2017年吉林省高考文科数学试题与答案

合集下载

2017年吉林省长春市高考数学三模试卷(文科) 有答案

2017年吉林省长春市高考数学三模试卷(文科) 有答案

圆心到直线 x﹣3y+3=0 的距离 d=
=,
故弦 AB=2
=,
故选 A.
5.下列命题中错误的是( )
A.如果平面 α 外的直线 a 不平行于平面 α 内不存在与 a 平行的直线
B.如果平面 α⊥平面 γ,平面 β⊥平面 γ,α∩β=l,那么直线 l⊥平面 γ
C.如果平面 α⊥平面 β,那么平面 α 内所有直线都垂直于平面 β
D.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交
【考点】命题的真假判断与应用.
【分析】由空间中直线与平面的位置关系逐一核对四个选项得答案.
【解答】解:如果平面 α 外的直线 a 不平行于平面 α,则 a 与 α 相交,则 α 内不存在与 a 平行
的直线,故 A 正确;
如图:α⊥γ,α∩γ=a,β⊥γ,β∩γ=b,α∩β=l,
【分析】利用函数的定义域排除选项,值域排除选项即可得到结果.
【解答】解:由函数定义域排除 A,函数的值域.可知 x>0 时,y>0,当 x<0 时,y<0,排
除 C,D.
故选:B.
11.若关于 x 的方程 2sin(2x+ )=m 在[0, ]上有两个不等实根,则 m 的取值范围是( ) A.(1, ) B.[0,2] C.[1,2) D.[1, ] 【考点】正弦函数的图象.

可得 A(1,2),
所以目标函数 z 的最大值为 4.
故选 B.
7.某几何体的三视图如图所示,则其体积为( )
A.4 B. C. D. 【考点】由三视图求面积、体积. 【分析】通过三视图复原的几何体是正四棱锥,结合三视图的数据,求出几何体的体积. 【解答】解:由题意三视图可知,几何体是正四棱锥, 底面边长为 2 的正方形,一条侧棱垂直正方形的一个顶点,长度为 2,

