2加法原理和乘法原理

合集下载

两个基本计数原理加法原理和乘法原理

两个基本计数原理加法原理和乘法原理

两个基本计数原理加法原理和乘法原理两个基本计数原理:加法原理和乘法原理在我们日常生活和数学学习中,计数是一项非常重要的任务。

而加法原理和乘法原理就是两个帮助我们解决计数问题的基本原理。

让我们先来聊聊加法原理。

想象一下,你要从 A 地去 B 地,有三条不同的路可以走,分别是路 1、路 2 和路 3。

那么从 A 地到 B 地,总的路线选择就是这三条路的总和,这就是加法原理。

加法原理说的是,如果完成一件事情有 n 类不同的方式,在第一类方式中有 m1 种不同的方法,在第二类方式中有 m2 种不同的方法,以此类推,在第 n 类方式中有 mn 种不同的方法,那么完成这件事情总的方法数就是 m1 +m2 +… + mn 种。

比如说,在一个班级里评选优秀学生,有学习成绩优秀的、品德优秀的、社会实践积极的三种类型。

假设学习成绩优秀的有 10 人,品德优秀的有 8 人,社会实践积极的有 6 人。

那么这个班级里优秀学生的总数就是 10 + 8 + 6 = 24 人。

再比如,你周末想去图书馆看书,图书馆在三个不同的区域分别有分馆,第一个区域有 2 家分馆,第二个区域有 3 家分馆,第三个区域有 1 家分馆。

那么你可以选择去的图书馆分馆总数就是 2 + 3 + 1 = 6 家。

接下来,我们说一说乘法原理。

假设你早上要穿衣服出门,上衣有3 件不同的款式可以选择,裤子有 2 条不同的款式可以选择。

那么你搭配衣服的方式总共有 3×2 = 6 种。

这就是乘法原理。

乘法原理是指,如果完成一件事情需要 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,以此类推,做第 n 步有 mn 种不同的方法,那么完成这件事情总的方法数就是m1×m2×…×mn 种。

比如说,要从 0 、 1 、 2 、 3 这 4 个数字中选出 3 个数字组成一个三位数,百位上有 3 种选择(因为 0 不能在百位),十位上有 3 种选择,个位上有 2 种选择,那么总共能组成的三位数个数就是 3×3×2 =18 个。

加法原理和乘法原理

加法原理和乘法原理

加法原理和乘法原理
1.加法原理:
加法原理也称为分情形原理,是指对一个由相互独立的事件构成的事件总和,其计数等于这些事件各自计数的总和。

简单来说,当我们需要从A和B两个集合中选择元素,或者进行两个动作时,可以使用加法原理来计数。

加法原理的表达式可以表示为:,
A∪B,=,A,+,B,-,A∩B。

一个例子是,有5个红球和3个蓝球,我们要从中选3个球。

这里红球和蓝球是分别独立的集合,使用加法原理可以直接将选红球的方式数目与选蓝球的方式数目相加,即C(5,3)+C(3,3)=10+1=11
2.乘法原理:
乘法原理也称为连乘法则,是指对一个多步操作的计数问题,其计数等于每个步骤计数的乘积。

