浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第六章数理统计习题__偶数答案
概率论与数理统计课后习题答案浙江大学第四版完整版.pdf

完全版概率论与数理统计课后习题答案第四版盛骤(浙江大学)浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一]写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一]1)nn n n o S1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一]2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一](3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二]设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A -(AB+AC )或A -(B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S -(A+B+C)或CB A(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生相当于C A C B B A ,,中至少有一个发生。
故表示为:C A C B B A 。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故表示为:ABCC B A 或(8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
故表示为:AB +BC +AC6.[三]设A ,B 是两事件且P (A )=0.6,P (B )=0.7.问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?解:由P (A )=0.6,P (B )=0.7即知AB ≠φ,(否则AB =φ依互斥事件加法定理,P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为P (AB )=0.6+0.7-1=0.3。
浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第二章概率论习题_奇数

第二章 随机变量及其概率分布注意: 这是第一稿(存在一些错误) 第二章概率论习题__奇数.doc1解:X 取值可能为2,3,4,5,6,则X 的概率分布律为: ()371235p X ===; ()378335p X ===; ()379435p X ===; ()378535p X ===; ()37167p X ===。
3解:(1)没有中大奖的概率是()71110np -=-;(2)每一期没有中大奖的概率是()107110p -=-, n 期没有中大奖的概率是()1072110nn p p -==-。
5解:X 取值可能为0,1,2,3;Y 取值可能为0,1,2,3()()()()1230111p x p p p ==---,()()()()()()()1232133121111111p x p p p p p p p p p ==--+--+--, ()()()()1231323212111p x p p p p p p p p p ==-+-+-, ()1233p x p p p ==。
Y 取每一值的概率分布为:()10p y p ==, ()()1211p y p p ==-,()()()123211p y p p p ==--, ()()()()1233111p y p p p ==---。
7解:(1)()()()345324555510.10.110.10.110.10.991α=-+-+-=,()()233445555510.210.20.210.20.20.942β=--+-+=。
(2)诊断正确的概率为0.70.30.977p αβ=+=。
(3)此人被诊断为有病的概率为()0.70.310.711p αβ=+-=。
9解:(1)由题意知,候车人数X k =的概率为()!ke p X k k λλ-==,则()0p X e λ-==,从而单位时间内至少有一人候车的概率为1p e λ-=-,所以 4.511ee λ---=-解得 4.5λ=则() 4.54.5!ke p X k k -==。
浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第三章概率论习题_奇数

第三章多维随机变量及其概率分布注意:这是第一稿(存在一些错误)第三章概率论习题__奇数.doc1、解互换球后,红球的总数是不变的,即有6X Y +=,X 的可能取值有:2,3,4,Y的取值为:2,3,4。
