曲线与方程
§2.1 曲线与方程

建系--设点----限制条件--代入坐标--化简证明
以上步骤用一句话概括就是:建设现(限)代化. ... . .. . .
典型例题
例4.已知线段AB, B点的坐标(6,0),A点在曲线 y=x2+3上运动,求AB的中点M的轨迹方程. y 解;设AB的中点M的坐标为(x,y), y=x2+3 又设A(x1,y1),则
典型例题
例 1 已知一条直线 l 和它上方的一个点 F,点 F 到 l 的距离是 2.一条曲线也在 l 的上方,它上面的每一 点到 F 的距离减去到 l 的距离的差都是 2,建立适 当的坐标系,求这条曲线的方程.y源自.M( x, y )
B
(0 F., 2 )
0
l
x
练习
1.已知点 M 与 x 轴的距离和点 M 与点 F(0,4)的距 离相等,求点 M 的轨迹方程. 解:设点 M 的坐标为(x,y) 建立坐标系 ∵点 M 与 x 轴的距离为 y , 设点的坐标
10 8
x +6 x = 1 2 y = y1 2
x1 = 2x - 6 ∴ y1 = 2y
6
A
4
点A(x1,y1)在曲线y=x2+3上,则 y1=x1
2+3
2
M
代入,得 2y=(2x-6)2+3
整 理 ,得 AB的 中 点 的 轨 迹 方 程 为 y = 2 x - 3 +
√ √ 2.写出适合条件 P 的几何点集: √ 3.用坐标表示条件 ,列出方程 √ 4.化简方程 为最简形式; √ 5.证明(查漏除杂).
P (M ) f ( x, y ) 0
P M P ( M )
; ;
常用曲线和曲面的方程及其性质

常用曲线和曲面的方程及其性质曲线和曲面在三维空间中是常见的数学对象。
它们的方程可以通过几何性质描述它们的性质。
本文将介绍一些常用的曲线和曲面方程及其性质。
一、曲线方程1. 直线方程直线是一种最基本的曲线,它的方程可以写成一般式和斜截式两种形式。
一般式:$Ax+By+C=0$;斜截式:$y=kx+b$,其中$k$是直线的斜率,$b$是截距。
直线的斜率表示的是直线倾斜的程度,斜率越大表示直线越陡峭。
斜率等于零表示直线水平,而无限大则表示直线垂直于$x$轴。
2. 圆的方程圆是一种具有球面对称性质的曲线,它的方程可以写成两种形式:标准式和一般式。
标准式:$(x-a)^2+(y-b)^2=r^2$,其中$(a,b)$为圆心坐标,$r$为半径长度。
一般式:$x^2+y^2+Ax+By+C=0$,其中$A,B,C$是常数。
圆的标准式方程可以通过圆心和半径来描述圆的几何性质;而一般式方程则可以通过求圆的中心和半径来转化为标准式方程。
3. 椭圆的方程椭圆是一种内离于两个焦点的平面曲线,它的方程可以写成一般式和标准式两种形式。
标准式:$\frac{(x-a)^2}{a^2}+\frac{(y-b)^2}{b^2}=1$,其中$(a,b)$为椭圆中心坐标,$a$是横轴半径,$b$是纵轴半径。
一般式:$Ax^2+By^2+Cx+Dy+E=0$,其中$A,B,C,D,E$是常数。
椭圆的标准式方程中的$a$和$b$决定了椭圆的形状和大小。
当$a=b$时,椭圆变成了圆。
4. 抛物线的方程抛物线是一种开口朝上或朝下的U形曲线,它的方程可以写成两种形式:标准式和一般式。
标准式:$y=ax^2$,其中$a$是抛物线的参数。
一般式:$Ax^2+By+C=0$,其中$A,B,C$是常数。
抛物线的标准式方程中的参数$a$可以决定抛物线的开口方向,当$a>0$时开口向上,$a<0$时则开口向下。
5. 双曲线的方程双曲线是一种形状类似于抛物线的曲线,但它却有两个分支。
曲线与方程的关系