乘法原理可以用于计数多个独立事件同时发生的可能性。

乘法原理的表达式可以表示为:,A×B,=,A,×,B。

一个例子是,有4个人,每个人有3种选择,问有多少种不同的选择方式。

我们可以将这个问题分解成4个独立的选择过程,并将每个选择过程的可能性相乘:3^4=81
乘法原理还可以推广到更多步骤的操作。

比如,在一个密码中,每位密码有10个可能的选项,密码有4位。

使用乘法原理,我们可以计算出总共有10^4=10,000种不同的密码可能性。

总结起来,加法原理和乘法原理是计数问题中非常重要的基本原理。

它们可以帮助我们计算各种可能性的总数,从而解决各种实际问题。

在实际应用中,我们通常需要灵活地使用这两个原理,结合具体问题进行推理和计算。

两个基本计数原理加法原理和乘法原理

两个基本计数原理加法原理和乘法原理

两个基本计数原理加法原理和乘法原理两个基本计数原理:加法原理和乘法原理在我们的日常生活和学习中,计数是一项经常会遇到的任务。

比如,计算从家到学校有多少种不同的路线,或者在商店里挑选衣服时有多少种搭配方式。

而在解决这些计数问题时,两个基本的计数原理——加法原理和乘法原理,就发挥着至关重要的作用。

先来说说加法原理。

加法原理指的是,如果完成一件事情有 n 类不同的方式,在第一类方式中有 m1 种不同的方法,在第二类方式中有m2 种不同的方法,……,在第 n 类方式中有 mn 种不同的方法,那么完成这件事情共有 N = m1 + m2 +… + mn 种不同的方法。

为了更好地理解加法原理,我们来看一个例子。

假设你要从 A 地去B 地,有三种交通方式可以选择:飞机、火车和汽车。

如果选择飞机有 5 个航班可选,选择火车有 10 趟车次可选,选择汽车有 8 趟班车可选。

那么从 A 地到 B 地,总的出行方式就有 5 + 10 + 8 = 23 种。

在这个例子中,选择飞机、火车、汽车这三种交通方式是相互独立的,彼此之间没有交叉和关联。

无论选择哪种方式,都能够完成从 A地到 B 地的行程。

所以,我们只需要将每种方式的可选数量相加,就可以得到总的出行方式数量。

再来看乘法原理。

乘法原理是说,如果完成一件事情需要分成 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事情共有 N =m1 × m2 × … × mn 种不同的方法。

比如说,你要从你的衣柜里挑选一套衣服出门,上衣有 5 件可选,裤子有 3 条可选。

那么你搭配出一套衣服的方式就有 5 × 3 = 15 种。

这里,挑选上衣和挑选裤子是两个相互独立的步骤。

只有先完成挑选上衣的步骤,才能进行挑选裤子的步骤。

而且,对于每一件上衣,都可以与 3 条裤子进行搭配;对于每一条裤子,也都可以与 5 件上衣进行搭配。

加法原理乘法原理

加法原理乘法原理

加法原理乘法原理加法原理和乘法原理是概率论中重要的基本原理,它们在计算概率问题时起到了至关重要的作用。

本文将详细介绍加法原理和乘法原理,并从实际问题的角度解释这两个原理。

一、加法原理:加法原理是指当可能发生的两个事件互不相容时,其概率可以通过将两个事件的概率相加来计算。

假设有两个事件A和B,它们互不相容,即A和B不可能同时发生。

那么,这两个事件的概率可以用加法原理进行计算。

对于事件A和B,它们的概率分别为P(A)和P(B),那么事件“A或B 发生”的概率可以表示为P(A∪B)。

根据加法原理,有以下公式:P(A∪B)=P(A)+P(B)加法原理可以简单地理解为,当两个事件互不相容时,事件“A或B 发生”的概率等于事件A发生的概率加上事件B发生的概率。

举例说明:假设考虑一个掷骰子的问题,事件A表示掷骰子出现1的概率,事件B表示掷骰子出现2的概率。

由于掷骰子不可能同时出现1和2,所以事件A和B互不相容。

根据加法原理,事件“A或B发生”的概率等于事件A发生的概率加上事件B发生的概率。

假设掷骰子出现1的概率为1/6,出现2的概率为1/6,那么事件“A或B发生”的概率为1/6+1/6=1/3加法原理的应用不仅仅局限于两个事件,它可以推广到多个互不相容的事件之间。

如果有n个互不相容的事件A1,A2,...,An,那么它们的概率之和可以表示为:P(A1∪A2∪...∪An)=P(A1)+P(A2)+...+P(An)二、乘法原理:乘法原理指出当一个事件发生的次数与另一个事件发生的次数有关联时,可以通过将两个事件的概率相乘来计算它们同时发生的概率。

假设有两个事件A和B,它们的发生次数有一定的关联。

那么,这两个事件同时发生的概率可以用乘法原理进行计算。

对于事件A和B,它们的概率分别为P(A)和P(B),那么事件“A和B 同时发生”的概率可以表示为P(A∩B)。

根据乘法原理,有以下公式:P(A∩B)=P(A)×P(B,A)乘法原理可以简单地理解为,事件“A和B同时发生”的概率等于事件A发生的概率乘以事件B在已知事件A发生的条件下发生的概率。

