比的基本性质 习题

合集下载

六年级上册数学同步练习题比的基本性质

六年级上册数学同步练习题比的基本性质

六年级上册数学一课一练- 比的基本性质一、单选题1.12∶18=2∶应填的数是()A. 14B. 3C. 16D. 1 52.在一张图纸上画出甲、乙两个正方形水池,甲的边长是8厘米,乙的边长是2厘米,甲、乙两个水池周长的比是()A. 4∶1B. 1∶4C. 16∶1 D. 1∶163.4∶5的后项扩大到原来的3倍,要使比值不变,前项应加上( )。

A. 10B. 8C. 12D. 204.300克∶1200克的比值是()A. B. C.D.5.比的前项扩大到原来的4倍,后项(),比值也扩大到原来的4倍。

A. 扩大到原来的4倍B. 不变C. 缩小到原来的6.化简比=()A. 7∶4B. 5∶12C. 5∶3 D. 9∶57.若2:3的前项增加6,要使比值不变,后项要()A. 增加6B. 增加6倍C. 扩大3倍 D. 增加9二、判断题8.比的前项和后项都乘一个相同的数,比值不变.9.除数不能为0,分母不能为0,比的后项也不能为0.10.把0.54吨:54千克化成最简整数比是1:1.11.0.6:2化成最简单的整数比是0.3:1。

12.比的前项扩大4倍,比值也扩大4倍.三、填空题13.________÷5=________=1.6=8∶________14.花店里有两种玫瑰花,3元可以买4枝红玫瑰,4元可以买3枝黄玫瑰,红玫瑰与黄玫瑰的单价的最简整数比是________.15.10÷________ =0.4=________ (填分数)=________:20=________%.16.________=________∶________=140%=28÷________=________。

17.=________÷________=________:________=________%=________成18.化简.(1)1.4∶1.2=________∶________(2)=________∶________四、计算题19.求比值。

比的基本性质练习课

比的基本性质练习课
详细描述
比加法是指将两个比值相加的过程。例如,如果有一个比值为2:3,另一个比值 为3:4,则它们的和的比值为(2+3):(3+4),即5:7。
比的减法
总结词
理解比减法的概念
详细描述
比减法是指将两个比值相减的过程。例如,如果有一个比值为2:3,另一个比值为 1:4,则它们的差的比值为(2-1):(3-4),即1:-1。
比的简化
如果两个数的比可以简化为一个整数,则该比称为 最简比。
比的性质
80%
比的性质1
比的前项和后项同号,即两个正 数或两个负数的比都是正数。
100%
比的性质2
比的前项和后项之积等于两数之 积,即 a:b = c:d => ad = bc。
80%
比的性质3
比的前项和后项之和等于两数之 和的比,即 (a+b):c = (m+n):x => (a+b)/(m+n) = c/x。
问题。
掌握程度
我认为我已经掌握了比的基本性 质,能够熟练运用这些性质进行
计算和推理。
自我评价
我对自己的掌握程度感到满意, 但在某些复杂问题的解决上仍需
进一步提高。
THANK YOU
感谢聆听
理解如何进行比的加、减、乘 、除混合运算,以及如何处理 比的运算中的分数和小数的形 式。
对比的应用
通过解决实际问题,如计算比 例、百分比和概率等,了解比 在实际生活中的应用。
比的性质在实际应用中的重要性
解决比例问题
比的性质在解决比例问题中具有重要作用,如计 算百分比、比例尺等。
数据分析
在数据分析中,比的性质可以帮助我们理解和比 较不同数据集之间的关系。

六年级上册(人教版) 比的基本性质(附答案)

六年级上册(人教版) 比的基本性质(附答案)

六年级上册(人教版) 比的基本性质一、填一填。

1. 16:20=32:( ) =( )÷10 =()4=()80=( )(填小数)2.火车4小时行驶了600千米,路程和时间的最简整数比是( ),比值是( )。