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析) 精品

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析)  精品

2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。

2017吉林高考数学试题

2017吉林高考数学试题

2017吉林高考数学试题2017年吉林高考数学试题是广大考生备考的重要参考资料之一。

以下将针对该试题进行详细分析和解答,帮助考生更好地理解和掌握数学知识。

I.必推题分析2017吉林高考数学试题中,必推题是考生必须掌握的题目,也是试题中较为基础的部分。

其中包括了数与代数、函数、几何与变换、数理统计与概率等内容。

1. 数与代数数与代数是数学中的基础,掌握好这一部分的知识对于后续的学习至关重要。

2. 函数函数在高中数学中占据着重要的地位,考生需要了解函数的定义、性质和图像等内容。

3. 几何与变换几何学习是高中数学的重要组成部分,考生需要熟悉几何图形的性质、定理以及几何变换等。

4. 数理统计与概率数理统计与概率是数学中的实际应用部分,考生需要了解基本概念、数据处理以及统计分析等内容。

II.选择题解析2017吉林高考数学试题中的选择题主要考察考生对基础知识的掌握程度和问题解决能力。

1. 单选题单选题是选择题中最基础的形式,考生需要在给出的选项中选择正确的答案。

2. 多选题多选题相比于单选题,考察的是考生的综合分析和判断能力,需要选择多个正确答案。

3. 判断题判断题是对于所给论述的真伪进行判断,考生需要准确地判断出给定论述中的是非。

III.解答题解析解答题对考生的能力要求更高,需要考生灵活运用所学知识,进行问题的解答和分析。

1. 填空题填空题是解答题中较为简单的一种形式,考生需要根据题目要求填写上正确的答案。

2. 简答题简答题要求考生对所学知识进行简要阐述和分析,可以通过简短的文字来回答。

3. 计算题计算题是对于具体问题的计算和解答,需要考生正确运用所学的数学知识进行计算和推导。

综上所述,2017吉林高考数学试题涵盖了数与代数、函数、几何与变换、数理统计与概率等多个领域,考生在备考过程中需要系统地学习和掌握这些知识点。

同时,对于选择题和解答题,考生需要注重平时的练习和积累,熟悉题型,提高解题能力。

通过认真分析和解答试题,考生可以更好地理解数学知识,提高解题水平,为顺利应对高考提供有效的帮助。

2017年吉林省吉林市高考数学三模试卷(文科)Word版含解析

2017年吉林省吉林市高考数学三模试卷(文科)Word版含解析

2017年吉林省吉林市高考数学三模试卷(文科)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U=R,集合A={x|x>0},B={x|x2﹣x﹣2<0},则A∩(∁U B)=()A.(0,2]B.(﹣1,2]C.[﹣1,2]D.[2,+∞)2.若复数z=,其中i为虚数单位,则复数z的虚部是()A.B.﹣C.﹣i D.i3.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.函数f(x)=满足f(x)=1的x值为()A.1 B.﹣1 C.1或﹣2 D.1或﹣15.已知,则||+|=().已知|||=1,||=2,向量与的夹角为60°,则A.B.C.1 D.26.已知抛物线x2=2y的焦点与椭圆+=1的一个焦点重合,则m=()A.1 B.2 C.3 D.7.已知函数y=Asin(ωx+φ)+m的最大值为4,最小值为0,两个对称轴间的最短距离为,直线是其图象的一条对称轴,则符合条件的解析式是()A.B.C.D.8.阅读程序框图,运行相应的程序,则输出i的值为()A .3 B .4 C .5 D .69.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a=1,b=,B=60°,则△ABC 的面积为(的面积为( ) A . B .C .1 D .10.若正实数x ,y 满足x +2y +2xy ﹣8=0,则x +2y 的最小值(的最小值( )A .3 B .4 C .D .11.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为(则该几何体的体积为( )A .B .C .4+2πD .4+π12.函数f (x )的定义域为D ,对给定的正数k ,若存在闭区间,若存在闭区间[[a ,b ]⊆D ,使得函数f (x )满足:①f (x )在)在[[a ,b ]内是单调函数;②f (x )在)在[[a ,b ]上的值域为域为[[ka ,kb ],则称区间,则称区间[[a ,b ]为y=f (x )的k 级“理想区间”.下列结论错误的是(是( )A .函数f (x )=x 2(x ∈R )存在1级“理想区间”B .函数f (x )=e x(x ∈R )不存在2级“理想区间” C .函数f (x )=(x ≥0)存在3级“理想区间”D .函数f (x )=tanx ,x ∈(﹣,)不存在4级“理想区间”二、填空题:本大题共4小题,每小题5分。

