第8节 曲线与方程

合集下载

线与圆锥曲线的位置关系(八大题型)(课件)-2025年高考数学一轮复习(新教材新高考)

线与圆锥曲线的位置关系(八大题型)(课件)-2025年高考数学一轮复习(新教材新高考)


,两式相减得

+ −

+

+
=
+


=

− ,故

=



=
知识梳理·基础回归
知识点3:点差法

(2)运用类似的方法可以推出;若是双曲线

, ,则 =
= 1,①
= 1②
①-②得
1 +2 1 −2
16
+
1 +2 1 −2
12
= 0,

3
1
2
∵ 1 + 2 = 4,1 + 2 = 2,∴ = − = − 2,
1
∴此弦所在的直线方程为 − 1 =
【方法技巧】
点差法
3
− (
2
2
− 2),即3 + 2 − 8 = 0.
2

2
2
【解析】当 ≥ 0时,曲线 −
= 1,即 − =
9
4
9
4
3
一条渐近线方程为: = 2 ,直线与渐近线平行;
当 <
2
0时,曲线
9


4
=
2
1,即
9
2
+
4
画出曲线和直线的图像,如图所示:
根据图像知有2个公共点.
故选:B
1,双曲线右半部分;
= 1,椭圆的左半部分;
).
题型突破·考法探究
16
弦所在的直线方程为
2
+
12

课件8:2.2.1 双曲线及其标准方程

课件8:2.2.1  双曲线及其标准方程

(2)将||PF2|-|PF1||=2a=6,两边平方,得 |PF1|2+|PF2|2-2|PF1|·|PF2|=36, ∴|PF1|2+|PF2|2=36+2|PF1|·|PF2|= 36+2×32=100. 在△F1PF2 中,由余弦定理,得 cos∠F1PF2=|PF1|22+|PF|P1F|·2|2|P-F|F2| 1F2|2 =2|1P0F01-|·1|P00F2|=0,∴∠F1PF2=90°, ∴S△F1PF2=12|PF1|·|PF2|=12×32=16.
典型例题
题型一 求双曲线的标准方程 【例 1】 根据下列条件,求双曲线的标准方程. (1)经过点 P3,145,Q-136,5; (2)c= 6,经过点(-5,2),焦点在 x 轴上.
[思路探索] 由于(1)无法确定双曲线焦点的位置,可设ax22-by22= 1(a>0,b>0)和ay22-bx22=1(a>0,b>0)两种情况,分别求解.另外 也可以设双曲线方程为 mx2+ny2=1(mn<0)或xm2+yn2=1(mn<0), 直接代入两点坐标求解.对于(2)可设其方程为ax22-by22=1(a>0,
b>0)或λx2 -6-y2 λ=1(0<λ<6).
解 (1)法一 若焦点在 x 轴上,设双曲线的方程为ax22-by22= 1(a>0,b>0), 由于点 P3,145和 Q-136,5在双曲线上, 所以a29925a-62 -12622bb5522==11,,解得ab22= =- -196,(舍去). 若焦点在 y 轴上,设双曲线的方程为ay22-bx22=1(a>0,b>0),
【变式 2】 已知双曲线x92-1y62 =1 的左、右焦点分别是 F1、F2, 若双曲线上一点 P 使得∠F1PF2=60°,求△F1PF2 的面积. 解 由x92-1y62 =1,得 a=3,b=4,c=5. 由定义和余弦定理,得|PF1|-|PF2|=±6, |F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°, 所以 102=(|PF1|-|PF2|)2+|PF1|·|PF2|, 所以|PF1|·|PF2|=64, ∴S△F1PF2=12|PF1|·|PF2|·sin∠F1PF2