3.完成下表。

二、判断正误。

1.比的前项和后项同时乘一个相同的数,比值不变。

( )2. 10克盐溶解在100克水中,这时盐和盐水的比是1:10。

( )3.比的前项乘5,后项除以51。

比值不变。

( ) 三、利用已知条件,求a ∶b ∶c 。

a ∶b=2∶3,b ∶c=6∶5; a ∶b=2∶3,b ∶c=4∶3第2课时 比的基本性质 参考答案一、填一填。

1. 16:20=32:(40) =( 8)÷10 =()54=()8064=(0.8 )(填小数)2.火车4小时行驶了600千米,路程和时间的最简整数比是(150:1 ),比值是(150千米/小时)。

3.完成下表。

二、判断正误。

1.比的前项和后项同时乘一个相同的数,比值不变。

(× )2. 10克盐溶解在100克水中,这时盐和盐水的比是1:10。

( ×)3.比的前项乘5,后项除以51。

比值不变。

(√) 三、利用已知条件,求a ∶b ∶c 。

a ∶b=2∶3,b ∶c=6∶5; a ∶b=2∶3,b ∶c=4∶3a ∶b ∶c=4:6:5 a ∶b ∶c=8:12:9人教版小学数学第十一册第四单元《比的基本性质》练习题1.我们航海模型小组男生有14人,女生有8人;我们航空模型小组共有26人,其中男生有16人;我们汽车模型小组共有12人,共做了18个汽车模型。

(1)航海模型小组男女生人数的比是( ): ( ),比值是( )。

(2)航空模型小组男女生人数的比是( ): ( ),比值是( )。

女生人数与小组总人数的比是( ): ( ),比值是( )。

(3)汽车模型小组做的模型总数与人数的比是( ): ( ),比值是( )。

人教版六年级数学上册 第四单元 第2课时 比的基本性质(课时练习题)

人教版六年级数学上册 第四单元 第2课时 比的基本性质(课时练习题)

2023秋人教版六年级数学上册课时练习题第四单元比第2课时比的基本性质一、填空题1.4:16=:32=2:=:。

2.如果a×2=b×5,那么a:b=:。

3.给3:4的前项加上9,要使比值不变,后项应加上。

4.a与b的比是3:4,b是c的2,则a:c=。

55.在比例35:10=21:6中,如果将第一个比的后项增加30,第二个比的后项应该加上才能使比例成立。

二、判断题6.在2:5中,如果比的前项加上6,要使比值不变,后项应该乘4。

()7.在2:3中,如果后项加上6,要使比值不变,前项只要加上4。

()8.甲、乙两数的比是4:5,乙、丙两数的比是7:8,则甲、丙两数的比是4:8。

()9.比的前项乘2,比的后项除以2,比值扩大4倍。

()10.把一个比的前项扩大到原来的3倍,后项缩小到原来1,它的比3值不变。

()三、单选题11.比的前项扩大到原来的2倍,后项缩小到原来的1,比值()。

4A.缩小到原来的1B.扩大到原来的8倍2C.扩大到原来的2倍D.缩小到原来的18 12.下列说法错误的是()。

A.录入同一份稿件,欢欢用30分钟,乐乐用20分钟,欢欢、乐乐两人工作效率的比是2∶3B.给8∶7的后项加上14,要使这个比的比值不变,前项也要加上14C.一个三角形三个内角度数的比是1∶2∶3,这个三角形是直角三角形D.一瓶糖水,糖的质量占糖水的1,糖与水的质量比是1∶91013.3:7的前项加9,要使比值不变,后项应该是()A.加9B.乘3C.乘9D.乘414.在3:4=6:8 这个比例里,如果第一个比的后项加上8,要使比例仍然成立,那么第二个比的后项应该()A.加上6B.加上8C.乘3D.乘415.一杯糖水糖和水的质量比是1:8,喝掉一半后,用水加满()A.1:8B.1:12C.1:16D.1:17四、计算题16.求下面各比的比值。

10:5 3:40.3:0.52五、解决问题17.图书室将180本书分给四、五、六三个年级,四五年级分得的本数比是2:1,五六年级分得的本数比是2:3,四、五、六年级各分多少本?18.一个三角形的三个内角分别用∠1、∠2和∠3表示,如果∠1:∠2=2:5,∠1:∠3=1:1,那么三个内角中最大的角是多少度?19.修一段高速公路,总长45千米,开工10天修了2千米。