2017吉林高考数学试题

2017吉林高考数学试题

2017吉林高考数学试题2017年吉林高考数学试题解析一、选择题1. 集合的表示与运算本题考查了集合的基本概念和运算,包括交集、并集、补集的定义及其运算。

例如,若A={x|x<2},B={x|x>3},则A∩B为空集,A∪B为实数集R,A'(A的补集)为{x|x≥2}。

2. 函数的概念与性质函数是高中数学的重要内容,涉及函数的定义域、值域、单调性、奇偶性等。

例如,对于函数f(x)=x^2,其定义域为全体实数,值域为[0,+∞),且该函数为偶函数。

3. 导数与微分导数是微积分的基础,涉及导数的定义、求导法则、微分的应用等。

例如,函数f(x)=x^3的导数为3x^2,表示函数在任意一点的切线斜率。

4. 三角函数与解三角形三角函数是解决平面几何问题的重要工具,涉及正弦、余弦、正切等函数的性质和应用。

解三角形问题通常需要结合三角函数和平面几何知识。

5. 数列的概念与简单表示数列是一系列按照一定顺序排列的数,涉及等差数列、等比数列、数列的通项公式等。

例如,对于等差数列{an},其通项公式为an=a1+(n-1)d。

6. 概率与统计概率与统计是研究随机现象的数学理论,包括事件的概率、条件概率、离散型随机变量及其分布等。

例如,某班级中男生和女生的比例问题,可以通过概率知识进行计算。

二、填空题1. 函数的最值问题最值问题是高中数学中的常见问题,通常需要利用导数来求解。

例如,求函数f(x)=x^3-3x^2+2在区间[-2,3]上的最大值和最小值。

2. 解不等式不等式的解法是高中数学的基础内容,涉及一元一次不等式、一元二次不等式等。

例如,解不等式x^2-3x+2<0,需要找到满足条件的x值范围。

3. 向量的基本运算向量是解析几何中的重要概念,涉及向量的加法、数乘、数量积等运算。

例如,已知向量a=(1,2),b=(3,-1),求a与b的数量积。

4. 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线等,涉及其方程的求解和性质的应用。

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=( )A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。

【精品】2017年吉林省高考数学试卷及参考答案(文科)(全国新课标ⅱ)

2017年吉林省高考数学试卷(文科)(全国新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞) B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.98.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2 C.2 D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.21.(12分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。

(吉林)高三数学-2017年吉林省吉林市高考数学三模试卷(文科) Word版含解析

2017年吉林省吉林市高考数学三模试卷(文科)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U=R,集合A={x|x>0},B={x|x2﹣x﹣2<0},则A∩(∁U B)=()A.(0,2]B.(﹣1,2]C.[﹣1,2]D.[2,+∞)2.若复数z=,其中i为虚数单位,则复数z的虚部是()A.B.﹣C.﹣i D.i3.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.函数f(x)=满足f(x)=1的x值为()A.1 B.﹣1 C.1或﹣2 D.1或﹣15.已知||=1,||=2,向量与的夹角为60°,则|+|=()A.B.C.1 D.26.已知抛物线x2=2y的焦点与椭圆+=1的一个焦点重合,则m=()A.1 B.2 C.3 D.7.已知函数y=Asin(ωx+φ)+m的最大值为4,最小值为0,两个对称轴间的最短距离为,直线是其图象的一条对称轴,则符合条件的解析式是()A.B.C.D.8.阅读程序框图,运行相应的程序,则输出i的值为()A.3 B.4 C.5 D.69.在△ABC中,a,b,c分别是角A,B,C的对边,若a=1,b=,B=60°,则△ABC的面积为()A.B.C.1 D.10.若正实数x,y满足x+2y+2xy﹣8=0,则x+2y的最小值()A.3 B.4 C.D.11.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.4+2πD.4+π12.函数f(x)的定义域为D,对给定的正数k,若存在闭区间[a,b]⊆D,使得函数f(x)满足:①f(x)在[a,b]内是单调函数;②f(x)在[a,b]上的值域为[ka,kb],则称区间[a,b]为y=f(x)的k级“理想区间”.下列结论错误的是()A.函数f(x)=x2(x∈R)存在1级“理想区间”B.函数f(x)=e x(x∈R)不存在2级“理想区间”C.函数f(x)=(x≥0)存在3级“理想区间”D.函数f(x)=tanx,x∈(﹣,)不存在4级“理想区间”二、填空题:本大题共4小题,每小题5分。

2017年吉林省吉林市高考数学二模试卷(文科)(解析版)