排列组合问题2:加法原理和乘法原理

排列组合问题2:加法原理和乘法原理

加法原理和乘法原理导言:加法原理和乘法原理,是排列组合中的二个基本原理,在解决计数问题中经常运用。

把握这两个原理,并能正确区分这两个原理,至关重要。

一、概念(一)加法原理如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。

例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?解析:把乘坐不同班次的车、船称为不同的走法。

要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。

而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。

所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法(二)乘法原理如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。

例:用1、2、3、4这四个数字可以组成多少个不同的三位数?解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。

选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理所以,可以组成:4×3×2=24(个)不同的三位数二、加法原理和乘法原理的区别什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。

从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。

加法原理与乘法原理

加法原理与乘法原理

加法原理与乘法原理加法原理和乘法原理都是数学中常用的基本原理,它们在组合计数和概率等领域中具有广泛的应用。

下面将分别对加法原理和乘法原理进行详细的介绍。

一、加法原理加法原理又称为求和原理,它指出当其中一事件可以通过若干个不同的方法实现时,其总的可能性数等于各种情况的可能性之和。

首先,我们假设有两个事件A和B,事件A可以通过m种方式发生,事件B可以通过n种方式发生。

那么,事件A和B共同发生的方式有多少种呢?加法原理告诉我们,共同发生的方式总共有m+n种。

这就是加法原理的基本形式。

这一原理可以推广到多个事件的情况。

假设有n个事件A1,A2,...,An,分别可以通过m1,m2,...,mn种方式实现。

那么,这n个事件共同发生的方式有多少种呢?根据加法原理,可以得出这n个事件共同发生的方式总共有m1+m2+...+mn种。

加法原理在实际问题中的应用非常广泛。

例如,在数列求和中,如果一些数列可以分成若干个部分进行求和,那么最终的求和结果就可以通过加法原理来计算。

又如,在排列组合问题中,如果一些问题可以拆分成若干个子问题,那么其总的可能性数也可以通过加法原理来计算。

二、乘法原理乘法原理又称积法原理,它指出当若干个独立的事件同时发生时,这些事件共同发生的方式数等于各事件发生方式数的乘积。

首先,我们假设有两个独立的事件A和B,事件A可以通过m种方式发生,事件B可以通过n种方式发生。

那么,事件A和B同时发生的方式有多少种呢?根据乘法原理,共同发生的方式总共有m*n种。

类似地,乘法原理也可以推广到多个事件的情况。

假设有n个独立的事件A1,A2,...,An,分别可以通过m1,m2,...,mn种方式实现。

那么,这n个事件同时发生的方式有多少种呢?根据乘法原理,可以得出这n个事件同时发生的方式总共有m1 * m2 *...* mn种。

乘法原理在实际问题中的应用也非常广泛。

例如,在排列组合问题中,如果一些问题可以拆分成若干个独立的子问题,那么其总的可能性数就可以通过乘法原理来计算。

初中数学重点梳理:加法原理和乘法原理

初中数学重点梳理:加法原理和乘法原理