8.3 曲面及其方程

8.3 曲面及其方程

2 2

y b
2 2

z c
2 2
1
x
x
y
2 2

y b
2 2

z c
2 2
1
o
y
z
5、椭圆抛物面
x a
2 2

y b
2 2
z
z
x
o
z
y
6、双曲抛物面(马鞍面)
x a
2 2

y b
2 2
z
y
o
x
7、椭圆柱面
x a
2 2

y b
2 2
1
z
o
y
x
8、双曲柱面
x a
2 2

y b
2 2
1
z
曲线 f ( y , z ) 0 绕 z 轴旋转 一周的曲面方程: f ( y1 , z1 ) 0 旋转到M点时,有 d y1
f
M (0, y , z ) f ( y, z ) 0 M
d
1 1 1
在坐标平面曲线上取

x y , z 0
2 2

o
y
x
M ( x, y, z )
特别,当M0在原点时,球面方程为
x y z R
2 2 2 2
z
M0
表示上(下)球面 .
x
机动 目录
M
o
y
上页
下页
返回
结束
例2. 研究方程 的曲面.
解: 配方得 此方程表示: 球心为 M 0 (1, 2, 0 ) , 半径为 5 的球面. 说明: 如下形式的三元二次方程 ( A≠ 0 )

双曲线及其标准方程 课件-高中数学人教A版(2019)选择性必修第一册

双曲线及其标准方程 课件-高中数学人教A版(2019)选择性必修第一册
l
什么?
如图,双曲线的焦距为2( > 0),焦点1 ,2 的坐标分
别是(0, − ),(0, ),,的意义同上,这时双曲线的
2
方程是 2

2
− 2

的标准方程.
= 1( > 0, > 0),这个方程也是双曲线
新知探索
辨析1.判断正误.
2
(1)在双曲线标准方程 2

2
(2)方程
l
动点满足什么几何条件?两圆交点的轨迹是什么形状?
新知探索
我们发现,在|| < |1 2 | < || + ||的条件下,点在线段外运动时,
l
当点靠近定点1 时,|2 | − |1 | = ||;当点靠近定点2 时,|1 | −
|2 | = ||.总之,点与两个定点1 ,2 距离的差的绝对值||是一个常数
).
D.−1 < < 2或 > 2
练习
方法技巧:
2
将双曲线的方程化为标准方程的形式,假如双曲线的方程为

< 0时,方程表示双曲线.
> 0,

则方程表示焦点在轴上的双曲线;
< 0,
< 0,

则方程表示焦点在轴上的双曲线.
> 0,
2
+

= 1,则当
练习
2
变2.若曲线
运算,在运算中要注意整体思想和一些变形技巧的应用.
练习
2
变1.已知双曲线:
9
2

16
= 1的左、右焦点分别为1 ,2 ,为双曲线的右支上一
点,且|2 | = |1 2 |,则∆1 2 的面积等于__________.

高中数学说课稿:《曲线和方程》第一课时优秀说课稿模板

高中数学说课稿:《曲线和方程》第一课时优秀说课稿模板

高中数学说课稿:《曲线和方程》第一课时优秀说课稿模板高中数学说课稿:《曲线和方程》第一课时优秀说课稿模板曲线和方程说课教案(第一课时)四川省科学城一中秦美蓉1.对教材地位与作用的认识在高中数学教学中,作为数学思想应向学生渗透,强化的有:函数与方程思想;数形结合思想;分类讨论思想;等价转化及运动变化思想。

不是所有的课都能把这些思想自然的容纳进去,但由于“曲线和方程”这一节在教材中的特殊地位,它把代数和几何两个单科自然而紧密地结合在一起,因而上述思想能用到大半,这不能不引起我们教师的重视。

“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“依形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,用代数的方法研究几何问题。

”曲线与方程”是解析几何中最为重要的基本内容之一.在理论上它是基础,在应用上它是工具,对全部解析几何的教学有着深远的影响,另外在高考中也是考察的重点内容,尤其是求曲线的方程,学生只有透彻理解了曲线与方程的含义,才算是找到了解析几何学习得入门之路。

应该认识到这节“曲线和方程”得开头课是解析几何教学的“重头戏”!2.教学目标的确定及依据本小节的重点是理解曲线与方程的有关概念与相互联系,以及求曲线方程的方法、步骤.只有深刻理解了曲线与方程的含义,才能真正掌握好求曲线轨迹方程的一般方法,进一步学好后面的内容.曲线和方程的概念比较抽象,由直观表象到抽象概念有相当难度,对学生理解上可能遇到的问题是学生不理解“曲线上的点的坐标都是方程的解”和”“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系各自所起的作用。