2017年吉林省吉林市高考数学二模试卷(文科)一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求.1.(5分)已知集合A={1,2,3,4},集合B={3,4,5,6},则集合A∩B真子集的个数为()A.1B.2C.3D.42.(5分)已知复数z=,则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)命题∀m∈[0,1],则的否定形式是()A.∀m∈[0,1],则B.∃m∈[0,1],则C.∃m∈(﹣∞,0)∪(1,+∞),则D.∃m∈[0,1],则4.(5分)阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10B.6C.14D.185.(5分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.5B.4C.D.6.(5分)若x,y满足约束条件,则z=x﹣y的最小值是()A.﹣3B.0C.D.37.(5分)设{a n}是公差不为零的等差数列,满足,则该数列的前10项和等于()A.﹣10B.﹣5C.0D.58.(5分)双曲线的一条渐近线与圆相切,则此双曲线的离心率为()A.2B.C.D.9.(5分)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A.B.C.D.10.(5分)某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A.4πB.πC.πD.20π11.(5分)在等腰直角△ABC中,AC=BC,D在AB边上且满足:,若∠ACD=60°,则t的值为()A.B.C.D.12.(5分)设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣2)∪(0,2)B.(﹣2,0)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣2,2)D.(0,2)∪(2,+∞)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)设函数,则f[f(﹣1)]=.14.(5分)已知向量,的夹角为45°,||=||=2,且向量与λ﹣垂直,则实数λ=.15.(5分)给出下列命题:①若函数y=f(x)满足f(x﹣1)=f(x+1),则函数f(x)的图象关于直线x=1对称;②点(2,1)关于直线x﹣y+1=0的对称点为(0,3);③通过回归方程=x+可以估计和观测变量的取值和变化趋势;④正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,所以f(x)=sin(x2+1)是奇函数,上述推理错误的原因是大前提不正确.其中真命题的序号是.16.(5分)设S n为数列{a n}的前n项和,若2a n+(﹣1)n•a n=2n+(﹣1)n•2n(n∈N*),则S10=.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数f(x)=M sin(ωx+φ)(M>0,|φ|<)的部分图象如图所示.(1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cos B=b cos C,求的取值范围.18.(12分)已知{a n}是公比不等于1的等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,若,求数列{c n}的前n项和T n.19.(12分)某车间20名工人年龄数据如表:(Ⅰ)求这20名工人年龄的众数与平均数;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.20.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,E、F分别为PC、BD的中点,侧面P AD⊥底面ABCD,且P A=PD=AD.(1)求证:EF∥平面P AD;(2)求三棱锥C﹣PBD的体积.21.(12分)已知椭圆+=1(a>b>0)离心率为,左、右焦点分别为F1,F2,左顶点为A,|AF1|=﹣1(Ⅰ)求椭圆的方程;(Ⅱ)若直线l经过F2与椭圆交于M,N两点,求•取值范围.22.(12分)设函数f(x)=(x+b)lnx,已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.(Ⅰ)求b的值.(Ⅱ)若函数,且g(x)在区间(0,+∞)上是单调函数,求实数a的取值范围.2017年吉林省吉林市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求.1.(5分)已知集合A={1,2,3,4},集合B={3,4,5,6},则集合A∩B真子集的个数为()A.1B.2C.3D.4【解答】解:∵集合A={1,2,3,4},集合B={3,4,5,6},∴A∩B={3,4},∴集合A∩B真子集的个数为:22﹣1=3.故选:C.2.(5分)已知复数z=,则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:z===,∴对应的点的坐标为(),位于第四象限,故选:D.3.(5分)命题∀m∈[0,1],则的否定形式是()A.∀m∈[0,1],则B.∃m∈[0,1],则C.∃m∈(﹣∞,0)∪(1,+∞),则D.∃m∈[0,1],则【解答】解:因为全称命题是否定是特称命题,所以,命题∀m∈[0,1],则的否定形式是:∃m∈[0,1],则故选:D.4.(5分)阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10B.6C.14D.18【解答】解:模拟执行程序框图,可得S=20,i=1i=2,S=18不满足条件i>5,i=4,S=14不满足条件i>5,i=8,S=6满足条件i>5,退出循环,输出S的值为6.故选:B.5.(5分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.5B.4C.D.【解答】解:抛物线x2=4y上一点A的纵坐标为4,则A的横坐标为:4,可得点A与抛物线焦点的距离为:4+1=5.故选:A.6.(5分)若x,y满足约束条件,则z=x﹣y的最小值是()A.