pa聚酰胺
pa聚酰胺 伸长率

PA聚酰胺伸长率
PA聚酰胺(Polyamide,又称尼龙)的伸长率取决于具体的材料类型和加工条件等因素,不同的PA聚酰胺材料具有不同的力学性能。
一般来说,PA聚酰胺的伸长率在10%-1000%之间。
其中,高伸长率的PA聚酰胺通常具有较低的强度和刚度,适合于需要高弹性和延展性的应用,如弹性绳、密封件等;低伸长率的PA聚酰胺则通常具有较高的强度和刚度,适合于需要高刚性和耐磨性的应用,如结构件、齿轮等。
需要注意的是,PA聚酰胺的伸长率与其分子量、分子结构、结晶度等密切相关,因此在具体应用中需要根据实际需求选择合适的PA聚酰胺材料。
PA

聚酰胺
一、聚酰胺的合成与命名 聚酰胺(PA,俗称尼龙)是指大分子链结
构单元中含有酰胺基的一类聚合物的总称。
O H N
C
1、由氨基酸或相应的内酰胺合成聚酰胺 [N H ( C H 2 ) C O ]
x -1 n
这类聚酰胺的通式中X为氨基酸或内酰胺分 子中的碳原子数,称为聚酰胺x(PA-x)或尼 龙x。该类PA中最常用的是聚己内酰胺,它是 己内酰胺开环缩聚的产物,称为聚酰胺6(PA6)或尼龙6。 什么内酰胺?
(2)PA分子链的酰胺基之间嵌有非极性的 亚甲基结构,极性和非极性共存的结构使PA 宏观上表出坚而韧的性质。
(3)PA虽常用塑料中最易吸水的塑料品种 酰胺基是亲水基团,因而PA的吸湿性大, 其吸水率随分子结构中酰胺基的密度增加而 增大 。 *吸水后发生尺寸变化,降低制品尺 寸稳定性; *力学性能对吸水率有较大依赖性; *吸水给成型加工带来困难。
H OOC (C H 2 ) 4 COOH +H 2 N(CH
2 ) 6 NH 2 -
OOC(CH
2 ) 4 CO
O H 3 N(CH
-
+
2 ) 6 NH 3
+
3、由多种二元胺、二元酸或内酰胺 进行共缩聚制得聚酰胺 PA的共缩聚常指在内酰胺或氨基酸进行的 均缩聚中加入第二种单体,以及在二元胺和 二元酸进行的混缩聚中加入第三种单体的聚 合反应。如尼龙-66/6(60:40),表示由 60%的66和40%的己内酰胺所制得;尼龙66/610(50:50),表示由等质量的66和610 所得。 上述共缩聚的产物称为共聚尼龙,具有独 特的性能。
因而PA是生产耐磨塑料零件的常用材料。
添加二硫化钼、石墨、聚四氟乙烯粉末等,
PA种类及性能

尼龙(Nylon,Polyamide,简称PA)是指由聚酰胺类树脂构成的塑料。
此类树脂可由二元胺与二元酸通过缩聚制得,也可由氨基酸脱水后形成的内酰胺通过开环聚合制得,与PS、PE、PP等不同,PA不随受热温度的升高而逐渐软化,而是在一个靠近熔点的窄的温度范围内软化,熔点很明显,熔点:215-225℃。
温度一旦达到就出现流动。
PA的品种很多,主要有PA6、PA66、PA610、PA11、PA12、PA1010、PA612、PA46、PA6T、PA9T、MXD-6芳香醯胺等。
以PA6、PA66、PA610、PA11、PA12最为常用。
尼龙类工程塑料外观上都呈现为角质、韧性、表层光亮、白色(或乳白色)或微黄色、透明或半透明的结晶性树脂,它容易被著成任一种颜色。
作为工程塑料的尼龙分子量一般为1.5-3万。
它们的密度均稍大于1,密度:1.14-1.15g/cm3。
拉伸强度:>60.0Mpa。
伸长率:>30%。
弯曲强度:90.0Mpa。
缺口冲击强度:(KJ/m2)>5。
尼龙的收缩率为1%~2%。
需注意成型后吸湿的尺寸变化。
吸水率100% 相对吸湿饱和时能吸8%.使用温度可-40~105℃之间。