加法原理和乘法原理知识定位加法原理和乘法原理是计数研究中最常用、也是最基本的两个原理.所谓计数,就是数数,把一些对象的具体数目数出来.当然,情况简单时可以一个一个地数.如果数目较大时,一个一个地数是不可行的,利用加法原理和乘法原理,可以帮助我们计数.知识梳理知识梳理1.加法原理完成一件工作有n种方式,用第1种方式完成有m1种方法,用第2种方式完成有m2种方法,…,用第n种方式完成有m n种方法,那么,完成这件工作总共有m+m2+…+m n1种方法.例如,从A城到B城有三种交通工具:火车、汽车、飞机.坐火车每天有2个班次;坐汽车每天有3个班次;乘飞机每天只有1个班次,那么,从A城到B 城的方法共有2+3+1=6种.知识梳理2.乘法原理完成一件工作共需n个步骤:完成第1个步骤有m1种方法,完成第2个步骤有m2种方法,…,完成第n个步骤有m n种方法,那么,完成这一件工作共有m·m2·…·m n1种方法.例如,从A城到B城中间必须经过C城,从A城到C城共有3条路线(设为a,b,c),从C城到B城共有2条路线(设为m,t),那么,从A城到B城共有3×2=6条路线,它们是:am,at,bm,bt,cm,ct.下面我们通过一些例子来说明这两个原理在计数中的应用.例题精讲【试题来源】【题目】利用数字1,2,3,4,5共可组成(1)多少个数字不重复的三位数?(2)多少个数字不重复的三位偶数?(3)多少个数字不重复的偶数?【答案】(1)60 (2)24 (3)130【解析】(1)百位数有5种选择;十位数有4种选择;个位数有3种选择.所以共有5×40×3=60个数字不重复的三位数.(2)先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数.(3)分为5种情况:一位偶数,只有两个:2和4.二位偶数,共有8个:12,32,42,52,14,24,34,54.三位偶数由上述(2)中求得为24个.四位偶数共有2×(4×3×2)=48个.括号外面的2表示个位数有2种选择(2或4).五位偶数共有2×(4×3×2×1)=48个.由加法原理,偶数的个数共有2+8+24+48+48=130.【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】从1到300的自然数中,完全不含有数字3的有多少个?【答案】242【解析】解法1将符合要求的自然数分为以下三类:(1)一位数,有1,2,4,5,6,7,8,9共8个.(2)二位数,在十位上出现的数字有1,2,4,5,6,7,8,98种情形,在个位上出现的数字除以上八个数字外还有0,共9种情形,故二位数有8×9=72个.(3)三位数,在百位上出现的数字有1,2两种情形,在十位、个位上出现的数字则有0,1,2,4,5,6,7,8,9九种情形,故三位数有2×9×9=162个.因此,从1到300的自然数中完全不含数字3的共有8+72+162=242个.解法2将0到299的整数都看成三位数,其中数字3不出现的,百位数字可以是0,1或2三种情况.十位数字与个位数字均有九种,因此除去0共有3×9×9-1=242(个).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】在小于10000的自然数中,含有数字1的数有多少个?【答案】3439【解析】不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0.使之成为四位数.先求不含数字1的这样的四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数.由于每一位都可有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为9×9×9×9=6561,其中包括了一个0000,它不是自然数,所以比10000小的不含数字1的自然数的个数是6560,于是,小于10000且含有数字1的自然数共有9999-6560=3439个.【知识点】加法原理和乘法原理【适用场合】当堂练习题【难度系数】3【试题来源】【题目】求正整数1400的正因数的个数.【答案】24【解析】因为任何一个正整数的任何一个正因数(除1外)都是这个数的一些质因数的积,因此,我们先把1400分解成质因数的连乘积1400=23527所以这个数的任何一个正因数都是由2,5,7中的n个相乘而得到(有的可重复).于是取1400的一个正因数,这件事情是分如下三个步骤完成的:(1)取23的正因数是20,21,22,33,共3+1种;(2)取52的正因数是50,51,52,共2+1种;(3)取7的正因数是70,71,共1+1种.所以1400的正因数个数为(3+1)×(2+1)×(1+1)=24.说明利用本题的方法,可得如下结果:若p i是质数,a i是正整数(i=1,2,…,r),则数的不同的正因数的个数是(a1+1)(a2+1)…(ar+1).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】求五位数中至少出现一个6,而被3整除的数的个数.【答案】12504【解析】要使一个数能被3整除,只要确保该数各数位的和是3的倍数即可:于是分别讨论如下:(1)从左向右计,如果最后一个6出现在第5位,即a5=6,那么a2,a3,a4可以是0,1,2,3,4,5,6,7,8,9这十个数字之一,但a1不能是任意的,它是由a2+a3+a4+a5被3除后的余数所决定.