曲线与方程的关系
曲线与方程之间存在着密切的联系,它们不仅相互依存,而且彼
此又具有重要的数学意义。
首先,曲线是由一个函数表示的,而这个函数就是方程。
因此,
曲线和方程之间存在着直接的联系。
其次,通过求解该方程,可以得
到曲线的性质。
例如,如果曲线是抛物线,则可以根据抛物线的方程
来计算出它的顶点;如果曲线是椭圆,则可以通过椭圆方程来计算出
它的长轴和短轴等。
此外,曲线与方程还具有更为深刻的数学意义。
曲线和方程能够
反映物理和化学现象的发展趋势,并且可以使用数学工具对其进行解
析和研究。
更重要的是,曲线和方程也可以用于描述某些重要的场景,如关于经济学、生态学等的分析。
因此,曲线与方程之间有着密不可分的关系,而这种关系有着重
要的数学意义。
正是由于曲线和方程能够将复杂的物理世界变为易于
理解和推导的数学现象,它们才能够为人们在研究自然界现象中提供
强大的帮助。
曲线与方程

曲线与方程一、曲线与方程的关系:一般地,在坐标平面内的一条曲线C 与一个二元方程(,)0F x y =之间, 如果具有以下两个关系:1.曲线C 上的点的坐标,都是 的解;2.以方程(,)0F x y =的解为坐标的点,都是 的点,那么,方程(,)0F x y =叫做这条曲线C 的方程;曲线C 叫做这个方程(,)0F x y =的曲线.二、求轨迹方程的常用方法有:直接法,定义法,待定系数法,参数法,相关点法(代入法),交轨法等.三、求曲线的方程的步骤:①建立适当的坐标系,用(,)M x y 表示曲线上的任意一点的坐标;②写出适合条件P 的点M 的集合{|()}P M p M =;③用坐标表示条件P ,列出方程(,)0f x y =;④将方程(,)0f x y =化为最简形式;⑤说明以化简后的方程的解为坐标的点都在曲线上.四、直线系 具有某种共同属性的一类直线的集合,称为直线系.它的方程称直线系方程.(1)共点直线系:过已知点 P (x 0 , y 0 ) 的直线系方程 y − y 0 = k (x − x 0 ) (k 为参数) (2)平行直线系:斜率为 k 的直线系方程 y = kx + b (b 是参数)与已知直线 Ax + By + C = 0 平行的直线系方程 Ax + By + λ = 0 (λ 为参数)(3)垂直直线系:与已知直线 Ax + By + C = 0 垂直的直线系方程Bx − Ay + λ = 0(λ 为参数)(4)过直线 l 1 :A 1 x + B 1 y + C 1 = 0 与 l 2 :A 2 x + B 2 y + C 2 = 0 的交点的直线系方程:A 1 x + B 1 y + C 1 + λ(A 2 x + B 2 y + C 2 ) = 0(λ 为参数),此直线系不含直线 l 2例1: “ 以方程 f(x, y) = 0 的解为坐标的点都在曲线 C 上” 是 “ 曲线 C 的方程是 f(x,y) = 0 ” 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件下列方程各表示什么曲线?① 29y x -=② 0324222=++-+y x y x 0)9)(2(22=-+-+y x y x例2: 设圆 C : (x − 1)2 + y 2 = 1 ,过原点 O 作圆的任意弦,求所作弦的中点的轨迹方程.练习1:(直接法)已知线段AB 的长度为10,它的两个端点分别在x 轴,y 轴上滑动,求AB 的中点P 的轨迹方程。
曲线及其方程知识点总结