有的学生只从字面上死记硬背;有的学生甚至误以为这两句话是同义反复。

要突破这一点,关键在于利用充要条件,函数图象,直线和方程,轨迹等知.识,正反两方面说明问题.本节课的难点在于对定义中为什么要规定两个关系(纯粹性和完备性)产生困惑,原因是不理解两者缺任何一个都将扩大概念的外延.4.对教学过程的设计今天要讲的“曲线和方程”这部分教材的内容主要包括“曲线方程的概念”,“已知曲线求它的方程”、“已知方程作出它的曲线”等。

高二数学 第八章 圆锥曲线方程: 8.4双曲线的简单几何性质优秀教案

高二数学 第八章 圆锥曲线方程: 8.4双曲线的简单几何性质优秀教案

高二数学第八章圆锥曲线方程: 8.4双曲线的简单几何性质优秀教案教学目的:1.使学生掌握双曲线的范围、对称性、顶点、渐近线等几何性质2.掌握标准方程中c,的几何意义a,b3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题教学重点:双曲线的渐近线及其得出过程教学难点:渐近线几何意义的证明授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:本节知识是讲完了双曲线及其标准方程之后,反过来利它是教学大纲要求学生必须掌握的内容,也是高考的一个考点用坐标法研究几何问题,是数学中一个很大的课题,它包含了圆锥曲线知识的众多方面,这里对双曲线的几何性质的讨论以及利用性质来解题即是其中的一个重要部分坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学 运动变化和对立统一的思想观点在第8章知识中得到了突出体现,我们必须充分利用好这部分教材进行教学利用图形启发引导学生理解渐近线的几何意义、弄通证明的关键;渐近线的位置、渐近线与双曲线张口之间的关系是学生学习离心率的概念、搞懂离心率与双曲线形状之间的关系的关键;要突破第二定义得出过程这个难点本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比讲解,主要应指出它们的联系与区别 对圆锥曲线来说,渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,为说明这一点,教学时可以适当补充一些例题和习题 讲解完双曲线的渐近线后,要注意说明:反过来以1=±bya x 为渐近线的双曲线方程则是λ=-2222b y a x对双曲线离心率进行教学时要指明它的大小反映的是双曲线的张口大小,而椭圆离心率的大小反映的是椭圆的扁平程度 同椭圆一样,双曲线有两种定义,教材上以例3的教学来引出它,我们讲课时要充分注意到此例题与后面的定义在教学上的逻辑关系,突出考虑学生认知心理的变化规律本节分三个课时:第一课时主要讲解双曲线的范围、对称性、顶点、渐近线等几何性质,并补充一道变式例题;第二课时主要内容为离心率、教材中的例1、例2及一道变式例题;第三课时主要讲解教材中的例3、双曲线另一个定义、准线概念教学过程:一、复习引入:二、讲解新课: 1.范围、对称性由标准方程12222=-by a x 可得22a x ≥,当a x ≥时,y 才有实数值;对于y 的任何值,x 都有实数值 这说明从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心2.顶点顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长讲述:结合图形,讲解顶点和轴的概念,在双曲线方程12222=-by a x 中,令y=0得a x ±=,故它与x 轴有两个交点()0,),0,(21a A a A -,且x轴为双曲线12222=-b y a x 的对称轴,0,),0,(21a A a A -称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交点),而对称轴上位于两顶点间的线段21A A 叫做双曲线12222=-b y a x 的实轴长,它的长是2a. 在方程12222=-by a x 中令x=0得22b y -=,这个方程没有实数根,说明双曲线和Y 轴没有交点。