则(,)X Y 的联合分布律为:(2,2)(2,3)(3,2)(3,4)(4,3)(4,4)0PX Y PX Y PX Y PX Y PX Y PX Y ==================236(2,4)(4,2)5525P X Y P X Y ======⋅=223313(3,3)555525P X Y ===⋅+⋅=由于6X Y +=,计算X 的边际分布律为:6(2)(2,4)25P X P X Y =====13(3)(3,3)25P X P X Y =====6(4)(4,2)25P X P X Y =====3、解利用分布律的性质,由题意,得0.10.10.10.11a b c ++++++=(0,2)(0,1)0.1{0|2)0.5(2)(1)0.1P Y X P Y X a P Y X P X P X a b≤<≤=+≤<====<=++{1}0.5P Y b c ==+=计算可得:0.2a c ==0.3b =于是X 的边际分布律为:(1)0.10.6P X a b ==++=(2)0.10.10.20.4P X c c ==++=+=Y 的边际分布律为(1)0.10.3P Y a =-=+=,(0)0.2P Y ==(1)0.5P Y b c ==+=5、解(1)每次抛硬币是正面的概率为0.5,且每次抛硬币是相互独立的。
由题意知,X 的可能取值有:3,2,1,0,Y 的取值为:3,1。
则(,)X Y 的联合分布律为:(3,1)(2,3)(1,3)(0,1)0P X Y P X Y P X Y P X Y ============311(3,3)28P X Y ⎛⎫==== ⎪⎝⎭,223113(2,1)228P X Y C ⎛⎫===⋅= ⎪⎝⎭213113(1,1)228P X Y C ⎛⎫===⋅= ⎪⎝⎭,311(0,3)28P X Y ⎛⎫==== ⎪⎝⎭X 的边际分布律为:311(0)28P X ⎛⎫=== ⎪⎝⎭,213113(1)228P X C ⎛⎫==⋅= ⎪⎝⎭223113(2)228P X C ⎛⎫==⋅= ⎪⎝⎭,311(3)28P X ⎛⎫=== ⎪⎝⎭Y 的边际分布律为:1(3)(0,3)(3,3)4P Y P X Y P X Y ====+===3(1)(1,1)(2,1)4P Y P X Y P X Y ====+===(2)在{1}Y =的条件下X 的条件分布律为:(0|1)0P X Y ===,(1,1)1(1|1)(1)2P X Y P X Y P Y =======(2,1)1(2|1)(1)2P X Y P X Y P Y =======,(3|1)0P X Y ===7、解(1)已知()!me P X m m λλ-==,0,1,2,3m =L 。
概率与数理统计第六章习题参考解答

《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩令 ⎩⎨⎧==.2211μμA A 求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx ni ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆnii x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01nii x d L p ndp pp=-=-=-∑01)(ln 1=---=∑=pnxp n dp p L d ni i解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由22()2()x f x μσ--=(1)2σ已知,似然函数22122()()2211()(,)ni i i x nx n nii i L f x e μμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x n x ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i i x n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni ixn L d d解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22ni i x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33n ii x x n θ===∑(3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:1212222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i ni i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβni i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。
概率论与数理统计第六章习题答案

第六章习题6-11、由一致估计的定义,对0ε∀>{}{}{}()1212max ,,,max ,,,n n P X X X P X X X θεεθεθ-<=-+<<+()()F F εθεθ=+--+()0, 0, 01, X x xF x x x θθθ<⎧⎪=≤≤⎨⎪>⎩及(){}()()()()1212max ,,,n n X X X X X X F x F x F x F x F x ==⋅⋅⋅()1F εθ∴+=(){}()12max ,,,1nn x F P X X X εθεθθ⎫⎛-+=<-+≈- ⎪⎝⎭{}()12max ,,,111()nn x P X X X n θεθ⎫⎛∴-<=--→→∞ ⎪⎝⎭2、证明:EX μ=()1111111ni i n n i i i i nn n i i i i i i i i a X E a E X a a a a μμ======⎫⎛⎪ ⎪ ==⋅=⎪ ⎪⎝⎭∑∑∑∑∑∑ 11niii nii a Xa==∴∑∑是μ的无偏估计量3、证明: ()() ()()22D E E θθθ=-()() ()()()2222E D E D θθθθθθ∴=+=+> 2θ∴不是2θ的无偏估计量4、证明:()~X P λEX λ∴=,()()222E X DX EX λλ=+=+()22E X EX λ∴-=,即()22E X X λ-=用样本矩2211n i i A X n ==∑,1A X =代替相应的总体矩()2E X 、EX所以得2λ的无偏估计量: 22111n i i A A X X n λ==-=-∑ 5、()~,X B n p ,EX np ∴=()()()()22222111E X np p n p np n n p EX n n p =-+=+-=+-()()()()222111E X EX E X X p n n n n -⎫⎛∴=-=⎪ --⎝⎭所以用样本矩2211n i i A X n ==∑,1A X =分别代替总体矩()2E X 、EX得2p 的无偏估计量: ()()()222121111ni i i A A p X X n n n n =-==---∑6、()~,1X N m ,()i E X m ∴=,()1i D X =,(1,2)i =()()()11212212121333333E m E X X E X E X m m m ⎫⎛∴=+=+=+= ⎪⎝⎭()()()1121221414153399999D m D X X D X D X ⎫⎛=+=+=+= ⎪⎝⎭同理可得: ()2E m m =, ()258D m =, ()3E m m =, ()212D m =123,,m m m ∴都是m 的无偏估计量,且在 123,,m m m 中, 3m 的方差最小习题6-21、(1)()11cccEX x c xdx cx dx θθθθθθθθ+∞+∞-+-=⋅==-⎰⎰EXEX cθ∴=-,令X EX =X X c θ∴=-为矩估计量,θ的矩估计值为 x x cθ=-,其中11n i i x x n ==∑似然函数为:()()11211,,,;nnn n n ii i i L x x x c xcx θθθθθθθ-+-====∏∏ ,i x c > 对数似然函数:()()()1ln ln ln 1ln nii L n n c x θθθθ==+-+∑求导,并令其为0,得:1ln ln ln 0ni i d L nn c x d θθ==+-=∑ 1ln ln Lnii nx n cθ=∴=-∑,即θ的最大似然估计量为 1ln ln Lnii nXn cθ==-∑(2)21111EX EX x x dx EX θθθθθ-⎫⎛=⋅=⇒= ⎪--⎝⎭⎰ 以X EX =,得: 21X X θ⎫⎛=⎪ -⎝⎭为θ的矩估计量θ的矩估计值为: 21x x θ⎫⎛=⎪ -⎝⎭,其中11ni i x x n ==∑ 而()1121211,,,;n nnn i i i i L x x x x x θθθθθ--==⎫⎛==⎪⎝⎭∏∏ ,01i x ≤≤()()1ln ln 1ln 2nii nL x θθθ=∴=+-∑令1ln 11ln 022ni i d L n x d θθθ==+⋅⋅=∑, 21ln L ni i n x θ=⎫⎛⎪ ⎪ ∴=⎪⎪⎝⎭∑ 所以θ的最大似然估计量 21ln L ni i n x θ=⎫⎛⎪ ⎪ =⎪ ⎪⎝⎭∑ (3)()~,X B m p ,EXEX mp p m∴=⇒=p ∴的矩估计量: 111n i i X p X X m mn m====∑p ∴的矩估计值为: 11n i i p x mn ==∑ 而()()()111211,,,;11nniii i ii i i nnx m x m x x x x n mm i i L x x x p Cpp C pp ==--==∑∑=-=⋅⋅-∏∏ ,0,1,,ix m = ()()()111ln ln ln ln 1i nnn x mi i i i i L p C x p m x p ====+⋅+-⋅-∑∑∑令() 111ln 111101n n n i i L ii i i d L x m x p x x dp p p mn m ====⋅--⋅=⇒==-∑∑∑ p ∴的最大似然估计量为: 1L p X m=2、(1)()01;2EX xf x dx xdx θθθθ+∞-∞===⎰⎰令11n i i EX X X n ===∑,22X X θθ∴=⇒=2X θ∴= (2)由观测的样本值得:6111(0.30.80.270.350.620.55)0.481766i i x x ===+++++≈∑20.9634x θ∴== 3、由1111122EX X θθθθθ+=⨯+⨯++⨯== 21X θ∴=-为θ的矩估计量 4、设p :抽得废品的概率;1p -:抽得正品的概率 引入{1, i i X i =第次抽到废品0,第次抽到正品,1,2,,60i =()1i P X p ∴==,()01i P X p ==-,且i EX p =所以对样本1260,,,X X X 的一个观测值1260,,,x x x由矩估计法得,p 的估计值为: 601141606015ii p x ====∑,即这批产品的废品率为1155、()()2212213132EX θθθθθ=⨯+⨯-+⨯-=-,()1412133x =⨯++=EX x = , 3526x θ-∴==为矩估计值 ()()()()()()()34511223312121i i i L P X x P X x P X x P X x θθθθθθ========⋅⋅-=-∏()()ln ln25ln