熔点:215-225℃。
合适壁厚2-3.5mm。
PA的机械性能中如抗拉抗压强度随温度和吸湿量而改变,所以水相对是PA的增塑剂,加入玻纤后,其抗拉抗压强度可提高2倍左右,耐温能力也相应提高,PA本身的耐磨能力非常高,所以可在无润滑下不停操作,如想得到特别的润滑效果,可在PA中加入硫化物。
PA性能的主要优点有:1.机械强度高,韧性好,有较高的抗拉、抗压强度。
比拉伸强度高于金属,比压缩强度与金属不相上下,但它的刚性不及金属。
抗拉强度接近于屈服强度,比ABS高一倍多。
对冲击、应力振动的吸收能力强,冲击强度比一般塑料高了许多,并优于缩醛树脂。
2.耐疲劳性能突出,制件经多次反复屈折仍能保持原有机械强度。
常见的自动扶梯扶手、新型的自行车塑料轮圈等周期性疲劳作用极明显的场合经常应用PA。
聚酰胺(PA,俗称尼龙)

聚酰胺(PA,俗称尼龙)聚酰胺(PA,俗称尼龙)是美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化。
20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。
PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。
PA的品种繁多,有PA6、PA66、PAll、PAl2、PA46、PA610、PA612、PAl010等,以及近几年开发的半芳香族尼龙PA6T和特种尼龙等很多新品种。
世界PA工程塑料的生产和需求1.PA工程塑料概况PA是历史悠久、用途广泛的通用工程塑料,2000年世界工程塑料市场分配为PA35%、PC32%、POM11%、PBT1O%、PPO3%、PET2%、UHMWPE2%,高性能工程塑料(PPS、LCP、PEEK、PEI、PESU、PVDF、其它含氟塑料等)2%。
由于PC 市场需求增长快,其市场占有份额已已经超过PA。
从性能和价格综合考虑,PA6和PA66的市场用量仍占PA总量的90%左右,居主导地位,2001年世界PA66的消费量为74万吨,略高于PA6的68万吨。
欧洲消费结构为PA6占50%,PA66占40%,PAll、PAl2和其它均聚、共聚PA占10%,美国PA66用量超过其它品种,日本则PA6消费居首位,为52%,PA66占38%,PAll和PAl2占5%,PA46和半芳香族PA占5%。
PA工程塑料以注射成型为主,注塑制品占PA制品的90%左右,PA6与PA66的成型加工工艺不尽相同,PA66基本都采用注塑加工,占95%,挤出成型仅占5%;PA6的注塑制品占70%,挤出成型占30%。
近10年,世界的PA消费量以年均7.5%左右的速度递增,而工程塑料用PA树脂的年均增长率约为8.5%,利用填料、增强剂、弹性体、其它树脂或添加剂对其改性,使PA工程塑料工业充满活力。
PA(聚酰胺)

PA的耐化学性能良好,对酸、碱、盐的性能稳定,耐溶剂性能好,耐油性也很好,它的气密性较PE、PP要好,不带静电,印刷性能良好。PA与其他热塑性塑料相比,其软化温度范围较窄,有比较明显的熔点。耐低温性能好。
2.电子电器工业
PA66可生产电子电器绝缘件、精密电子仪器部件、电工照明器具和电子电器的零部件等,可用于制作电饭锅、电动吸尘器、高频电子食品加热器等。PA66具有优良的耐焊锡性,广泛用作接线盒、开关和电阻器等的生产。阻燃级PA66可用于彩电导线夹、固定夹和聚焦旋钮。
3.机械运输和机械设备工业
PA(聚酰胺)的特性和用途?