﹣3B.0C.D.3【解答】解:约束条件,表示的可行域如图,解得A(0,3),解得B(0,)、解得C(1,1);由A(0,3)、B(0,)、C(1,1);所以t=x﹣y的最大值是1﹣1=0,最小值是0﹣3=﹣3;故选:A.7.(5分)设{a n}是公差不为零的等差数列,满足,则该数列的前10项和等于()A.﹣10B.﹣5C.0D.5【解答】解:设等差数列{a n}的首项为a1,公差为d(d≠0),由,得,整理得:2a1+9d=0,即a1+a10=0,∴.故选:C.8.(5分)双曲线的一条渐近线与圆相切,则此双曲线的离心率为()A.2B.C.D.【解答】解:∵双曲线渐近线为bx±ay=0,与圆相切,∴圆心到渐近线的距离为=1或=1,求得a=b,∴c2=a2+b2=4a2,∴e=2.故选:A.9.(5分)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A.B.C.D.【解答】解:函数f(x)=sin2x+cos2x=sin(2x+)的图象向右平移φ的单位,所得图象是函数y=sin(2x+﹣2φ),图象关于y轴对称,可得﹣2φ=kπ+,即φ=﹣,当k=﹣1时,φ的最小正值是.故选:C.10.(5分)某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A.4πB.πC.πD.20π【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,三棱柱的两个底面的中心的中点与三棱柱的顶点的连线就是外接球的半径,r==,球的表面积4πr2=4π×=π.故选:B.11.(5分)在等腰直角△ABC中,AC=BC,D在AB边上且满足:,若∠ACD=60°,则t的值为()A.B.C.D.【解答】解:∵,∴A,B,D三点共线,∴由题意建立如图所示坐标系,设AC=BC=1,则C(0,0),A(1,0),B(0,1),直线AB的方程为x+y=1,直线CD的方程为y=x,故联立解得,x=,y=,故D(,),故=(,),=(1,0),=(0,1),故t+(1﹣t)=(t,1﹣t),故(,)=(t,1﹣t),故t=,故选:A.12.(5分)设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣2)∪(0,2)B.(﹣2,0)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣2,2)D.(0,2)∪(2,+∞)【解答】解:令g(x)=x3f(x),则问题转化为解不等式g(x)>0,∵当x>0时,xf′(x)+3f(x)>0,∴当x>0时,3x2f(x)+x3f′(x)>0,∴当x>0时g′(x)>0,即函数g(x)在(0,+∞)上单调递增,又∵f(﹣2)=0,f(x)(x∈R)是奇函数,∴f(2)=0,g(2)=0,且g(x)在(﹣∞,0)上单调递减,∴当x>0时,g(x)>0的解集为(2,+∞),当x<0时,g(x)>0=g(﹣2)的解集为(﹣2,0),∴使得f(x)>0成立的x的取值范围是(﹣2,0)∪(2,+∞),故选:B.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)设函数,则f[f(﹣1)]=﹣1.【解答】解:∵函数,∴f(﹣1)=4,f[f(﹣1)]=f(4)=﹣1,故答案为:﹣1;14.(5分)已知向量,的夹角为45°,||=||=2,且向量与λ﹣垂直,则实数λ=.【解答】解:由题意可得=||•||•cos45°=2×2×=2,再根据向量与λ﹣垂直,可得•(λ﹣)=λ﹣=2λ﹣4=0,求得λ=,故答案为.15.(5分)给出下列命题:①若函数y=f(x)满足f(x﹣1)=f(x+1),则函数f(x)的图象关于直线x=1对称;②点(2,1)关于直线x﹣y+1=0的对称点为(0,3);③通过回归方程=x+可以估计和观测变量的取值和变化趋势;④正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,所以f(x)=sin(x2+1)是奇函数,上述推理错误的原因是大前提不正确.其中真命题的序号是②③.【解答】解:若函数y=f(x)满足f(x﹣1)=f(x+1),则函数f(x)是周期为2的周期函数,但不一定具有对称性,故①错误;点(2,1),(0,3)确定的直线斜率为﹣1,与直线x﹣y+1=0垂直,且中点(1,2)在直线x﹣y+1=0上,故点(2,1),(0,3)关于直线x﹣y+1=0的对称,故②正确;通过回归方程=x+可以估计和观测变量的取值和变化趋势,故③正确;正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,所以f(x)=sin(x2+1)是奇函数,上述推理错误的原因是小前提不正确,故④错误.故答案为;②③16.(5分)设S n为数列{a n}的前n项和,若2a n+(﹣1)n•a n=2n+(﹣1)n•2n(n∈N*),则S10=.【解答】解:∵2a n+(﹣1)n•a n=2n+(﹣1)n•2n,∴当n=2k﹣1(k∈N*)时,2a2k﹣1﹣a2k﹣1=0,即a2k﹣1=0.当n=2k时,,即a2k=.∴S10=a2+a4+…+a10===.故答案为:.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数f(x)=M sin(ωx+φ)(M>0,|φ|<)的部分图象如图所示.(1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cos B=b cos C,求的取值范围.【解答】解:(1)由图象知A=1,,∴ω=2,∴f(x)=sin(2x+φ)∵图象过(),将点代入解析式得,∵,∴故得函数.(2)由(2a﹣c)cos B=b cos C,根据正弦定理,得:(2sin A﹣sin C)cos B=sin B cos C∴2sin A cos B=sin(B+C),∴2sin A cos B=sin A.∵A∈(0,π),∴sin A≠0,∴cos B=,即B=∴A+C=,即那么:,故得.18.