ln 1L θθθ=++-令() ln 1155016Ld L d θθθθθ=⨯-=⇒=- 6、(1)λ的最大似然估计 LX λ=, ()0LX P X e e λ--∴=== (2)设X :一个扳道员在五年内引起的严重事故的次数()~X P λ∴,122n =得样本均值:5011(044142221394452) 1.123122122r r x r s ==⨯⋅=⨯⨯+⨯+⨯+⨯+⨯+⨯=∑()1.12300.3253x P X e e --∴====习题6-33、从总体中抽取容量为n 的样本12,,,n X X X 由中心极限定理:()~0,1,/X U N n nμσ-=→∞(1)当2σ已知时,近似得到μ的置信度为1α-的置信区间为:22,X u X u n n αασσ⎫⎛-⋅+⋅⎪ ⎝⎭ (2)当2σ未知时,用2σ的无偏点估计2s 代替2σ:~(0,1),/X N n s nμ-→∞于是得到μ的置信度为1α-的置信区间为:22,s s X u X u n n αα⎫⎛-⋅+⋅⎪ ⎝⎭一般要求30n ≥才能使用上述公式,称为大样本区间估计 4、40n = 属于大样本,2,X N n σμ⎫⎛∴⎪ ⎝⎭ 近似μ∴的95%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中642x =,3σ=,40 6.32n =≈,21.96u α=()23642 1.966420.9340x u n ασ⎫⎛⎫⎛∴±⋅=±⨯≈±⎪ ⎪⎝⎭⎝⎭故μ的95%的置信区间上限为642.93,下限为641.075、100n =属于大样本,2~,X N n σμ⎛⎫∴ ⎪⎝⎭近似μ∴的99%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中10x =,3σ=,100n =,22.58u α=()()2310 2.58100.7749.226,10.774100x u n ασ⎛⎫⎛⎫∴±⋅=±⨯=±= ⎪ ⎪⎝⎭⎝⎭由此可知最少要准备10.77410000107740()kg ⨯=这种商品,才能以0.99的概率满足要求。
浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第五章概率论习题_奇数答案

P{32 X 40} 1 P( X 36 4) 1 22 3 0.75 16 4
3
解
服从参数为
0.5
的几何分布,
P(
n)
1 2
n1
,
(n
2,3, 4)
可求出 E( ) nP( n) 3, D( ) 2 n2
于是令 a b E( ) , b a ,利用切比雪夫不等式,得
2
Yi
1,第i次试验中该事件发生
,i=1,2,3 ,且
0, 第i次试验中该事件不发生
P(Yi
1)
p
n
100
于是Y
Yi 服从二项分布: P(Y k ) P(
Yi
k)
Cn 100
p
k
(1
p) 100k
i 1
i 1
方法一:(Y 的精确分布)
P(Y 2) 1 P(Y 0) P(Y 1) 1 (1 p) 100 100 p(1 p) 99 99.756%
X
2 i
)
a
2 2
,
D(
X
2 i
)
24 4
,利用中心极限定理,可知
1
100
100 i 1
X
2 i
~
N
(
2 2
,
24 100
4
)
从而
P{ 1 100
100 i 1
X
2 i
2 2
}
0.5
9 解 (1)由题意得:记 p P0.95 X 1.05 1.1 0.952 1.05 ,引入随机变量
2
100
Xi 2.464*100
同时 i1
~ N (0,1) ,
概率论与数理统计答案第六章

第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。
解: 8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。
(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P =2628.0)]25(1[2=Φ-(2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15}=.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10}=.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i i X P解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i ii ii iX P XP χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλnX D ===[六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。
概率论与数理统计浙大版习题答案六

第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。
解:8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。