高等数学 -空间曲线及其方程

高等数学 -空间曲线及其方程
高等数学(下)
第四节
第七章
空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
一、空间曲线的一般方程
空间曲线可视为两曲面的交线, 其一般方程为方程组
例如,方程组
S2
G(x, y, z) 0
L
S1
F(x, y, z) 0
z
表示圆柱面与平面的交线 C.
2C
y
sin
1 x
,
,
求证: lim f (x, y) 0.
x0
y0
证: f (x, y) 0
x y
xy 0 xy 0
要证
ε
ε 0, δ ε 2,当0 ρ x2 y2 δ 时,总有

lim f (x, y) 0
x0
y0
证: Q 0 f (x, y)
x y 0 x 0, y 0
若对任意给定的 , 点P 的去心
E
邻域
内总有E 中的点 , 则
称 点P 是 E 的聚点. 聚点可以属于 E , 也可以不属于 E (因为聚点可以为
E 的边界点 )
所有聚点所成的点集成为 E 的导集 .
(3) 开区域及闭区域
• 若点集 E 的点都是内点,则称 E 为开集;
• E 的边界点的全体称为 E 的边界, 记作E ;
• 若存在点 P 的某邻域 U(P)∩ E = ,
则称 P 为 E 的外点 ;
• 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E
的外点 , 则称 P 为 E 的边界点 .
显然, E 的内点必属于 E , E 的外点必不属于 E , E 的
边界点可能属于 E, 也可能不属于 E .

高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第8节 直线与圆锥曲线的位置关系

高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第8节 直线与圆锥曲线的位置关系

P1F1P2F2的面积.

(2)解:由已知得


- = ,
2
2
解得 a =2,b =1,
+ = ,

2
所以双曲线方程为 -y =1.



根据(1)的结论直线 P1P2 的斜率为 ÷=,

所以直线 P1P2 的方程为 y-1=(x-2),即 x=3y-1,
判断直线与圆锥曲线的位置关系的方法
(1)代数法:直线与圆锥曲线方程联立,利用判别式求解;
(2)几何法:直线过定点时,若定点在圆锥曲线内部,则直线一定与
圆锥曲线相交;
若定点在圆锥曲线上,则直线与圆锥曲线相交或相切;
若定点在圆锥曲线外部,则直线与圆锥曲线相交、相切或相离.
[针对训练] 直线y=kx(k>0)与双曲线
+
等式两边同除以(x1+x2)(x1-x2),得
+
·
-
-