(12分)已知{a n}是公比不等于1的等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,若,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)设数列{a n}的公比为q,q≠1,化为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)解得,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ),﹣﹣﹣﹣﹣﹣(8分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)﹣﹣﹣﹣﹣(12分)19.(12分)某车间20名工人年龄数据如表:(Ⅰ)求这20名工人年龄的众数与平均数;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.【解答】(本小题满分12分)解(Ⅰ)由题意可知,这20名工人年龄的众数是30,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)这20名工人年龄的平均数为=(19+3×28+3×29+5×30+4×31+3×32+40)=30,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)这20名工人年龄的茎叶图如图所示:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(Ⅲ)记年龄为24岁的三个人为A1,A2,A3;年龄为26岁的三个人为B1,B2,B3,则从这6人中随机抽取2人的所有可能为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B,3},{A3,B1},{A3,B2},{A,3,B3},{B1,B2},{B1,B3},{B2,B3}共15种.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)满足题意的有{A1,A2},{A1,A3},{A2,A3}3种,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)故所求的概率为P=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)20.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,E、F分别为PC、BD的中点,侧面P AD⊥底面ABCD,且P A=PD=AD.(1)求证:EF∥平面P AD;(2)求三棱锥C﹣PBD的体积.【解答】解:(1)证明:连接AC,则F是AC的中点,E为PC的中点故在△CP A中,EF∥P A,(3分)且P A⊂平面P AD,EF⊄平面P AD,∴EF∥平面P AD(6分)(2)取AD的中点M,连接PM,∵P A=PD,∴PM⊥AD(8分)又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,∴PM⊥平面ABCD,(10分)∴(14分)21.(12分)已知椭圆+=1(a>b>0)离心率为,左、右焦点分别为F1,F2,左顶点为A,|AF1|=﹣1(Ⅰ)求椭圆的方程;(Ⅱ)若直线l经过F2与椭圆交于M,N两点,求•取值范围.【解答】(本小题满分12分)解:(Ⅰ)设F1(﹣c,0),F2(c,0)∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∴b2=a2﹣c2=1,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)当直线l斜率存在时:设M(x1,y1),N(x2,y2),直线l为:y=k(x﹣1),代入得:(1+2k2)x2﹣4k2x+2k2﹣2=0,由题意△>0所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)所以==﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)因为1+2k2≥1,所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当直线l斜率不存在时:,∴所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)综上:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)22.(12分)设函数f(x)=(x+b)lnx,已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.(Ⅰ)求b的值.(Ⅱ)若函数,且g(x)在区间(0,+∞)上是单调函数,求实数a的取值范围.【解答】解:(Ⅰ)由题意知,曲线y=f(x)在点(1,f(1))处的切线斜率为2,所以f′(1)=2,﹣﹣﹣﹣﹣﹣﹣(2分)又f′(x)=ln x++1,即ln 1+b+1=2,所以b=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)由(Ⅰ)知g(x)==e x ln x﹣ae x所以g′(x)=(﹣a+ln x)e x(x>0),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)若g(x)在(0,+∞)上为单调递减函数,则g′(x)≤0在(0,+∞)上恒成立,即﹣a+ln x≤0,所以a≥+ln x.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)令h(x)=+ln x(x>0),则h′(x)=﹣+=由h′(x)>0,得x>1,h′(x)<0,得0<x<1,故函数h(x)在(0,1]上是减函数,在[1,+∞)上是增函数,则+ln x→∞,h(x)无最大值,g′(x)≤0在(0,+∞)上不恒成立,故g(x)在(0,+∞)不可能是单调减函数.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)若g(x)在(0,+∞)上为单调递增函数,则g′(x)≥0在(0,+∞)上恒成立,即﹣a+ln x≥0,所以a≤+ln x,由前面推理知,h(x)=+ln x的最小值为1,∴a≤1,故a的取值范围是(﹣∞,1].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)。