PA又叫尼龙,是大分子链中含有酰胺基因的高分子聚合物制成的塑料的总称,其品种已多达几十种。可由二元胺和二元酸通过縮聚反应或内酰胺的分子通过自聚而成。PA的命名分子结构中所含有的碳原子数来决定。如由己二胺和癸二酸制得的缩聚物就叫PA610,其中前一个数字是二元胺中的碳原子数,后一个数字为二元酸中的碳原子数;若由氨基酸的自聚而得,则由氨基酸中的碳原子数来决定,如己内酰胺自聚物中有6个碳原子,就叫PA6。
列车客车的门把手、货车的制动器接合盘等可用PA66制作。其它如绝缘垫圈、挡板座、船舶上的涡轮、螺旋桨轴、螺旋推进器、滑动轴承等也可以用PA6
6制作。高抗冲击性尼龙66还可制作管钳、塑料模具、无线电控制车身等。未增强级尼龙66通常用于制造低蠕变、无腐蚀的螺母、螺栓、螺钉、喷嘴等;增强级尼龙66用于生产链条、传送带、扇叶、叶轮和脚手架固定脚扣等。
聚酰胺实验报告

一、实验目的1. 理解聚酰胺的基本性质和制备方法。
2. 掌握聚酰胺的溶解性、结晶性和力学性能等特性。
3. 学习聚酰胺在不同溶剂中的溶解度变化及其影响因素。
二、实验原理聚酰胺(Polyamide,简称PA)是一类由酰胺键连接的聚合物,具有优良的力学性能、耐热性、耐磨性、自润滑性和生物相容性等特点。
聚酰胺的制备方法主要有熔融缩聚和溶液缩聚两种。
熔融缩聚法:将己内酰胺或己二酸与二元胺或三元胺混合,在高温、高压和催化剂的作用下,通过酰胺键的形成和缩合反应,得到聚酰胺。
溶液缩聚法:将己内酰胺或己二酸与二元胺或三元胺混合,在溶剂(如二甲基甲酰胺、二甲基亚砜等)中,通过酰胺键的形成和缩合反应,得到聚酰胺溶液,然后通过蒸发溶剂、冷却结晶等步骤得到聚酰胺。
三、实验材料与仪器1. 实验材料:- 己内酰胺或己二酸- 二元胺或三元胺- 催化剂(如三乙胺、对甲苯磺酸等)- 溶剂(如二甲基甲酰胺、二甲基亚砜等)- 聚酰胺样品2. 实验仪器:- 高温高压反应釜- 蒸发皿- 冷却结晶器- 红外光谱仪- 傅里叶变换红外光谱仪(FTIR)- 拉伸试验机- 显微镜四、实验步骤1. 熔融缩聚法(1)将己内酰胺或己二酸与二元胺或三元胺混合,加入催化剂,放入高温高压反应釜中。
(2)升温至反应温度(通常为250-300℃),反应一定时间。
(3)反应结束后,将反应物冷却至室温,倒入蒸发皿中,蒸发溶剂。
(4)冷却结晶,得到聚酰胺样品。
2. 溶液缩聚法(1)将己内酰胺或己二酸与二元胺或三元胺混合,加入溶剂,搅拌均匀。
(2)加入催化剂,搅拌均匀。
(3)在恒温条件下,反应一定时间。
(4)反应结束后,将反应物过滤,去除未反应的单体和催化剂。
(5)将滤液倒入蒸发皿中,蒸发溶剂。
(6)冷却结晶,得到聚酰胺样品。
五、实验结果与分析1. 聚酰胺的红外光谱分析通过红外光谱分析,可以确定聚酰胺的结构特征。
在聚酰胺的红外光谱中,可以观察到以下特征峰:- 3300-3400 cm^-1:N-H伸缩振动峰;- 1650-1750 cm^-1:C=O伸缩振动峰;- 1530-1630 cm^-1:C-N伸缩振动峰;- 1100-1300 cm^-1:C-O伸缩振动峰。
pa是什么材料

pa是什么材料
PA是什么材料。
PA是聚酰胺的缩写,是一种热塑性塑料,也是一种常见的工程塑料。
它具有
优异的性能,被广泛应用于汽车制造、电子电器、机械设备、化工等领域。
PA材
料具有优异的耐磨性、耐腐蚀性、耐高温性和机械强度,因此备受青睐。
首先,PA材料具有优异的耐磨性。
在工程领域中,耐磨性是一个非常重要的
性能指标,特别是在摩擦和磨损比较严重的场合。
PA材料因其分子结构的特殊性,使其具有良好的耐磨性,能够在一定程度上减少磨损和摩擦,提高零部件的使用寿命。
其次,PA材料具有良好的耐腐蚀性。
在化工领域中,材料的耐腐蚀性是至关
重要的。
PA材料由于其分子链结构的紧密性,使其具有较好的耐腐蚀性,能够在
酸碱环境中保持稳定的性能,不易受到腐蚀,因此在化工设备的制造中得到广泛应用。
再次,PA材料具有优异的耐高温性。
