数学基本初等函数的导数公式及导数的运算法则教案

合集下载

基本初等函数的导数公式及导数的运算法则教案马长琴

基本初等函数的导数公式及导数的运算法则教案马长琴

学校: 临清一中 学科:数学 编写人:马长琴 审稿人:张林§1.2.2基本初等函数的导数公式及导数的运算法则一.教学目标:1.熟练掌握基本初等函数的导数公式;2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.二.教学重点难点重点:基本初等函数的导数公式、导数的四则运算法则难点: 基本初等函数的导数公式和导数的四则运算法则的应用三.教学过程:(一).创设情景复习五种常见函数y c =、y x =、应用 1(1 (2)根据基本初等函数的导数公式,求下列函数的导数.(1)2y x =与2x y =(2)3x y =与3log y x =2.(1推论:['()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数) 提示:积法则,商法则, 都是前导后不导,前不导后导, 但积法则中间是加号, 商法则中间是减号. (2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)323y x x =-+(2)sin y x x =⋅;(3)2(251)x y x x e =-+⋅;(4)4x x y =; 【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.四.典例精讲例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?分析:商品的价格上涨的速度就是函数关系()(15%)t p t =+的导数。

解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 变式训练1:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:当05p =时,()5(15%)t p t =+,根据基本初等函数导数公式和求导法则,有'()5 1.05ln1.05t p t =⨯所以'10(10)5 1.05ln1.050.4p =⨯≈(元/年)因此,在第10个年头,这种商品的价格约为0.4元/年的速度上涨. 例2日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%解:净化费用的瞬时变化率就是净化费用函数的导数.(1) 因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨. (2) 因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.点评 函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.五.课堂练习做导学案的当堂检测六.课堂小结(1)基本初等函数的导数公式表(2)导数的运算法则七.布置作业八.教学后记。

3.2.2基本初等函数的导数公式及导数的运算法则(第1课时)

3.2.2基本初等函数的导数公式及导数的运算法则(第1课时)

托克旗高级中学高二年级数学科导学案 文科选修1-1 第三章导数及其应用§3.2.2基本初等函数的导数公式及导数的运算法则 苏海霞 编写 第20周 第 1页(共 2 页) 第 2页(共 2 页)主动 自信 合作 探究 发展自己 成就未来 安全是幸福家庭的保证,事故是人生悲剧的祸根姓名: 班级: 小组: 小组评价: 教师评价:§3.2.2基本初等函数的导数公式及导数的运算法则第1 课时 上课时间:【教学目标】1. 熟练的记忆导数的计算公式;学会用导数的计算公式计算的函数的导数.2.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 3理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 【重点难点】1.导数的计算公式,导数的计算公式的应用2.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;3.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 一、知识链接1.函数()y f x c ==的导数2.函数()y f x x ==的导数;3.函数1()y f x x==的导数; 4.函数2()y f x x ==的导数二、独立预习1.基本初等函数的导数公式:①='C ②=)'(nx ③=)'(sin x ④=)'(cos x⑤=')(x a ⑥=')(x e ⑦='][log x a ⑧=')(ln x2.导数的运算法则:①()()[]=±'x g x f ②()()[]='x g x f③()()=⎥⎦⎤⎢⎣⎡'x g x f ④ ()[]='x cf 三、合作交流探究任务一、基本初等函数的导数公式: 根据常见函数的导数公式计算下列导数(1)6y x = (2)y =(3)21y x =(4)y =四、探究展示探究任务:两个函数的和(或差)积商的导数新知:[()()]()()f x g x f x g x '''±=±; [()()]()()()()f x g x f x g x f x g x '''=+2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'=; 例1.根据基本初等函数的导数公式和导数运算法则,求函数323y x x =-+的导数.变式:(1)522354y x x x =-+-; (2)3cos 4sin y x x =-.五、反馈总结1、 求下列函数的导数:(1)2log y x =; (2)2xy e =; (3)32log y x x =+; (4)n xy x e =; (5)31sin x y x-=2、(1)323y x x =-+ (2)sin y x x =⋅; (3)2(251)x y x x e =-+⋅; (4)4xx y =;3. 函数1y x x =+的导数是( ) A .211x - B .11x - C .211x + D .11x+4. 函数sin (cos 1)y x x =+的导数是( ) A .cos 2cos x x - B .cos 2sin x x + C .cos 2cos x x + D .2cos cos x x +5. cos xy x =的导数是( )A .2sin x x-B .sin x -C .2sin cos x x x x +- D .2cos cos x x x x +- 6. 函数2()138f x x =-,且0()4f x '=,则0x =7. 已知2()f x x =,则(3)f '=( )A .0B .2xC .6D .9[小结] 六、课后反思。