比的基本性质练习题

比的基本性质练习题

比的基本性质练习题1. 简单题1.1 比的基本性质之一是:答:比具有相同属性或特征的事物之间通过语言进行相互联系和区别的能力。

1.2 比的基本性质之二是:答:比具有对事物进行分类和归类的作用,为人们建立思维框架和认知模式提供基础。

1.3 比的基本性质之三是:答:比具有描绘和表达事物特征、属性和关系的能力,使得人们可以更准确地刻画事物和表达观点。

2. 中级题2.1 “大象”和“小狗”之间进行比较,请使用比的基本性质描述它们的差异。

答:大象和小狗在体型上存在显著的差异,大象体型庞大,而小狗体型较小。

此外,大象的鼻子长而粗壮,能够用来觅食和吸水,而小狗的鼻子相对较小,主要用来嗅探气味。

另外,大象用长长的象牙作为防御和觅食工具,而小狗没有象牙。

在性情上,大象通常温和而安静,而小狗热情活泼。

2.2 以太阳和月亮为例,比的基本性质如何帮助我们区分它们的特征?答:太阳和月亮在天空中具有明显的区别。

首先,太阳是一个巨大的恒星,而月亮是一个比地球小得多的卫星。

其次,太阳是一个非常亮的光源,产生强烈的光和热,而月亮只有一小部分亮光,主要是反射太阳的光。

此外,太阳每天从东方升起,到西方落下,而月亮的位置则随时间而变化。

通过比的基本性质,我们可以清楚地辨认出太阳和月亮的不同特征。

3. 高级题3.1 请以比的基本性质为基础,比较和对比狗和猫这两种宠物的特征和品质。

答:狗和猫是最受欢迎的宠物之一,它们具有一些共同之处,也存在一些差异。

首先,狗通常更友好和忠诚,它们倾向于与人建立紧密的关系,并具有保护家庭的本能。

相比之下,猫通常更独立和独立,它们受欢迎的原因在于它们的整洁和自给自足的本性。

其次,狗对训练更易于掌握,它们可以进行各种指令和技能的训练,并可以成为优秀的工作犬。

猫则更难以训练,由于它们较为独立的天性,不太像狗那样适合执行各种任务。

再次,狗通常需要更多的运动和活动,以保持健康和快乐。

相比之下,猫需要相对较少的活动,它们可以在一个相对较小的空间中得到满足。

比的基本性质练习题

比的基本性质练习题

比的基本性质练习题一、选择题1. 比的基本性质是指()A. 比的前项和后项同时乘或除以同一个不为零的数,比值不变B. 比的前项和后项同时加或减同一个数,比值不变C. 比的前项和后项同时乘或除以同一个数,比值改变D. 比的前项和后项同时乘或除以同一个数,比值可能改变2. 根据比的基本性质,下列哪个选项的比值不会改变?()A. 4:8 → 4×2:8×2B. 4:8 → 4÷2:8÷2C. 4:8 → 4+2:8+2D. 4:8 → 4-2:8-23. 如果一个比的前项扩大到原来的3倍,后项缩小到原来的1/3,那么这个比的比值将如何变化?()A. 比值不变B. 比值扩大9倍C. 比值缩小9倍D. 无法确定二、填空题4. 一个比的前项是12,后项是4,根据比的基本性质,如果前项和后项同时除以4,新的比是________。

5. 已知比a:b=2:3,根据比的基本性质,如果将a和b同时乘以6,新的比是________。

三、判断题6. 比的基本性质只适用于整数比。

()A. 正确B. 错误7. 如果比的前项和后项都是0,那么这个比没有意义。

()A. 正确B. 错误四、简答题8. 解释为什么比的基本性质允许我们在不改变比值的情况下对比进行简化。

9. 举例说明如何利用比的基本性质将一个复杂的比简化为最简比。

五、计算题10. 已知比A:B=3:4,求比A:B简化后的形式。

11. 一个比的前项是50,后项是100,如果将这个比的前项和后项同时除以25,求新的比值。

六、应用题12. 某班级男生和女生的人数比是5:4,如果班级总共有45人,求男生和女生各有多少人。

13. 某工厂生产两种型号的零件,A型号和B型号的零件生产比是7:3。

如果工厂一天生产了700个A型号零件,求B型号零件的生产数量。

七、探究题14. 如果一个比的前项和后项都是分数,根据比的基本性质,这个比可以如何简化?15. 探讨比的基本性质在解决实际问题中的应用,例如在比例分配、速度计算等方面。