2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=( )A.1-iB.1+3iC.3+iD.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为( )A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|-|则( )A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线-y2=1的离心率的取值范围是( )A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是( )A.-15B.-9C.1D.98.(5分)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=-1,则输出的S=( )A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A. B. C. D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C 的准线,点N在l上,且MN⊥l,则M到直线NF的距离为( )A. B.2 C.2 D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{an }的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{bn}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P-ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;.K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年吉林省高考文科数学试题与答案(考试时间:120分钟 试卷满分:150分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合{}{}123234A B ==,,, ,,, 则=ABA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2.(1+i )(2+i )=A. 1-iB. 1+3iC. 3+iD. 3+3i 3. 函数()fx =πsin (2x+)3的最小正周期为A. 4πB. 2πC. πD. 2π4. 设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB. =b aC. a ∥bD. >b a5. 若a >1,则双曲线x y a=222-1的离心率的取值范围是A. ∞)B. 2)C. (1D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的 是某几何体的三视图,该几何体由一平面将一圆柱截 去一部分后所得,则该几何体的体积为A. 90πB.63πC.42πD.36π7. 设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+ 的最小值是A. -15B.-9C. 1D. 9 8. 函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A. 乙可以知道两人的成绩 B. 丁可能知道两人的成绩C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的a = -1,则输出的S=A. 2B. 3C. 4D. 511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上 的数的概率为A. 110B. 15C. 310D. 2512. 过抛物线C:y 2=4x 的焦点F的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为A.B.二、填空题,本题共4小题,每小题5分,共20分. 13. 函数()cos sin =2+fx x x 的最大值为 .14. 已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x,则()2=f15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16. △ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=三、解答题:共70分。