· =0,即 k1k2= .
(2)若双曲线的焦点分别为 F1(- ,0),F2( ,0) ,点P1 的坐标为

(2,1), 直 线 OM 的 斜 率 为 , 求 由 四 点 P1,F1,P2,F2 所 围 成 四 边 形


代入双曲线方程可解得 P2(- ,-),注意到 P1,P2 在直线 F1F2 的两侧,




所以四边形 P1F1P2F2 的面积为 |F1F2|·|y1-y2|= × =

.
解决圆锥曲线“中点弦”问题的思路
(1)根与系数的关系法:联立直线和圆锥曲线的方程得到方程组,消元
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8节曲线与方程考试要求 1.了解方程的曲线与曲线的方程的对应关系;2.了解解析几何的基本思想和利用坐标法研究曲线的简单性质;3.能够根据所给条件选择适当的方法求曲线的轨迹方程.知识梳理1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点的轨迹方程的基本步骤[常用结论与微点提醒]1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系:(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.()(2)方程x2+xy=x的曲线是一个点和一条直线.()(3)动点的轨迹方程和动点的轨迹是一样的.()(4)方程y=x与x=y2表示同一曲线.()解析对于(2),由方程得x(x+y-1)=0,即x=0或x+y-1=0,所以方程表示两条直线,错误;对于(3),前者表示方程,后者表示曲线,错误;对于(4),曲线y=x是曲线x=y2的一部分,错误.答案(1)√(2)×(3)×(4)×2.(老教材选修2-1P37A2改编)已知M(-1,0),N(1,0),|PM|-|PN|=2,则动点P的轨迹是()A.双曲线B.双曲线左支C.一条射线D.双曲线右支解析由于|PM|-|PN|=|MN|,所以A,B,D不正确,应为以N为端点,沿x轴正向的一条射线.答案 C3.(老教材选修2-1P37A1改编)已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则点P的轨迹方程是________.解析由角的平分线性质定理得|P A|=2|PB|,设P(x,y),则(x+2)2+y2=2(x-1)2+y2,整理得(x-2)2+y2=4(y≠0).答案(x-2)2+y2=4(y≠0)4.(2019·广州调研)方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A.两条直线 B.两条射线C.两条线段D.一条直线和一条射线解析 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条射线和一条直线. 答案 D5. (2020·重庆一中月考)已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ) A.双曲线 B.椭圆 C.圆D.抛物线解析 由已知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线. 答案 D6. (2020·福州调研)已知点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线的中点的轨迹方程是________________.解析 设AP 的中点坐标为(x ,y ),则P (2x ,2y +1),由点P 在曲线上,得2·(2x )2-(2y +1)=0,即y =4x 2-12. 答案 y =4x 2-12考点一 直接法求轨迹方程【例1】 (1)已知A (-1,0),B (1,0)两点,过动点M 作x 轴的垂线,垂足为N ,若MN →2=λAN →·NB →,则当λ<0时,动点M 的轨迹为( ) A.圆 B.椭圆 C.双曲线D.抛物线(2)(2020·西安调研)在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-13.则动点P的轨迹方程为________________.解析(1)设M(x,y),则N(x,0),所以MN→2=y2,λAN→·NB→=λ(x+1,0)·(1-x,0)=λ(1-x2),所以y2=λ(1-x2),即λx2+y2=λ,变形为x2+y2λ=1,所以当λ<0时,动点M的轨迹为双曲线.(2)因为点B与点A(-1,1)关于原点O对称,所以点B的坐标为(1,-1).设点P的坐标为(x,y),由题意得y-1x+1·y+1x-1=-13,化简得x2+3y2=4(x≠±1) .故动点P的轨迹方程为x2+3y2=4(x≠±1.)答案(1)C(2)x2+3y2=4(x≠±1)规律方法利用直接法求轨迹方程(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简.(2)运用直接法应注意的问题:①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的;②若方程的化简过程是恒等变形,则最后的验证可以省略.【训练1】与y轴相切并与圆C:x2+y2-6x=0也外切的圆的圆心的轨迹方程为________.解析若动圆在y轴右侧,设与y轴相切,且与圆x2+y2-6x=0外切的圆的圆心为P(x,y)(x>0),则半径长为|x|,因为圆x2+y2-6x=0的圆心为(3,0),所以(x-3)2+y2=|x|+3,则y2=12x(x>0),若动圆在y轴左侧,则y=0,即圆心的轨迹方程为y2=12x(x>0)或y=0(x<0).