(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P=2628.0)]25(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i iXP (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i iXP解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i i i i i i X P X P χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2 ).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλn X D === [六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、解 (1)由题意得:
E(X
2
)
D(X )
E(X
)2
D(
1 n
n i 1
X
i)
E
1 n
n i 1
X
i
2
1 n
2
2
E(X1 X )
E(X1
1 n
n i 1
X i)
1 n
n i 1
E
X iX1
1 2 2 n
/ n
2
~ 2 1
由于
(n 1)S 2 2
~
2 n 1 ,所以
n
X 2
2
/
(n 1)S 2 2 (n 1)
n
X S2
2
~ F 1, n 1
n/2
(3)由于
i 1
Xi 2
2
n
~ (n / 2) ,以及
i 1 n / 2
Xi 2
2
~ (n / 2) ,因此有:
n/2
X
2
)
1 99
100
(2
i 1
2*2 100
2) 100
2
(3) X 近似服从正态分布 X ~ N (0, 1 ) ,于是 50
P( X 0.04) P(P( X 0.04 ) 2 2( 0.04 ) 0.7794
1/ 50 1/ 50
1/ 50
12
解
(1)
2 0.05
(5)
11.070
/ 16
~
t(16)
化简后求得: b 8
,
2 0.06
(5)
10.596
,
2 0.95
(5)
1.145
,
2 0.94
(5)
1.250
(2) t0.05 (8) 2.306 , t0.06 (8) 2.189 , t0.95 (8) 0.065 , t0.94 (8) 0.078 ,
(3) F0.05 (3, 5) 5.409 , F0.05 (5, 3) 9.013 , F0.04 (3, 5) 6.098 , F0.04 (5, 3) 10.617
经查表有: n 97
10
6、解 (1)由题意得:
i
Xi 2
2
~
2 (10) ,于是:
P(0.26 2
1 10
10 i 1
Xi
2
2.3 2)
P(2.6
10 i 1
Xi 2
2
23)
0.9786
2
(2)由于
(10 1)S 2 2
~
2
n 1 ,即
10 i 1
Xi X 2
5S12 2
~
2 5 ,因此:
6
i1
Xi 2
2
6
~ 2 (6) ,
i 1
2
Xi X 2
~ 2 (5)
X
(2)由于
/ 6
6 ~ N (0,1) ,所以
X 2
2
~ 2 1
6
同时
X S12
2
6
X 2
2
/
S12 2
~
F
1, 5
(3)由题意得:
0
E(a(
~ 2 (9) ,于是
2
P(0.26 2 1 10 10 i1
Xi X
2 2.3 2) P(2.6 10
i 1
Xi X 2
23) 0.9719
8
解
由题意得:
9 i 1
Xi 3
~
N (0,1) ,以及
9
Yi 2
i 1
~
2
9
,从而有
9 Xi /
i1 3
9
9
Yi2 / 9 ~ t(9) ,即 X i /
(2) X1 X 服从正态分布,其中:
E(X1
X
)
0
,
D( X1
X
)
(
n
n
1)
2
D(
X
1
)
n 1 n2
D(
X
2
)
n 1 n
2
从而
X1
X
~
N (0,
n 1 2) n
由于
Xi
~
N (0,1) , i
1, 2,n ,且相互独立,因此:
n
i 1
Xi 2
2
~
2
n
X
n X 2
由于
~ N (0,1) ,所以
i1
Xi 2
2
n
/
i 1 n / 2
Xi
2
n/2
2
i 1
n
Xi 2 /
i 1 n / 2
Xi
2~
F( n, 2
n) 2
X a
4、解 用 X 表示 a 的估计值,则
~ N (0,1) 。由题意得:
2.5 / n
95% P( X a 0.5) 2P( X a 0.5) 1 2( 0.5 n) 1 2.5
X
Y
))
a
(E(
X
)
E(Y
))
0
1
D
a(
X
Y
)
a
2
(
D(
X
)
D(Y
))
1a 2 4
从而求得: a 2
(4)由(3)知: 2(
X Y
)
~
N (0,1)
,
又 5S12 2
~
2
(5)
和
11S22 2
~
2
(11)
,于是
5S12
11S
2
2 2
~
2 (11) ,从而
2(
X
Y
)
/
5S12 11S22 2
i 1
i 1
9
Yi 2 ~ t(9)
i 1
10、解 (1)由题意得: E( X ) 0 , D( X ) 2 ,从而
E(X ) 0 , D(X ) 2 1 100 50
(2)由题意可计算:
E(S 2)
E
1 99
100 i 1
Xi X
2
1 99
100 i 1
E
(
X
2 i
2X Xi
14、解由题意得:
S12 S22
~
F (6, 6) ,
S22 S12
~
F (6, 6) ,于是:
0.05
P(max(
S12 S22
,
S22 S12
)
C
)
2
P(
S12 S22
C) ,从而: C
F0.025 (6, 6)
5.82
16、解(1)由于
Xi
~
N (0,1) ,i
1,
2,n
,且相互独立,以及