比的基本性质练习题

比的基本性质练习题

比的基本性质练习题一、选择题1. 比的基本性质是指比的前项和后项同时()。

A. 乘以或除以同一个数(0除外)B. 乘以或除以同一个数(1除外)C. 加上或减去同一个数D. 乘以或除以同一个数(2除外)2. 如果a:b = 3:4,那么3a与4b的比值是()。

A. 1B. 3C. 4D. 93. 已知x:y = 2:3,下列哪个选项是正确的?A. x + y = 5B. 3x = 2yC. 2x = 3yD. 3x = 6y二、填空题4. 如果2a与3b的比是4:9,那么a与b的比是()。

5. 一个比的前项是8,后项是16,这个比的比值是()。

6. 根据比的基本性质,如果一个比的前项扩大2倍,后项需要()。

三、判断题7. 比的前项和后项同时乘以或除以同一个数(0除外),比值不变。

()8. 如果a:b = 2:3,那么2a一定等于3b。

()9. 比的前项和后项同时加上同一个数,比值不变。

()四、简答题10. 解释为什么比的基本性质允许我们在不改变比值的情况下,对比的前项和后项进行乘法或除法操作。

11. 举例说明,如果一个比的前项是2,后项是3,那么这个比的比值是多少?如果前项和后项同时乘以2,新的比值是多少?五、计算题12. 已知a:b = 5:7,求a与b的比值。

13. 如果一个比的前项是15,后项是25,求这个比的比值,并说明如果前项和后项同时除以5,新的比值是多少。

14. 一个班级有男生30人,女生40人,求男生与女生的比,并说明如果班级人数增加,男生和女生的人数都增加相同的比例,比值是否会改变。

六、应用题15. 小明和小红的身高比是4:5,如果小明的身高是120厘米,求小红的身高。

16. 一个长方形的长与宽的比是3:2,如果长是18厘米,求宽。

17. 一个农场有牛和羊,牛的数量是羊的3倍,如果羊的数量是20只,求牛的数量,并说明如果羊的数量增加,牛的数量不变,牛和羊的比值会发生什么变化。

通过这些练习题,学生可以更好地理解和掌握比的基本性质,包括比值的不变性、比的简化以及比的应用。

(完整版)比的意义和基本性质练习题

(完整版)比的意义和基本性质练习题

比的意义一、细心填写:1.两个数相除又叫做这两个数的()。

比前项除以后项所得的商叫()。

2、甲数是12, 乙数是18.(1)甲与乙的比是()∶( )。

(2)乙与甲的比是( )∶()。

(3)甲与甲乙两数和的比是()∶( )。

(4)乙与甲乙两数和的比是()∶()。

(5)甲乙两数差与甲乙两数和的比是()∶()。

3.小明3分钟走了240米, 小杰5分钟走了350米。

(1)小明与小杰行走时间的比是(), 比值是( )。

(2)小明与小杰行走路程的比是( ), 比值是()。

(3)小明路程与时间的比是(), 比值是(), 比值表示( )。

(4)小杰路程与时间的比是( ),比值是(), 比值表示().(5)小明行走速度与小杰行走速度的比是( ).4.某校六年级一班男生人数是女生人数的。

男生人数与女生人数的比是()。

女生人数与全班人数的比是( )。

全班人数与女生人数的比是().5.苹果比梨多, 苹果与梨的比是( ), 梨与苹果和梨和的比是( ).5.甲数是乙数的3倍,乙数和甲数的比是()。

6、一段路,甲走完全程用7小时, 乙走完全程用6小时, 甲、乙的时间比是(),甲与乙的速度比是()。

7、两个正方形的边长的比是1∶3, 它们的周长比是()。

8、2∶13=( )÷()=()()95=( )∶()=()÷()9、将5克糖放入20克水中, 糖与糖水的比是( ).三、求比值。

12: 8 0。

4:0。

12 :5: 41 4.5:0.9 0.75:4130分钟∶41时 0.75吨∶250千克 400厘米∶0.8米比的基本性质一、细心填写1.( ),叫做比的基本性质.2.16:20=32: ( ) =( )÷10 = = ( ): 0.2( ): 16= = =( )÷24=3: ( )=( )÷20=0.250.8÷1.2=4÷( )=8: ( )==( ): 27=28÷( )=( ): ( )=0.625=15÷( )= =20: ( )3.火车4小时行驶了600千米,路程和时间的最简整数比是( ), 比值是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比的基本性质练习题
1、填一填
(1)4÷5=()÷()=
(2)16:12=(16÷□):(12÷□)=4:3
(3) 分米: 米的比值是(),化成最简整数比是()。