曲线及其方程知识点总结一、直线的方程1. 斜率和截距法直线的方程可以用斜率和截距来表示。
直线的斜率是指直线上一点的纵坐标和横坐标的变化率,截距是指直线和y轴或x轴相交的坐标。
若直线的斜率为m,截距为b,则直线的方程可以表示为y=mx+b或者x=my+b。
2. 两点式直线的两点式表示了通过两个已知点的直线方程。
若已知直线上两点A(x1, y1)和B(x2,y2),则直线的方程可以表示为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
3. 截距式直线的截距式表示了直线和坐标轴的截距关系。
若已知直线的x轴截距为a,y轴截距为b,则直线的方程可以表示为x/a+y/b=1。
二、曲线的方程1. 二次曲线二次曲线的一般方程可以表示为Ax^2+Bxy+Cy^2+Dx+Ey+F=0。
其中A、B、C、D、E、F为常数。
二次曲线包括圆、椭圆、双曲线和抛物线等。
- 圆的方程圆的一般方程可以表示为(x-h)^2+(y-k)^2=r^2。
其中(h,k)表示圆心的坐标,r表示圆的半径。
- 椭圆的方程椭圆的一般方程可以表示为(x-h)^2/a^2+(y-k)^2/b^2=1。
其中(h,k)表示椭圆的中心坐标,a和b分别表示椭圆在x轴和y轴的半轴长。
- 双曲线的方程双曲线的一般方程可以表示为(x-h)^2/a^2-(y-k)^2/b^2=1。
或者(x-h)^2/a^2-(y-k)^2/b^2=-1。
其中(h,k)表示双曲线的中心坐标,a和b分别表示双曲线在x轴和y轴的半轴长。
- 抛物线的方程抛物线的一般方程可以表示为y=ax^2+bx+c或者x=ay^2+by+c。
其中a不等于0。
抛物线的开口方向取决于系数a的正负性。
2. 极坐标方程极坐标方程是一种表示曲线的方程,它使用极坐标系下的极径r和极角θ来表示曲线上任意一点的位置。
极坐标方程可以表示为r=f(θ),其中f(θ)为极坐标方程的极坐标函数。
三、参数方程参数方程是一种用参数的形式表示曲线的方程。
第二章 2.1 曲线与方程

跟踪训练 4 对任意平面向量A→B=(x,y),把A→B绕其起点沿逆时针方向旋转 θ 角
得到向量A→P=(xcos θ-ysin θ,xsin θ+ycos θ),叫做把点 B 绕点 A 逆时针方向旋
转 θ 角得到点 P.设平面内曲线 C 上的每一点绕原点沿逆时针方向旋转4π后得到的
二、曲线与方程的应用
例2 已知方程x2+(y-1)2=10. (1)判断点 P(1,-2),Q( 2,3)是否在上述方程表示的曲线上;
解 ∵12+(-2-1)2=10,( 2)2+(3-1)2=6≠10, ∴点P(1,-2)在方程x2+(y-1)2=10表示的曲线上, 点 Q( 2,3)不在方程 x2+(y-1)2=10 表示的曲线上.
√C.不在曲线C上的点的坐标必不适合f (x,y)=0
D.不在曲线C上的点的坐标有些适合f (x,y)=0,有些不适合f (x,y)=0
(2)分析下列曲线上的点与相应方程的关系: ①与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;
解 与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方 程xy=5的解为坐标的点一定满足与两坐标轴的距离之积等于5.因此,与两 坐标轴的距离的积等于5的点的轨迹方程不是xy=5.
1.若命题“曲线C上点的坐标都是方程f (x,y)=0的解”是真命题,则下列命 题为真命题的是 A.方程f (x,y)=0所表示的曲线是曲线C
√B.方程f (x,y)=0所表示的曲线不一定是曲线C
C.f (x,y)=0是曲线C的方程 D.以方程f (x,y)=0的解为坐标的点都在曲线C上
解析 “曲线C上点的坐标都是方程f (x,y)=0的解”,但以方程f (x,y)=0 的解为坐标的点不一定在曲线C上,故A,C,D都为假命题,B为真命题.
曲线与方程