在高温环境下,一些塑料材料容易软化
甚至熔化,而PA材料由于其分子链的稳定性,使其具有良好的耐高温性,能够在
较高温度下保持稳定的性能,因此在汽车引擎部件、电子电器等领域得到广泛应用。
最后,PA材料具有良好的机械强度。
在机械设备制造领域,材料的机械强度
是至关重要的。
PA材料由于其分子链结构的特殊性,使其具有较高的机械强度,
能够承受较大的拉伸、压缩和弯曲力,因此在机械设备制造领域得到广泛应用。
总之,PA材料具有优异的性能,包括耐磨性、耐腐蚀性、耐高温性和机械强度,因此在工程领域得到广泛应用。
随着科技的不断进步,相信PA材料的应用领
域会越来越广泛,为各行各业的发展提供更多可能性。
PA聚酰胺

(27.8J/cm3)3/2,聚酰胺又是结晶型聚合物,只有δ
值与之接近,又能与它们形成氢键的少数溶剂才可以使 它们溶解。
2. PA的主要性能
• PA无毒、无味,外观为半透明或不透明的乳白色或淡 黄色粒料。密度一般在1.02~1.36g/cm3,吸水率为0.3 %~9.0%,随着链节中碳原子数的增加,密度和吸水 率下降。 • PA的结构可以看作是PE分子链中每间隔一定的距离嵌 人一个酰胺基团,随着C原子数的增加,受酰胺基团的 影响减弱,其性能逐渐接近PE。例如PA的拉伸强度、 弯曲强度、熔点和吸水率等都随着链节中碳原子数的增 加而降低。但由于酰胺基的存在,PA类聚合物都显示 出耐磨和易吸湿的共性。
可快速成型,且适用于注射最小壁厚可达0.45mm的薄
壁复杂制品。
• 但注射时易造成“流涎”。因此喷嘴应采用弹簧针阀式,
以免漏料。同时模具应精密加工以防溢边。注射模应开
冷料穴。脱模斜度应为:型腔20~40’、型芯25~40’。
• (5)聚酰胺熔融状态下稳定性差,易降解而降低制品 性能(尼龙9例外)。故不允许在高温下停留时间过长。
利,1935年制得尼龙66,1938年首先制成尼龙牙刷, 1939年推广到尼龙袜。 • 其后1942年德国法本公司开发了PA6工业化技术; • 1941年杜邦公司开发出PA610;
• 1955年,法国的阿托化学(Atochem)公司生产出PA11;
• 1961年,我国上海赛璐珞厂开发了PA1010生产技术;
• 为了进一步改善聚酰胺的性能,近年来常在聚酰胺 中加入减摩剂、稳定剂(碱金属溴盐,亚磷酸酯)、 润滑剂及填料(特别是加人玻璃纤维)等,逐步克 服了一些缺点,并提高了机械强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚酰胺
聚酰胺(PA,俗称尼龙)是美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化。
20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。
聚酰胺主链上含有许多重复的酰胺基,用作塑料时称尼龙,用作合成纤维时我们称为锦纶,聚酰胺可由二元胺和二元酸制取,也可以用ω-氨基酸或环内酰胺来合成。
根据二元胺和二元酸或氨基酸中含有碳原子数的不同,可制得多种不同的聚酰胺,目前聚酰胺品种多达几十种,其中以聚酰胺-6、聚酰胺-6 6和聚酰胺-610的应用最广泛。
聚酰胺-6、聚酰胺-66和聚酰胺-610的链节结构分别为[NH(CH2)5CO]、[NH(CH 2)6NHCO(CH2)4CO]和[NH(CH2)6NHCO(CH2)8CO]。
聚酰胺-6和聚酰胺-66主要用于纺制合成纤维,称为锦纶-6和锦纶-66。
尼龙-610则是一种力学性能优良的热塑性工程塑料。
PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。
PA的品种繁多,有PA6、PA66、PAll、PAl2、PA46、PA610、PA612、PAl010等,以及近几年开发的半芳香族尼龙PA6T 和特种尼龙等很多新品种。