(4)六(1)班有45名同学,共买了225本练习本。

练习本的总数与人数的比是(),化成最简整数比是()。

(5)甲、乙两个数的比值是,如果乙数除以3,要使比值不变,那么甲数()。

(6)甲、乙两个数的比值是0.36,如果甲数乘以5,要使比值不变,那么乙数()。

(7)甲、乙两个数的比值是,如果甲、乙两数都乘4,那么比值是()。

(8)甲、乙两个数的比值是6,如果甲、乙两数都除以6,那么比值是()。

2、化简下面各比
13:26 18:45 ::0.375:0.25 0.8:0.05
3、商店运来的苹果箱数是运来梨的1.6倍,写出苹果箱数和梨箱数的比,并化简。

4、汽车每小时行驶72千米,火车每小时行驶120千米,写出汽车速度与火车速度的比,并化简。

5、某工厂工人数占全厂职工总数的,技术人员人数占全厂职工总数的,其余的是干部。

写出这个工厂的工人、技术人员和干部人数的比。

6、某班学生人数在40到50人之间,男生人数和女生人数的比是5:6。

这个班的男生和女生各有多少人?
课题二:比的基本性质(A)
教学内容
教科书第48页例1及相应的“做一做”,练习十二的第5~9题.
教学目的
使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单
的整数比.
教具准备
投影仪.
教学过程
一、复习
1.什么叫做比和比值?
2.比和除法、分数有什么联系和区别?引导学生归纳总结出下表:
3.商不变性质是什么?分数的基本性质呢?
引导学生回忆商不变性质和分数的基本性质.教师将这两个性质板书
在黑板上:
商不变性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍
数,商不变.
分数的基本性质:分数的分子和分母同时乘或者除以相同的数(零除
外),分数的大小不变.
二、新课
1.引入新课.
先在黑板上写出三个分数:、、.
教师:这三个分数相等吗?为什么?
引导学生想分数值,因为这三个分数的值都是0.75,所以这三个分
数相等.
教师:还有其他方法说明它们相等吗?
(根据分数的基本性质,和都可以化简成,所以这三个分数都
相等.)
教师指出:在除法中有商不变的性质,在分数中有分数的基本性质,那么比有没有类似的性质呢?这就是这节课我们要学习的内容.
板书课题:比的基本性质
2.教学比的基本性质.
在黑板上把三个分数、、分别改写成比的形式3∶4、6∶8、9∶
12.
提问:这三个比相等吗?为什么?
学生:这三个比相等,因为它们的比值都是(0.75).
教师用等号连结三个比(3∶4=6∶8=9∶12),提问:在这个式子中的三个比,同学们看到什么变了?什么没有变?
教师引导学生观察后指出:为什么这几个比的前项、后项都变了,而它们的比值却不变呢?前项和后项的变化有没有规律呢?下面我们
一起来探讨这个问题.
引导学生对等式(3∶4=6∶8=9∶12)进行分析,寻找规律.先引导学生根据商不变性质从左往右进行观察.
教师板演:3∶4=(3×2)∶(4×2)=6∶8
3∶4=(3×3)∶(4×3)=9∶12
6∶8=(6×1.5)∶(8×1.5)=9∶12
提问:请认真观察这些式子,谁能用一句话把其中的规律表达出来?
引导学生得出:比的前项和后项都乘相同的数,比值不变.
再引导学生从右往左进行观察,归纳分数的基本性质.
板书:
6∶8=(6÷2)∶(8÷2)=3∶4
9∶12=(9÷3)∶(12÷3)=3∶4
9∶12=(9÷1.5)∶(12÷1.5)=6∶8
提问:谁能用一句话把其中的规律表达出来?
引导学生答出:比的前项和后项都除以相同的数,比值不变.
由此要求学生把上面两句话概括成一句话.初步归纳出:比的前项和后项都乘或者除以相同的数,比值不变.
然后提问:比的前项和后项都乘或者除以相同的数,这里说的是不是什么数都行?乘0或者除以0可以吗?为什么?
