州)求1+2+22+23+…+22012的值,可令S =1+2+22+23+…+22012,则2S =2+22+23+24+…+22013,因此2S ﹣S =22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为【 】 A .52012﹣1 B .52013﹣1 C .2013514- D .2012514-第二类: 数式类7. (2012江苏泰州)根据排列规律,在横线上填上合适的代数式:x ,23x ,35x , ,59x ,…. 8、(2012江苏)已知整数1234,,,,a a a a ⋅⋅⋅满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为【 】A .1005-B .1006-C .1007-D .2012-第三类: 图形类9、(2012贵州省毕节市)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。
中考数学第二轮总复习课件专题09探究题运动问题(全国通用)
底边BC出发,以2cm/s的速度沿DA方向匀速平移,分别交于AB,AC,AD于点
E,F,H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为ts(t>0)
(1)当t=2时,连接DE,DF,求证:四边形AEDF为菱形;
AБайду номын сангаас
(2)在整个运动过程中,所形成的△PEF的面积存
E H Fm
在最大值,当△PEF的面积最大时,求线段BP的长.
(1)在旋转过程中,BD的最小值为__2___; (2)当α=30º,试判断BD与⌒CD的位置关系,并给予证明;
A
(3)当C、D、B在同一直线上时,求BC的长。
A
A
D
D
D
C
O
B
O
O
C
B
E
B
D
C
强化训练
运动问题
提升能力
6.如图,在△ABC中,∠ACB=90º,AC=BC=5,在AC、BC边上分别截取CD=CE=3,
边形中,使OK与AB重合,按下列步骤操作:将正方形在正六边形中绕点B顺
时针旋转,使KM与BC重合,完成第一次旋转;再绕点C顺时针旋转,使MN与
CD重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距
离可能是( D ) A.1.4 B.1.1 C.0.8
D.0.5
E
D
FN MC
A(0) B(K)
(即P、D、Q三点在同一直线上);
P
E
B
(3)当4<t≤10时,求y与t之间的函数关系式.
D
OQ
Cx
01
知识点
02
03
点的运动 线段的运动 图形的运动
【优选】2020届数学中考复习讲解课件:专题复习(二) 规律与猜想
20
14.(2019·玉林)如图,在矩形 ABCD 中,AB=8,BC=4,一发光电 子开始置于 AB 边的点 P 处,并设定此时为发光电子第一次与矩形的边碰 撞,将发光电子沿着 PR 方向发射,碰撞到矩形的边时均反射,每次反射的 反射角和入射角都等于 45°.若发光电子与矩形的边碰撞次数经过 2 019 次 后,则它与 AB 边的碰撞次数是 673 .
12
按照以上规律,解决下列问题:
(1)写出第 6 个等式: 121=61+616 (2)写出你猜想的第 n 个等式:
; 2n2-1=n1+n(2n1-1)
(用含
n
的等
式表示),并证明. 证明:∵n1+n(2n1-1)=n(22nn--11)+n(2n1-1)=n2(n2-n1-+11)=
2n2-1,
22
(2019·鄂州)如图,在平面直角坐标系中,点 A1,A2,A3,…,
An 在
x
轴上,点
B1,B2,B3,…,Bn 在直线
y=
3 3x
上.若
A1(1,0),且
△ A1B1A2,△ A2B2A3,…,△ AnBnAn+1 都是等边三角形,从左到右的小三
角形(阴影部分)的面积分别记为 S1,S2,S3,…,Sn,则 Sn 可表示为( D ) A.22n 3
A.(
22,-
2 2)
B.(1,0)
C.(-
22,-
2 2)
D.(0,-1)
26
17.(2019·广元)如图,过点
A0(0,1)作
y
轴的垂线交直线
l:y=
3 3x
于
点 A1,过点 A1 作直线 l 的垂线,交 y 轴于点 A2,过点 A2 作 y 轴的垂线交
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于C的对称点处,….如此下去。
(1)在图中画出点M、N,并写出点M、N