尼龙-6塑料制品可采用金属钠、氢氧化钠等为主催化剂,N-乙酰基己内酰胺为助催化剂,使δ-己内酰胺直接在模型中通过负离子开环聚合而制得,称为浇注尼龙。
用这种方法便于制造大型塑料制件。
性能:尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为1.5-3万尼龙具有很高的机械强度,软化点高,耐热,磨擦系数低,耐磨损,自润滑性,吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂,电绝缘性好,有自熄性,无毒,无臭,耐候性好,染色性差。
缺点是吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。
尼龙与玻璃纤维亲合性十分良好。
聚酰胺主要用于合成纤维,其最突出的优点是耐磨性高于其他所有纤维,比棉花耐磨性高10倍,比羊毛高20倍,在混纺织物中稍加入一些聚酰胺纤维,可大大提高其耐磨性;当拉伸至3-6%时,弹性回复率可达100%;能经受上万次折挠而不断裂。
聚酰胺纤维的强度比棉花高1-2倍、比羊毛高4-5倍,是粘胶纤维的3倍。
但聚酰胺纤维的耐热性和耐光性较差,保持性也不佳,做成的衣服不如涤纶挺括。
另外,用于衣着的锦纶-66和锦纶-6都存在吸湿性和染色性差的缺点,为此开发了聚酰胺纤维的新品种——锦纶-3和锦纶-4的新型聚酰胺纤维,具有质轻、防皱性优良、透气性好以及良好的耐久性、染色性和热定型等特点,因此被认为是很有发展前途的。
由于聚酰胺具有无毒、质轻、优良的机械强度、耐磨性及较好的耐腐蚀性,因此广泛应用于代替铜等金属在机械、化工、仪表、汽车等工业中制造轴承、齿轮、泵叶及其他零件。
聚酰胺熔融纺成丝后有很高的强度,主要做合成纤维并可作为医用缝线。
锦纶在民用上可以混纺或纯纺成各种医疗及针织品。
锦纶长丝多用于针织及丝绸工业,如织单丝袜、弹力丝袜等各种耐磨解释的锦纶袜,锦纶纱巾,蚊帐,锦纶花边,
弹力锦纶外衣,各种锦纶绸或交织的丝绸品。
锦纶短纤维大都用来与羊毛或其它化学纤维的毛型产品混纺,制成各种耐磨经穿的衣料。
在工业上锦纶大量用来制造帘子线、工业用布、缆绳、传送带、帐篷、渔网等。
在国防上主要用作降落伞及其他军用织物。
聚酰胺分子链上的重复结构单无是酰胺基的一类聚合物。
聚酰胺树脂,是性能优良用途广泛的化工原料,按其性质可分为两大类:非反应性或中性聚酰胺及反应性聚酰胺。
中性聚酰胺主要用于生产油墨、热合性粘结剂和涂料,反应性聚酰胺用于环氧树脂熟化剂,和用于热固性表面涂料、粘结剂、内衬材料及罐封、模铸树脂。
中性二聚酸聚酰胺树脂在聚乙烯等基质上粘附性好,特别适合于在聚乙烯面包装膜、金属箔复合层压膜等塑料膜上印刷;中性聚酰胺树脂配制的油墨有光泽性,粘结性能好,醇稀释性优良,胶凝性低,快干,气味小。
二聚酸基的热合性树脂,广泛用于制鞋、制罐、包装及书籍装订;用于罐头包装的边缝密封;用于冷冻苹果、桔子及其它果汁的新型结构容器的粘结。
热合性聚酰胺粘结剂,因具有耐干洗、耐强力洗涤剂、漂白剂及洗衣房与家庭的高温洗涤条件,对织物粘联强度大使用方便而用于强物粘联;因具有必要的粘结力及优良的抗湿性而用于热缩性电缆套。
中性聚胺树脂的其它用途包括制备触变型涂料、民用水基胶、织物抗静电剂、透明蜡烛及洗涤剂。
反应性聚酰胺树脂进一步反应而用作环氧树脂的固化剂,产生广泛交联成为热固性树脂。
用作固化剂时,具有配副随意性大、无毒性、能常温下固化以及柔软不脆等优点,可使环氧树脂具有极好的粘结性、挠曲性、韧性、抗化学品性、抗湿性及表面光洁性。
二聚酸基酸胺树脂一环氧树脂的最大用途是粘结剂、表面涂料及罐封、模铸树脂。
该粘结剂润湿性能好、粘结强度大、内增塑性好,比以胺熟化的环氧树脂能耐更大的冲击力。
这种粘结剂可作金属的边缝粘结剂以及塑料、汽车车身的焊接剂及堵缝材料,还可作金属---金属粘联的结构粘结剂。
二聚酸基聚酰胺熟化的环氧树脂,具有柔性、抗化学品、抗盐蚀、抗撞击及高光泽等优异性能,广泛用作表面涂料。
聚酰胺[1]可制成长纤或短纤。