人教A版选修2《基本初等函数的导数公式及导数的运算法则》教案及教学反思

人教A版选修2《基本初等函数的导数公式及导数的运算法则》教案及教学反思

人教A版选修2《基本初等函数的导数公式及导数的运算法则》教案及教学反思一、教学目标通过本节课的学习,让学生: 1. 熟练掌握基本初等函数的导数公式; 2. 掌握导数的常数因子、和差、积、商的运算法则; 3. 能够应用所学知识求出初等函数的导数; 4. 培养学生的逻辑思维能力和应用能力。

二、教学内容2.1 基本初等函数的导数公式(1)常数函数的导数公式:[C]′=0(2)幂函数的导数公式:[x n]′=nx n−1(3)指数函数的导数公式:[e x]′=e x(4)对数函数的导数公式:$[\\ln{x}]'=\\dfrac{1}{x}(x>0)$ (5)三角函数的导数公式:$$\\begin{aligned} [\\sin{x}]'&=\\cos{x}\\\\[\\cos{x}]'&=-\\sin{x}\\\\ [\\tan{x}]'&=\\sec^2{x} (x\ eq n\\pi+\\frac{\\pi}{2})\\\\ [\\cot{x}]'&=-\\csc^2{x} (x\ eq n\\pi) \\end{aligned}$$2.2 导数的运算法则(1)常数因子法则:设C为常数,则[Cf(x)]′=Cf′(x)(2)和差法则:$[f(x)\\pm g(x)]'=f'(x)\\pm g'(x)$ (3)积法则:[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)(4)商法则:$[\\dfrac{f(x)}{g(x)}]'=\\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} (g(x)\ eq0)$三、教学过程3.1 导入教师通过数字游戏,引导学生探讨“导数”的概念,并由此引出本节课的教学内容。

3.2 讲授教师对基本初等函数的导数公式以及导数的运算法则进行一一讲解,强调注意事项和易错点。

《基本初等函数的导数公式及导数的运算法则》导学案

《基本初等函数的导数公式及导数的运算法则》导学案

《基本初等函数的导数公式及导数的运算法则》导学案导数是微积分中一个重要的概念,用来描述函数在其中一点处的变化率。

初等函数是指常见的基本函数,如多项式函数、指数函数、对数函数、三角函数等。

导数的运算法则是指导数在运算中的一些基本性质和规则。

下面将详细介绍初等函数的导数公式和导数的运算法则。

一、初等函数的导数公式1.基本初等函数的导数公式-常数函数的导数为0,即$C'(x)=0$,其中C为常数。

- 幂函数的导数公式:$(x^n)'=nx^{n-1}$,其中n为正整数。

- 指数函数的导数公式:$(a^x)'=a^x\ln a$,其中a为正实数。

- 对数函数的导数公式:$(\log_a x)'=\dfrac{1}{x\ln a}$,其中a为正实数,且a≠1-三角函数的导数公式:正弦函数的导数:$(\sin x)'=\cos x$;余弦函数的导数:$(\cos x)'=-\sin x$;正切函数的导数:$(\tan x)'=\sec^2 x$。

2.求导法则-基本求导法则:和差法则:$(u\pm v)'=u'+v'$;乘法法则:$(uv)'=u'v+uv'$;除法法则:$\left(\dfrac{u}{v}\right)'=\dfrac{u'v-uv'}{v^2}$,其中v≠0。

-复合函数求导法则:若y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也可导,且有$\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}$。

二、导数的运算法则1.反函数的导数若函数y=f(x)在区间I上单调、连续并且可导,且此区间上f'(x)≠0,则它的反函数x=f^(-1)(y)在对应区间上连续并且可导,并且有$\left(f^{-1}(y)\right)'=\dfrac{1}{f'(x)}$。