答案y2=12x(x>0)或y=0(x<0)考点二定义法求轨迹方程典例迁移【例2】(经典母题)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P 与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.求C的方程.解由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4>|MN|=2.由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x24+y23=1(x≠-2).【迁移1】将本例的条件“动圆P与圆M外切并且与圆N内切”改为“动圆P 与圆M、圆N都外切”,则圆心P的轨迹方程为________.解析由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R,因为圆P与圆M,N都外切,所以|PM|-|PN|=(R+r1)-(R+r2)=r1-r2=-2,即|PN|-|PM|=2,又|MN|=2,所以点P的轨迹方程为y=0(x<-2).答案y=0(x<-2)【迁移2】在本例中,若动圆P过圆N的圆心,并且与直线x=-1相切,则圆心P的轨迹方程为________.解析由于点P到定点N(1,0)和定直线x=-1的距离相等,所以根据抛物线的定义可知,点P的轨迹是以N(1,0)为焦点,以x轴为对称轴、开口向右的抛物线,故其方程为y2=4x.答案y2=4x规律方法定义法求曲线方程的两种策略(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.(2)定义法和待定系数法适用于已知曲线的轨迹类型,利用条件把待定系数求出来,使问题得解.【训练2】 (2020·豫北名校联盟联考)已知△ABC 中,AB =2,且sin A (1-2cos B )+sin B (1-2cos A )=0,以边AB 的中垂线为x 轴,以AB 所在的直线为y 轴,建立平面直角坐标系,则动点C 的轨迹方程为________.解析 在△ABC 中,由sin A (1-2cos B )+sin B (1-2cos A )=0得sin A +sin B =2sin(A +B )=2sin C ,由正弦定理得|BC |2R +|AC |2R =2·|AB |2R (R 为△ABC 外接圆半径),可得|CB |+|CA |=2|AB |>|AB |.∴点C 的轨迹是以A ,B 为焦点的椭圆(除y 轴上的点),其中2a =4,2c =2,即a =2,c =1,∴b 2=a 2-c 2=3,故点C 的轨迹方程为y 24+x 23=1(x ≠0).答案 y 24+x 23=1(x ≠0)考点三 相关点(代入)法求轨迹方程【例3】 (1)(2020·银川模拟)动点A 在圆x 2+y 2=1上移动时,它与定点B (3,0)连线的中点的轨迹方程是________.(2)设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →,当点P 在y 轴上运动时,点N 的轨迹方程为________.解析 (1)设中点M (x ,y ),由中点坐标公式,可得A (2x -3,2y ),因为点A 在圆上,将点A 的坐标代入圆的方程,所以轨迹方程为(2x -3)2+4y 2=1.(2)设M (x 0,0),P (0,y 0),N (x ,y ),PM →⊥PF →,PM →=(x 0,-y 0),PF →=(1,-y 0),所以(x 0,-y 0)·(1,-y 0)=0,所以x 0+y 20=0.由MN →=2MP →得(x -x 0,y )=2(-x 0,y 0),所以⎩⎪⎨⎪⎧x -x 0=-2x 0,y =2y 0,即⎩⎨⎧x 0=-x ,y 0=12y ,所以-x +y 24=0,即y 2=4x .故所求点N 的轨迹方程是y 2=4x .答案 (1)(2x -3)2+4y 2=1 (2)y 2=4x 规律方法 “相关点法”的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 0,y 0). (2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 0=f (x ,y ),y 0=g (x ,y ).(3)代换:将上述关系式代入主动点满足的曲线方程,便可得到所求被动点的轨迹方程.【训练3】 (2020·长沙月考)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0), 设点A 的坐标为(x 0,y 0),由曲线的对称性, 得B (x 0,-y 0),设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3).① 直线A 2B 的方程为y =-y 0x 0-3(x -3).② 由①②相乘得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).A 级 基础巩固一、选择题1.方程(x -y )2+(xy -1)2=0表示的曲线是( )A.一条直线和一条双曲线B.两条双曲线C.两个点D.以上答案都不对解析 (x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.故⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1. 答案 C2.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则动点P 的轨迹是( ) A.直线 B.圆 C.椭圆D.双曲线解析 设P (x ,y ),则(x +2)2+y 2=2(x -1)2+y 2,整理得x 2+y 2-4x =0,所以动点P 的轨迹是圆.故选B. 答案 B3.