因此,为了保证a1+a2+a3+a4+a5能被3整除,a1只有3种可能,根据乘法原理,5位数中最后一位是6,而被3整除的数有3×10×10×10=3000(个).(2)最后一个6出现在第四位,即a4=6,于是a5只有9种可能(因为a5不能等于6),a2,a3各有10种可能,为了保证a1+a2+a3+a4+a5被3整除,a1有3种可能.根据乘法原理,属于这一类的5位数有3×10×10×9=2700(个).(3)最后一个6出现在第3位,即a3=6,被3整除的数应有3×10×9×9=2430(个).(4)最后一个6出现在第2位,即a2=6,被3整除的数应有3×9×9×9=2187(个).(5)a1=6,被3整除的数应有3×9×9×9=2187(个).根据加法原理,5位数中至少出现一个6而被3整除的数应有3000+2700+2430+2187+2187=12504(个).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,A,B,C,D,E五个区域分别用红、蓝、黄、白、绿五种颜色中的某一种着色.如果使相邻的区域着不同的颜色,问有多少种不同的着色方式?【答案】360【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域A,B同色,故共有3种着色方式;(4)区域D因不能与区域A,C同色,故共有3种着色方式;(5)区域E因不能与区域A,C,D同色,故共有2种着色方式.于是,根据乘法原理共有5×4×3×3×2=360种不同的着色方式.【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】在6×6的棋盘上剪下一个由四个小方格组成的凸字形,如图1-64,有多少种不同的剪法?【答案】64【解析】我们把凸字形上面那个小方格称为它的头,每个凸字形有并且只有一个头.凸字形可以分为两类:第一类凸字形的头在棋盘的边框,但是棋盘的四个角是不能充当凸字形的头的.于是,边框上(不是角)的小方格共有4×4=16个,每一个都是一个凸字形的头,所以,这类凸字形有16个.第二类凸字形的头在棋盘的内部,棋盘内部的每一个小方格可以作为4个凸字形的头(即头朝上,头朝下,头朝左,头朝右),所以,这类凸字形有4×(4×4)=64(个).由加法原理知,有16+64=80种不同的凸字形剪法.【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】把数、理、化、语、英5本参考书,排成一行放在书架上.(1)化学不放在第1位,共有多少种不同排法?(2)语文与数学必须相邻,共有多少种不同排法?(3)物理与化学不得相邻,共有多少种不同排法?(4)文科书与理科书交叉排放,共有多少种不同排法?【答案】(1)96 (2)48 (3)72 (4)12【解析】【知识点】加法原理和乘法原理【适用场合】课后两周练习【难度系数】3【试题来源】【题目】在一个圆周上有10个点,把它们两两相连,问共有多少条不同的线段?【答案】45【解析】【知识点】加法原理和乘法原理【适用场合】课后一个月练习【难度系数】3【试题来源】【题目】用1,2,3,4,5,6,7这七个数,(1)可以组成多少个数字不重复的五位奇数?(2)可以组成多少个数字不重复的五位奇数,但1不在百位上?【答案】(1)1440 (2)1260【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】从1,2,3,4,5这五个数字中任取三个数组成一个三位数,问共可得到多少个不同的三位数?【答案】60【解析】【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】由1,2,3,4,5,6这六个数字能组成多少个大于34500的五位数?【答案】420【解析】【知识点】加法原理和乘法原理【适用场合】阶段测验【难度系数】3【试题来源】【题目】今有一角币一张,两角币一张,伍角币一张,一元币四张,伍元币两张,用这些纸币任意付款,可以付出不同数额的款子共有多少种?【答案】119【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】将三封信投到5个邮筒中的某几个中去,有多少种不同的投法?【答案】125【解析】【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】从字母a,a,a,b,c,d,e中任选3个排成一行,共有多少种不同的排法?【答案】73【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3。