M
的坐标:_M_(_-_2_,__0_)_____N_(_4_,__4_)__;
●
(2)求经过第2017次跳动之后,棋子落点
与点P的距离。
2017÷3=672……1 所以经过2017次跳动后棋子落在点M。 距离为
22 22 2 2
第三步:根据找出的规律4 写出第n个等式;
实战演练1: 1.观察下列关于自然数的等式: (1)32—4×12=5 (2)52—4×22=9 (3)72—4×32=13 …… 根据上述规律解决问题:
(1)完成第四个等式:92—4×( 4 )2=( 17 );
(2)写出猜想的第n个等式(用含n的式子表示),验证其正确性。
(1)观察图形完成下表:
图形名称 图(1) 图(2) 图(3) 图(4)
…
基本图的个数 1 2 3 4 …
特征点的个数
7
12
17
22
猜想:图(n)特征点的个数 5n+2 (用n表示) 8
3. 点坐标变化规律
(2)如图,将图(n)放在直角坐标系中,设第一个基本图的对称中心O1的坐标为
(x1,2),则x1=_____3__;O2017的坐标__(_4_0_3__3__3_,_2_)__;图(2017)的对称中心的 横坐标__2_0_1_7___3_;
1,2, 3, 4, 5, 6 ,7 ,8 … __ຫໍສະໝຸດ ____1, 3,5,
7, … ____2_n_
2n-1
-1,2,-3, 4,-5, 6 ,-7 ,8 … _(__1)_n_n_ 2n
1.数式变化规律
1,2, 3, 4, 5, 6 ,7 ,8 … x,2x2,3x3,4x4,5x5,6x6,7x7, 8x8 … nxn
? 1 1 1 1 ; 2 2 2 2 ; 3 3 3 3 ; ....... 22 3 3 4 4 猜想第n个等式
例1:观察下列等式:
1 1 1 1 ; 2 2 2 2 ;3 3 3 3 ;.......
2 23 34 4
(1)猜想第n个等式
(用含n的式子表示)
(2)证明你写出的等式的正确性.
课堂小结
知识层面: 数式、图形、点坐标变化规律
思想层面: 数形结合、特殊到一般、一般到特殊
方法层面: 三种方法归纳
课后作业
完成提纲上剩余的题
感谢同学们的合作!
解:(2)第n个等式为(2n+1)2-4n2=4n+1;
∵左边=4n2+4n+1-4n2=4n+1=右边 ∴第n个等式成立
2.按一定规律排列的一列数:31,32,33,35,38,313,…,若x、y、z
表示这列数中的连续三个数,猜想x、y、z满足的关系式__x__y_=__z__.
2.图形变化规律
O1( 3, 2)
O2 (3 3, 2)
O3(5 3, 2)
23 23 23 23
On ((2n 1) 3, 2)
23
O2017 (4033 3, 2)
方法归纳: (1)求几个特殊点的坐标; (2)归纳总结一般规律; (3)根据要求写出坐标;
实战演练3:
1.平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向 右的方向依次不断移动,每次移动1个单位。行走路线如图所示。
例2.(1)观察下列图形与等式的关系,填空:
42 n2
(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的 代数式填空:
n2
2n-1+2=2n+1
2n+1
2n2+2n+1
n2
方法归纳:
(1)对图形进行分割,发现 隐含的变化规律; (2)根据规律得到结论;
实战演练2:
我们把正六边形的顶点及其对称中心称作基本图的特征点,如图(1)这样的基本 图共有7个特征点。将此基本图不断复制并平移,使相邻两个基本图的一边重合,得到 图(2)、图(3),……。
① 1 1 1 1 ;
22
② 2 2 2 2;
3
3
(2)证明:∵右边=n(n 1) n n2 n n= n2 =左边
n 1
n1 n1
∴等式成立
③ 3 3 3 3 ;.......
4
4
? n n n n ; n1 n1
方法归纳:
第一步:写成竖式,标序号①,②, ③…… 第二步:找出等式中变与不变的部分,分析 “变”的规律与序号间关系;
(1)填写下列各点坐标: A5 (_2_, 1__) A9 (_4_,, _1,_) (2)写出A4n1 坐标(n是正整数);(2n,1)
A13 (_6_, _1;_)
思考题
如图,坐标系中,一棋子从点P处开始依次
关于点A、B、C作循环对称跳动,即第一次
N
●
跳到点P关于点A的对称点M处,接着跳到点
M关于点B的对称点N处,第三次再跳到点N