组织学生讨论,使他们明确:因为除以0本身没有意义,乘0使比的
后项没有意义.
最后让学生完整地归纳总结出比的基本性质.
指导学生看书,齐读性质后,问:在比的基本性质中,你认为哪些字词是关键字词?(要求学生说出“同时”、“相同的数”、“零除外”,
教师用红笔圈上.)
3.化简比.
教师:请大家想一想,应该怎样约分?
指名学生回答后,板书:==.
请大家再看一道题:一年级有学生45人,二年级有学生40人,一年级和二年级学生人数的比是多少?
让学生集体回答,可以得到的比是45∶40.
指出:为了使数量间的关系更加简明,并使计算简便,我们经常要应用比的基本性质,把比化成最简单的整数比.
然后引导学生联系最简分数的概念,使学生明确化成最简单的整数比就是把比的前后项化成互质的整数比.
4.教学例1.
出示题目.
(1)化简14∶21.
提问:这道题应用比的基本性质,应该怎样化简?
学生比较容易想到前后项同时除以7,教师板书化简过程:14∶21=(14÷7)∶(21÷7)=2∶3,然后提问:7与14、21是什么关系呢?(7是14和21的最大公约数.)
从而引导学生小结出整数比化简的方法:用比的前后项分别除以它们的最大公约数,使比的前后项是互质数.
(2)化简∶.
提问:这个比的前、后项是什么数?(分数.)“根据比的基本性质,怎样才能把这两个分数转化成整数比?
引导学生联系通分,想到只要比的前、后项同时乘它们分母的最小公倍数18,就可以把分数比转化成整数比,进而化简成最简单的整数
比.
师生共同叙述化简过程,教师板书:∶=(×)∶(×)
=3∶4
进一步引导学生小结出分数比化简的方法:比的前、后项同时乘它们的分母的最小公倍数,就化简成最简单的整数比.
(3)化简1.25∶2.
提问:怎样才能把这个小数比转化成整数比?
让学生思考后回答,引导学生想到应用小数点向右移动相同位数的方法,可以将小数比化成整数比,然后再化简成最简单的整数比.
方法介绍后,让学生打开教科书,将有关步骤填写在书上.完成后,再指名学生说说小数比化简的方法.
最后,由师生共同小结一下把比化成最简单的整数比的方法,使学生
明确,第一步先要利用比的基本性质,把不是整数比的化成整数比,再把比的前、后项同时除以它们的最大公约数,就得到最简单的整数
比.
5.做教科书第63页“做一做”的题目.
让学生独立完成,教师注意巡视察看学生求最简整数比的方法.如果有的学生在化简时用的是求比值的方法,也是可以的.教师应给予鼓励.例如:∶=÷=×=.但是要提醒学生注意,最后结果必须写成最简单的整数比的形式.例如:化简∶=÷=
×=,而不能将最后结果写成6.如果没有学生用这种办法,可在做完练习十七的第9题之后,再将此法介绍给学生.
三、巩固练习
1.做练习十二的第5题.
先让学生独立化简第(1)题的3个比,完成后集体订正.然后做第(2)题,集体订正后再做第(3)题.
在学生做题时,教师注意巡视,察看学生化简的方法是否正确.
2.做练习十二的第6~8题.
先让学生独立完成,然后集体订正.
对于第7题中出现的不同类量的比,教师可以适当引导学生联系已学过的数量关系,说说所求的比和比值的具体含义.(所求的比和比值
实际上是平均每只羊的重量.)
3.做练习十二的第9题.
由于化简比的方法与求比值的方法可以通用,再加上两种计算的结果在形式上有时是一致的,学生容易混淆.这里可以先让学生独立完成第9题,将结果填写在书上,教师注意察看学生的完成情况.集体订正时,教师要着重说明求比值和化简比的区别,即:求比值也就是求“商”,得到的是一个数,可以写成分数、小数,有时能写成整数;而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但不能写成带分数、小数或整数的形式.。

相关文档
最新文档