(2019·怀化调研)已知F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,点P 是椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( ) A.x 236+y 227=1(y ≠0) B.4x 29+y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D.x 2+43y 2=1(y ≠0)解析 依题意知F 1(-1,0),F 2(1,0),设P (x 0,y 0)(y 0≠0),G (x ,y ),则由三角形重心坐标公式可得⎩⎪⎨⎪⎧x =x 0-1+13,y =y 03,即⎩⎪⎨⎪⎧x 0=3x ,y 0=3y ,代入椭圆C :x 24+y 23=1,得重心G 的轨迹方程为9x 24+3y 2=1(y ≠0). 答案 C4.已知|AB→|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,且OP →=13OA →+23OB →,则动点P 的轨迹方程是( )A.x 24+y 2=1 B.x 2+y 24=1C.x 29+y 2=1D.x 2+y 29=1解析 设A (0,a ),B (b ,0),则由|AB →|=3得a 2+b 2=9,设P (x ,y ),由OP →=13OA →+23OB →,得(x ,y )=13(0,a )+23(b ,0),由此得b =32x ,a =3y ,代入a 2+b 2=9,得9y 2+94x 2=9,即x 24+y 2=1.答案 A5.(2020·广东七校联考)设圆(x +2)2+y 2=36的圆心为C ,A (2,0)是圆内一定点,Q 是圆周上任一点,AQ 的垂直平分线与CQ 的交点为R ,则点R 的轨迹方程为( ) A.y 29+x 25=1 B.y 29-x 25=1 C.x 29+y 25=1D.x 29-y 25=1解析 连接AR ,由题意可知|RQ |=|RA |,所以|RC |+|RA |=|RC |+|RQ |=|CQ |=6>4=|AC |,所以点R 的轨迹是以A (2,0),C (-2,0)为焦点的椭圆,其中2a =6,2c =4,所以b 2=a 2-c 2=32-22=5,所以点R 的轨迹方程为x 29+y 25=1.故选C.答案 C 二、填空题6.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为________.解析 设点P 的坐标为(x ,y ),则MN →=(4,0),MP →=(x +2,y ),NP →=(x -2,y ),∴|MN →|=4,|MP →|=(x +2)2+y 2,MN →·NP→=4(x -2).根据已知条件得4(x +2)2+y 2=4(2-x ).整理得y 2=-8x .∴点P 的轨迹方程为y 2=-8x .答案 y 2=-8x7.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.解析如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,所以|CA|-|CB|=8-2=6,|AB|=10.即|CA|-|CB|<|AB|,根据双曲线的定义,所求轨迹是以A,B为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x>3).答案x29-y216=1(x>3)8.直线xa+y2-a=1与x,y轴交点的中点的轨迹方程是________.解析直线xa+y2-a=1与x,y轴的交点为A(a,0),B(0,2-a),设AB的中点为M(x,y),则x=a2,y=1-a2,消去a,得x+y=1.因为a≠0且a≠2,所以x≠0且x≠1.答案x+y=1(x≠0且x≠1)三、解答题9.已知坐标平面上动点M(x,y)与两个定点P(26,1),Q(2,1),且|MP|=5|MQ|.(1)求点M的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C,过点N(-2,3)的直线l被C所截得的线段长度为8,求直线l的方程.解(1)由题意,得|MP||MQ|=5,即(x-26)2+(y-1)2(x-2)2+(y-1)2=5,化简,得x2+y2-2x-2y-23=0,所以点M的轨迹方程是(x-1)2+(y-1)2=25. 轨迹是以(1,1)为圆心,以5为半径的圆. (2)当直线l的斜率不存在时,l:x=-2,此时所截得的线段长度为252-32=8, 所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0,圆心(1,1)到直线l 的距离d =|3k +2|k 2+1, 由题意,得⎝ ⎛⎭⎪⎫|3k +2|k 2+12+42=52,解得k =512.所以直线l 的方程为512x -y +236=0,即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.10.在平面直角坐标系中,已知A 1(-2,0),A 2(2,0),P (x ,y ),M (x ,1),N (x ,-2),若实数λ使得λ2OM →·ON →=A 1P →·A 2P →(O 为坐标原点). 求P 点的轨迹方程,并讨论P 点的轨迹类型. 解 OM→=(x ,1),ON →=(x ,-2), A 1P →=(x +2,y ),A 2P →=(x -2,y ). 因为λ2OM →·ON →=A 1P →·A 2P →, 所以(x 2-2)λ2=x 2-2+y 2,整理得(1-λ2)x 2+y 2=2(1-λ2)为点P 的轨迹方程. (1)当λ=±1时,方程为y =0,轨迹为一条直线; (2)当λ=0时,方程为x 2+y 2=2,轨迹为圆;(3)当λ∈(-1,0)∪(0,1)时,方程为x 22+y 22(1-λ2)=1,轨迹为中心在原点,焦点在x 轴上的椭圆;(4)当λ∈(-∞,-1)∪(1,+∞)时,方程为x 22-y 22(λ2-1)=1,轨迹为中心在原点,焦点在x 轴上的双曲线.B 级 能力提升11.