基本初等函数的导数公式及导数的运算法则教案马长琴

基本初等函数的导数公式及导数的运算法则教案马长琴

基本初等函数的导数公式及导数的运算法则教案编写者:马长琴教学目标:1. 理解基本初等函数的导数公式。

2. 掌握导数的运算法则。

3. 能够运用导数公式和运算法则解决问题。

教学重点:1. 基本初等函数的导数公式。

2. 导数的运算法则。

教学难点:1. 导数公式的记忆和应用。

2. 导数运算法则的推导和应用。

教学准备:1. 教学PPT。

2. 教案手册。

3. 黑板和粉笔。

教学过程:一、导入(5分钟)1. 引导学生回顾导数的定义和性质。

2. 提问:导数在实际应用中的作用是什么?二、基本初等函数的导数公式(15分钟)1. 讲解常数的导数公式:\( (c)' = 0 \)2. 讲解幂函数的导数公式:\( (x^n)' = nx^{n-1} \)3. 讲解指数函数的导数公式:\( (a^x)' = a^x \ln(a) \)4. 讲解对数函数的导数公式:\( (\log_a(x))' = \frac{1}{x \ln(a)} \)5. 讲解三角函数的导数公式:\( (\sin(x))' = \cos(x) \)\( (\cos(x))' = -\sin(x) \)\( (\tan(x))' = \sec^2(x) \)6. 讲解反三角函数的导数公式:\( (\arcsin(x))' = \frac{1}{\sqrt{1-x^2}} \)\( (\arccos(x))' = -\frac{1}{\sqrt{1-x^2}} \)\( (\arctan(x))' = \frac{1}{1+x^2} \)三、导数的运算法则(15分钟)1. 讲解导数的四则运算法则:加法法则:\( (f(x) + g(x))' = f'(x) + g'(x) \)减法法则:\( (f(x) g(x))' = f'(x) g'(x) \)乘法法则:\( (f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x) \)除法法则:\( \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{[g(x)]^2} \)2. 讲解导数的复合运算法则:-链式法则:\( (f(g(x)))' = f'(g(x)) \cdot g'(x) \)-反函数法则:\( (f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))} \)-乘积法则:\( (f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x) \)-商法则:\( \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{[g(x)]^2} \)四、巩固练习(15分钟)1. 让学生独立完成教材上的练习题。

1.2.2基本初等函数的导数公式及导数的运算法则(共3课时)

1.2.2基本初等函数的导数公式及导数的运算法则(共3课时)
a 解:f′(x)=1- 2,由导数的几何意义得f′(2)=3, x 于是a=-8. 由切点P(2,f(2))在直线y=3x+1上, 8 可得f(2)=2- +b=-2+b=7,解得b=9. 2 8 所以函数f(x)的解析式为f(x)=x-x+9.
运用基本初等函数的导数公式和求导的运算法则 时,要认真分析函数式的结构特点,较复杂的要先化简, 再求导,尽量避免使用积或商的求导法则.
思考 如何求函数 y ln x 2的导数呢?
若设u x 2x 2, 则y ln u.从而y lnx 2可以 看成是由y ln u 和u x 2x 2经过"复合" 得到
的,即y可以通过中间变量 u表示为自变量 x的函数.
如果把 y 与u 的关系记作y f u , u 和 x的关系记作 u g x , 那么这个"复合" 过程可表示为 y f u f g x lnx 2.
从而切线方程为 y 1 3( x 1),即3 x y 4 0.
设直线m的方程为3x+y+b=0,由平行线间的距离公 式得:
| b (4) | 32 1 10 | b 4 | 10, b 6或b 14;
故所求的直线m的方程为3x+y+6=0或3x+y-14=0.
x x
(2) (e ) e .
x x
公式1
1 公式7 (1oga ) x ln a 1 ' 公式8 (1nx ) x
x '
公式2 公式3 公式4 公式5 公式6
x x (为常数) ' (sin x) cos x. 记 ' (cos x ) sin x. x ' x 一 (a ) a ln a x ' x (e ) e