解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)已知等差数列{a n }的前n 项和为Sn ,等比数列{b n }的前n 项和为Tn ,a 1=-1,b1=1,a3+b2=2. (1) 若a3+b2=5,求{b n }的通项公式; (2) 若T=21,求S 1 18.(12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角 形且垂直于底面ABCD ,AB=BC=12AD, ∠BAD=∠ABC=90°。

(1) 证明:直线BC ∥平面PAD;(2) 若△PAD 面积为P-ABCD 的体积。

19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ), 其频率分布直方图如下:(1) 记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较。

附:)22()()()()()n ad bc K a b c d a c b d -=++++20.(12分)设O 为坐标原点,动点M 在椭圆C上,过M 作x 轴的垂线,垂足为N ,点P 满足(1) 求点P 的轨迹方程; (2) 设点 在直线x =-3上,且 .证明过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)设函数f(x)=(1-x 2)e x. (1)讨论f(x)的单调性;(2)当x ≥0时,f(x)≤ax +1,求a 的取值范围.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22. [选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系。

曲线C 1的极坐标方程为(1)M 为曲线C 1的动点,点P 在线段OM 上,且满足16 OM OP =,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为π23(,),点B 在曲线C 2上,求△OAB 面积的最大值。

23. [选修4-5:不等式选讲](10分)已知=2。

证明: (1):(2)。

文科数学试题答案一、选择题1.A2.B3.C4.A5.C6.B7.A8.D9.D 10.B 11.D 12.C二、填空题13. 14. 12 15. 14π 16.三、解答题17.解:设的公差为d,的公比为q,则,.由得d+q=3. ①(1)由得②联立①和②解得(舍去),因此的通项公式(2)由得.解得当时,由①得,则.当时,由①得,则.18.解:(1)在平面ABCD内,因为∠BAD=∠ABC=90°,⊄平面,所以BC∥AD.又BC PAD⊂平面,故BC∥平面PAD.AD PAD(2)去AD的中点M,连结PM,CM,由12AB BC AD==及BC∥AD,∠ABC=90°得四边形ABCM为正方形,则CM⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM⊥AD,PM⊥底面ABCD,因为CM ABCD⊂底面,所以PM⊥CM.设BC=x,则CM=x,CD=,PM=,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以因为△PCD的面积为,所以,解得x=-2(舍去),x=2,于是AB=BC=2,AD=4,PM=,所以四棱锥P-ABCD的体积.19.解:(1)旧养殖法的箱产量低于50kg的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表K2=20015.705 10010096104⨯⨯⨯⨯≈由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图平均值(或中位数)在45kg到50kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.20.解:(1)设P(x,y),M(),则N(),由得.因为M()在C上,所以.因此点P的轨迹为.(3)由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.21. 解(1)f ’(x)=(1-2x-x2)e x令f’(x)=0得x,x当x∈(-∞,时,f’(x)<0;当x∈(,)时,f’(x)>0;当x∈(,+∞)时,f’(x)<0所以f(x)在(-∞,),(,+∞)单调递减,在(,)单调递增(2) f (x)=(1+x)(1-x)e x当a≥1时,设函数h(x)=(1-x)e x,h’(x)= -xe x<0(x>0),因此h(x)在[0,+∞)单调递减,而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1当0<a<1时,设函数g(x)=e x-x-1,g’(x)=e x-1>0(x>0),所以g(x)在在[0,+∞)单调递增,而g(0)=0,故e x≥x+1当0<x <1,2()(1)(1)f x x x =-+,22(1)(1)1(1)x x ax x a x x -+--=---,取01x =则2000000(0,1),(1)(1)0,()1x x x ax f x ax ∈-+-=〉+故当 000000()1-(1)211a x f x x x ax ≤=〉+=〉+时,取() 综上,a 的取值范围[1,+∞) 22.解:(1)设P 的极坐标为()(>0),M 的极坐标为()由题设知|OP|=,=.由|OP|=16得的极坐标方程因此的直角坐标方程为.(2)设点B 的极坐标为 ().由题设知|OA|=2,,于是△OAB 面积当时, S 取得最大值.所以△OAB 面积的最大值为.23. 解:++=+++336556(1)()()a b a b a ab a b b=+-++3323344()2()a b a b ab a b=+-2224()ab a b ≥4.(2)因为+=+++33223()33a b a a b ab b=++23()ab a b+≤++23()2(a b)4a b +=+33()24a b所以 +≤3()8a b ,因此+≤2a b。

相关文档
最新文档