乘原理和加法原理的区别

乘原理和加法原理的区别

乘原理和加法原理的区别乘法原理和加法原理是概率论中两个重要的基本原理,它们在计算事件的可能性时起到了重要作用。

虽然它们都是计算概率的方法,但是在具体应用中有明显的区别。

首先来看乘法原理。

乘法原理是指当一个事件可以分解为多个相互独立的子事件时,可以通过将这些子事件的概率相乘来计算整个事件的概率。

简单来说,乘法原理适用于多个事件同时发生的情况。

举个例子来说明,假设一次抽取彩票的过程可以分解为两步:第一步是抽取红色球的概率为p,第二步是抽取蓝色球的概率为q。

那么整个抽取过程的概率就可以通过p和q的乘积来计算。

乘法原理的应用范围非常广泛,不仅仅局限于概率论中。

在组合数学中,乘法原理也有重要的运用。

例如,当从一个有n个元素的集合中选择k个元素时,可以通过乘法原理计算出选择的可能性,即n个元素中选出k个的组合数为C(n,k)=n!/(k!(n-k)!)。

而加法原理则与乘法原理不同,它适用于多个事件互斥或互不相干的情况。

加法原理指的是当一个事件可以通过多个互斥的子事件中的任意一个发生而实现时,可以通过将这些子事件的概率相加来计算整个事件的概率。

换句话说,加法原理适用于多个事件中至少发生一个的情况。

继续以上面的例子来说明,假设现在有两种不同的彩票方式可以选取,第一种方式的概率为p,第二种方式的概率为q,那么选择一种方式购买彩票的概率就可以通过p和q的和来计算。

加法原理同样在概率论以外的领域有着广泛的应用。

在组合数学中,加法原理用来计算多种情况下的组合数。

比如当一个集合可以被划分成若干个不相交的子集时,可以通过加法原理计算出集合的总数。

另外,加法原理也在马尔可夫链、图论等领域中得到应用。

简而言之,乘法原理和加法原理是计算概率时使用的两种不同方法。

乘法原理适用于多个事件同时发生的情况,可以通过将各个事件的概率相乘来计算整个事件的概率;而加法原理适用于多个事件中至少发生一个的情况,可以通过将各个事件的概率相加来计算整个事件的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 加法原理和乘法原理
1、 书架上有三排书,第一排有12本,第二排共有20本,第三排共有15本
书,小明从中取出一本来阅读,问他共有几种不同的取法?
2、 某班有男生18人,女生15人,现从中选出一人参加夏令营,问有多少种
不同的选法?
3、 第一个口袋装有4个球,第二个口袋里装2个球,第三个口袋里装5个球,
所有三个口袋中的球各不相同。

(1) 从口袋中任取一个小球,共有多少种不同的取法?
(2) 从三个口袋中各取一个球,问有多少种不同的取法?
4、 如图所示,
地有四条路,问从甲地到 丙地共有多少种不同的走法?
5、 把多项式:(a 1+a 2+a 3)(b 1+b 2+b 3)(c 1+c 2)
展开,问展开式中有多少种不同的项?
6、 求2000的正约数的个数?
7、 用1、2、3、48、 将69、 从南京到上海的某次快车中途要靠六个大站,铁路局要为这次快车准备多
少种不同的车票,这些车票中最多有多少种不同的票价?
10、 10个人站成一排合影,共有多少种不同的排法?
11、 用2、3、4这三个数字组成没有重复的三位数。

(1) 求所有这些三位数的数字和的和。

(2) 求所有这些三位数的和。

12、 2000有多少个正约数?在这些正月数中,有多少个偶数
13、 用数字0、1、2、3、4可以组成多少个
(1)四位数? (2)四位偶数
14、 三封信,随机的投入四个箱中,问共有多少种不同的投信方法?
15、 5个人照相,其中一个人必须站在中间,有多少种站法?
16、 有多少个被3整除并含有数字9的三位数?
17、 如图,对图上的A 、B 、C 、D 、E 、这五个部分分成四种不同的颜色,且
相邻的部分不能用相同的颜色,不相邻的部分可用相同的颜色,那么,共有多少种不同的染色方法?
18、 一个学生要从2本科技书,3本文艺书,4本外文书中任选一本,共有多少
种不同的选法? 19、 求720的正约数?并求这些正约数的和。

20、 由1、2、3、4、5这五个数可以组成: (1)多少个四位数?其中有多少个奇数? (2)多少个没有重复数字的四位数?其中有多少个是3的倍
数?。

相关文档
最新文档