1.2.2(1) 基本初等函数的导 数公式及导数的运算法则

1.2.2(1) 基本初等函数的导 数公式及导数的运算法则
例1.求下列函数的导数:
(1) ;(2) ; (3) ;
(4) ;(5) .
■自主探究
1.求下列函数的导数:
(1) ;(2) ;
(3) ;(4) 。
四、总结提升
本节课你主要学习了。
五、问题过关
1 .已知 函数 ,且 ,求 。
2.求曲线 在点 处的切线方程。
3.已知曲线C:y= 经过点P(2,-1),求
_____年级______学科导学案编号______编制______
授课人_____授课时间_____班级_____姓名_____小组_____
课题:基本初等函数的导 数公式及导数的运算法则(2)
课型:新课课时:1课时
一、学习要求
1.掌握基本初等函数的导数公式及导数的运算法则;
2.能利导数的四则运算法则 求函数的导数;
二、预习内容
1.导数运算法则
若 , 存在,则
(1) ;
(2) ;
(3) ;(4) 。
【要点 说明】ห้องสมุดไป่ตู้
(1)应用函数的和、差 、积、商的 求导 法则求复杂函数的导数时,为简化运算,经常先 化简再求导;
(2)对含参数的 函数求导时,要先明确变量与常量,再根据求导法则求导,避免求导时出现错误。
三、学习过程
■合作探究
(1)曲线在点P处的切线的斜率.
(2)曲线在点P处的切线的方程.
(3)过点O(0,0)的曲线C的切线方程.
知识盘点:
心得感悟:
备注
(教师复备栏及学生笔记)

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则

3.2.2、基本初等函数的导数公式及导数的运算法则班级__________ 姓名___________,【教学目标】1、掌握基本初等函数的导数公式,并能利用公式求简单函数的导数;2、掌握导数的四则运算法则,并能利用公式求简单函数的导数;3、能运用公式处理某些实际问题。

【教学重点】基本初等函数的导数公式、导数的四则运算法则【教学难点】 基本初等函数的导数公式和导数的四则运算法则的应用【教学过程】一、知识回顾:公式1、0)'(=C (C 为常数)公式2、1)'(-=n n nx x (n 为有理数)二、新课讲授(一)基本初等函数的导数公式表函数 导数y c = '0y =*()()n y f x x n Q ==∈ '1n y nx -=sin y x = 'cos y x =cos y x = 'sin y x =-()x y f x a == 'ln (0)x y a a a =⋅>()x y f x e == 'x y e =()log a f x x = )10(ln 1)('≠>=a a a x x f 且()ln f x x = '1()f x x =(二)导数的运算法则(1)导数的四则运算法则:导数运算法则1、[]'''()()()()f x g x f x g x ±=±2、[]'''()()()()()()f x g x f x g x f x g x ⋅=±3、[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦(2)推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)例题1.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)323y x x =-+ (2)sin y x x =⋅;(3)2(251)x y x x e =-+⋅; (4)4x xy =;答案(1)y ′=232-x(2)y ′=sinx+xcosx(3)y ′=x e x x )32(2--(4)y ′=x x 44ln 1-处的切线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§则
教学目标:
1.熟练掌握基本初等函数的导数公式;
2.掌握导数的四则运算法则;
3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

教学重点:基本初等函数的导数公式、导数的四则运算法则
教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用
教学过程:
一.创设情景
四种常见函数y c =、y x =、2y x =、1y x =
的导数公式及应用 二.新课讲授 (一)基本初等函数的导数公式表 (二)导数的运算法则 导数运算法则
1.[]'''()()()()f x g x f x g x ±=± 2.[]'
''()()()()()()f x g x f x g x f x g x ⋅=± 3.[]
'
''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦ (2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)
三.典例分析
函数
导数
函数 导数
例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的
01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01) 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =
所以'10(10) 1.05ln1.050.08p =≈(元/年)
因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.
例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.
(1)323y x x =-+
(2)y =x x --+1111; (3)y =x · sin x · ln x ;
(4)y =
x x 4
; (5)y =x x ln 1ln 1+-. (6)y =(2 x 2-5 x +1)e x
(7) y =x
x x x x x sin cos cos sin +- 【点评】
① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为
求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%
解:净化费用的瞬时变化率就是净化费用函数的导数.
(1) 因为'2
5284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.
(2) 因为'2
5284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.
函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越
多,而且净化费用增加的速度也越快.。

相关文档
最新文档