曲线与方程
曲线与方程是数学中常见的概念,它们之间有很多共同的地方,
但也有一些不同之处。
曲线是一种描述函数行为的几何图形。
它由一个或多个参数确定,通常是空间中的一条曲线,表示为x和y的函数,或者以极坐标系的
形式表示为ρ和θ的函数。
曲线的形状受参数的取值范围、参数的
关系以及参数的交互作用的影响。
方程,又称为函数方程,以数学表达式的形式表示多个变量之间
的关系,它是一种描述系统性质运动和事物变化规律的工具。
方程通
常用一个或多个未知量来表示,通过求解方程组可找到这些未知量的值,从而得出有关个系统的描述。
虽然曲线和方程都是数学概念,但它们不是一回事。
方程是一种
广义的概念,它可用于描述任何函数,而曲线只是一种特殊的函数,
也就是说,曲线也可以用方程来表示。
通常情况下,曲线是二维空间
上的图形,而方程是一种关系表达式,可以用来解释性地描述曲线。
总之,曲线和方程之间是有联系的,但它们是两个不同的概念,
曲线是用来描述函数行为的几何图形,而方程则是用数学表达式来描
述多个变量之间的关系。
曲线与方程ppt课件

1.曲线和方程的关系: (1)曲线上的点的坐标都是方程的解,无一例外; (2)以这个方程的解为坐标的点都在曲线上,缺一不可. 2.求曲线方程的一般步骤: ①建系 ②设动点 ③限制条件 ④代入 ⑤化简. 3.求曲线方程的关键是找关系列等式,常见方法为直译法 和代入法.
即 (x+a)2+y2· (x-a)2+y2 = x2+(y+b)2· x2+(y-b)2. 化简得 x2-y2=a2-2 b2.
题型三 代入法求轨迹方程 例 4 已知 A(-2,0)、B(2,0),点 C、D 满足|A→C|=2,A→D =12(A→B+A→C).求点 D 的轨迹方程.
解析 设点 C、D 的坐标分别为(a,b)、(x,y),则A→C=(a +2,b),A→B=(4,0).
例 3 设△ABC 的周长为 18,|AB|=8,求顶点 C 的轨迹方 程.
解析 如右图所示,以线段 AB 的中点 O 为坐 标原点,线段 AB 所在的直线为 x 轴建立直角坐标系, 由于|AB|=8.∴A(-4,0),B(4,0),
设 C(x,y)为所求轨迹上任意点,∵|AC|+|BC| =10,
解析 (1)错误.因为以方程|x|=2 的解为坐标的点,不都 在直线 l 上,直线 l 只是方程|x|=2 所示的图形的一部分.
(2)错误.因为到两坐标轴距离相等的点的轨迹有两条直线 l1 和 l2(如图所示),直线 l1 上的点的坐标都是方程 y=x 的解,但 是直线 l2 上的点(除原点)的坐标不是方程 y=x 的解.故 y=x 不 是所求的轨迹方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点:理解曲线与方程的概念;会求两条曲线的交点坐标;掌握弦长公式;掌握求曲线轨迹的方法。
上课例题:书本《高考复习方略》P .256 基础训练1、 P .256 例1,(2) 例2、例3 补充例题:1、讨论曲线2x y =与曲线()1622
=+-y m x 的交点的个数。
2、已知曲线C 的方程是222+-=x x y ,求:(1)曲线C 关于点()1,2-对称的曲线1C 的方程。
(2)曲线C 关于直线03=--y x 对称的曲线2C 的方程。
3、直线b x y +=与抛物线()2
1-=x y 交于B A ,两点。
求:(1)弦长||AB 关于实数b 的函数关系式。
(2)若弦AB 的中点M 落在圆422=+y x 内部,求实数b 的取值范围。
作业:书本《高考复习方略》P .257 巩固提高:1——11
补充作业:设两点()()3,2,1,4Q P -
求(1)以PQ 为一条直角边的PQA Rt ∆的顶点A 的轨迹方程。
(2)满足PQB ∆的面积为20的点B 的轨迹方程。
(3)以PQ 为一条斜边的PQC Rt ∆的顶点C 的轨迹方程。
(4)以PQ 为一条边的矩形S R Q P PQRS ,,,(按逆时针方向排列)的顶点S 的轨迹方程。