如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A.直线B.抛物线C.椭圆D.双曲线的一支解析可构造如图所示的圆锥.母线与中轴线夹角为30°,然后用平面α去截,使直线AB与平面α的夹角为60°,则截口为P的轨迹图形,由圆锥曲线的定义可知,P的轨迹为椭圆,故选C.答案 C12.(2019·北京卷)数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过2;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A.①B.②C.①②D.①②③解析曲线的方程x2+y2=1+|x|y可看成关于y的一元二次方程y2-|x|y+x2-1=0,由题图可知该方程必有两个不相等的实根,∴Δ=|x|2-4(x2-1)>0,∴x2<4,3满足条件的整数x可取-1,0,1.当x=-1时,y=0或1,∴曲线C经过的整点有(-1,0),(-1,1);当x=0时,y=-1或1,∴曲线C经过的整点有(0,-1),(0,1);当x =1时,y =0或1,∴曲线C 经过的整点有(1,0),(1,1).故曲线C 恰好经过6个整点,①正确;∵x 2+y 2=1+|x |y ≤1+x 2+y 22,∴x 2+y 2≤2,∴x 2+y 2≤ 2 ,当且仅当|x |=y ,即⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =1时取等号,则曲线上的点到原点的最大距离为2,故②正确;顺次连接(-1,0),(-1,1),(0,1),(1,1),(1,0),(0,-1),(-1,0),所围成的区域如图中阴影部分所示,其面积为3,显然曲线C 所围成的“心形”区域的面积要大于3,故③不正确.故选C.答案 C13.已知过点A (-3,0)的直线与x =3相交于点C ,过点B (3,0)的直线与x =-3相交于点D ,若直线CD 与圆x 2+y 2=9相切,则直线AC 与BD 的交点M 的轨迹方程为________.解析 设点M (x ,y ),C (3,m ),D (-3,n ),则直线CD 的方程为(m -n )x -6y +3(m +n )=0,因为直线CD 与圆x 2+y 2=9相切,所以3|m +n |(m -n )2+36=3,所以mn =9,又直线AC 与BD 的交点为M ,所以⎩⎪⎨⎪⎧y x +3=y -m x -3,yx -3=y -n x +3,解得⎩⎪⎨⎪⎧m =6y x +3,n =-6y x -3,所以-36y 2x 2-9=9,所以点M 的轨迹方程为x 29+y 294=1(y ≠0).答案 x 29+y 294=1(y ≠0)14.如图,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.解 (1)由点A 的横坐标为2及点A 在第一象限,可得点A 的坐标为(2,2),代入y 2=2px ,解得p =1.(2)设C ⎝ ⎛⎭⎪⎫y 212,y 1,D ⎝ ⎛⎭⎪⎫y 222,y 2,y 1≠0,y 2≠0,切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝ ⎛⎭⎪⎫x -y 212,代入y 2=2x , 得ky 2-2y +2y 1-ky 21=0, 由Δ=0解得k =1y 1,所以l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立,得⎩⎪⎨⎪⎧y =1y 1x +y 12,y =1y 2x +y 22,解得⎩⎪⎨⎪⎧x =y 1·y 22,y =y 1+y 22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,22],联立,得⎩⎨⎧y 2=2x ,x 0x +y 0y =8,即x 0y 2+2y 0y -16=0,则⎩⎪⎨⎪⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x 0,代入⎩⎪⎨⎪⎧x =y 1·y 22,y =y 1+y 22,可得M (x ,y )满足⎩⎪⎨⎪⎧x =-8x 0,y =-y 0x 0,可得⎩⎪⎨⎪⎧x 0=-8x,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1,考虑到x 0∈[2,22],知x ∈[-4,-22],所以动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].C 级 创新猜想15.(多选题)曲线C 是平面内与两个定点F 1(-2,0)和F 2(2,0)的距离的积等于常数a 2(a 2>4)的点的轨迹,则下列结论正确的有( ) A.曲线C 过坐标原点 B.曲线C 关于x 轴对称 C.曲线C 关于坐标原点对称D.若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2 解析 设动点坐标为(x ,y ),由已知得(x +2)2+y 2·(x -2)2+y 2=a 2,即[(x +2)2+y 2]·[(x -2)2+y 2]=a 4(a 2>4),代入原点验证,方程不成立,故A 错;把方程中的y 被-y 代换,方程不变,故B 正确;把方程中的x 被-x 代换,y 被-y 代换,方程也不变,故C 正确;因为S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2≤12|PF 1||PF 2|=12a 2,即△F 1PF 2的面积不大于12a 2,故D 正确. 答案 BCD。

相关文档
最新文档