高中数学立体几何专题
2023高中数学立体几何复习 题集附答案

2023高中数学立体几何复习题集附答案一、立体几何基础知识立体几何是数学中的一个重要分支,主要研究空间内的图形、体积和表面积等相关性质。
掌握立体几何的基础知识对于高中数学学习尤为重要。
下面是一些常见的立体几何概念及其性质:1. 空间中的点、线、面是立体几何中最基本的概念。
点是没有长度、宽度和高度的,线是由无数个点组成的,面是由无数条线组成的。
2. 立体是由许多平面相互连接而成的。
这些平面称为面,每个面都有其特定的几何形状,如三角形面、矩形面等。
3. 空间中的距离有两种:直线距离和曲线距离。
直线距离是两点之间最短的距离,而曲线距离则是沿着曲线的长度。
4. 空间中的体积是指一个物体占据的空间大小。
常见的几何体体积计算公式有:长方体的体积为底面积乘以高,球体的体积为4/3乘以π半径的立方,圆柱体的体积为底面积乘以高等。
5. 表面积是指立体图形外表面的总面积。
计算几何体表面积的公式与计算体积的公式类似,只是不同几何体的取值不同。
二、复习题1. 长方体A的长、宽、高分别为3cm、4cm和5cm,计算长方体A的表面积和体积。
解答:长方体的表面积公式为S = 2(ab + ac + bc),其中a、b和c分别是长方体的三个边长。
代入数据后,可得长方体A的表面积为:S = 2(3*4 + 3*5 + 4*5) = 94cm²长方体的体积公式为V = lwh,其中l、w和h分别是长方体的三个边长。
代入数据后,可得长方体A的体积为:V = 3*4*5 = 60cm³因此,长方体A的表面积为94cm²,体积为60cm³。
2. 一个四棱锥的底面是一个边长为6cm的正方形,其高度为8cm。
计算该四棱锥的体积和表面积。
解答:四棱锥的体积公式为V = 1/3 * 底面积 * 高度。
底面为正方形,因此底面积为6²=36cm²。
代入数据后,可得四棱锥的体积为:V = 1/3 * 36 * 8 = 96cm³四棱锥的表面积公式为S = 底面积 + 侧面积。
高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。
高中数学必修二第八章立体几何初步考点精题训练(带答案)

高中数学必修二第八章立体几何初步考点精题训练单选题1、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0km2;水位为海拔157.5m时,相应水面的面积为180.0km2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(√7≈2.65)()A.1.0×109m3B.1.2×109m3C.1.4×109m3D.1.6×109m3答案:C分析:根据题意只要求出棱台的高,即可利用棱台的体积公式求出.依题意可知棱台的高为MN=157.5−148.5=9(m),所以增加的水量即为棱台的体积V.棱台上底面积S=140.0km2=140×106m2,下底面积S′=180.0km2=180×106m2,∴V=13ℎ(S+S′+√SS′)=13×9×(140×106+180×106+√140×180×1012)=3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m3).故选:C.2、如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1答案:A分析:由正方体间的垂直、平行关系,可证MN//AB,A1D⊥平面ABD1,即可得出结论.连AD1,在正方体ABCD−A1B1C1D1中,M是A1D的中点,所以M为AD1中点,又N是D1B的中点,所以MN//AB,MN⊄平面ABCD,AB⊂平面ABCD,所以MN//平面ABCD.因为AB不垂直BD,所以MN不垂直BD则MN不垂直平面BDD1B1,所以选项B,D不正确;在正方体ABCD−A1B1C1D1中,AD1⊥A1D,AB⊥平面AA1D1D,所以AB⊥A1D,AD1∩AB=A,所以A1D⊥平面ABD1,D1B⊂平面ABD1,所以A1D⊥D1B,且直线A1D,D1B是异面直线,所以选项C错误,选项A正确.故选:A.小提示:关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.3、在正方体ABCD −A 1B 1C 1D 1中,三棱锥A −B 1CD 1的表面积为4√3,则正方体外接球的体积为( )A .4√3πB .√6πC .32√3πD .8√6π答案:B解析:根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 解:设正方体的棱长为a ,则B 1D 1=AC =AB 1=AD 1=B 1C =D 1C =√2a ,由于三棱锥A −B 1CD 1的表面积为4√3,所以S =4S △AB 1C =4×12×√32(√2a)2=4√3所以a =√2所以正方体的外接球的半径为√(√2)2+(√2)2+(√2)22=√62, 所以正方体的外接球的体积为43π·(√62)3=√6π故选:B .小提示:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.4、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1,由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.5、牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( )A.√22B.1C.√2D.2√2答案:C分析:计算出V方盖差,V,即可得出结论.由题意,V方盖差=r3−18V牟=r3−18×4π×43×π×r3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r×r2−(√2r2)2=√26r3,∴V方盖差V正=13r3√2r36=√2,故选:C.6、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.7、如图所示的正方形SG1G2G3中,E , F分别是G1G2,G2G3的中点,现沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3重合为点G,则有()A.SG⊥平面EFG B.EG⊥平面SEFC.GF⊥平面SEF D.SG⊥平面SEF答案:A解析:根据正方形的特点,可得SG⊥FG,SG⊥EG,然后根据线面垂直的判定定理,可得结果. 由题意:SG⊥FG,SG⊥EG,FG∩EG=G,FG,EG⊂平面EFG所以SG⊥平面EFG正确,D不正确;.又若EG⊥平面SEF,则EG⊥EF,由平面图形可知显然不成立;同理GF⊥平面SEF不正确;故选:A小提示:本题主要考查线面垂直的判定定理,属基础题.8、如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是()A.平面ABCD B.平面PBCC.平面PAD D.平面PCD答案:C分析:由线面垂直得到线线垂直,进而证明出线面垂直,面面垂直.因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD,由四边形ABCD为矩形得CD⊥AD,因为PA∩AD=A,所以CD⊥平面PAD.又CD⊂平面PCD,所以平面PCD⊥平面PAD.故选:C多选题9、沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上(细管长度忽略不下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23计).假设该沙漏每秒钟漏下0.02cm3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是()A.沙漏中的细沙体积为1024πcm381B.沙漏的体积是128πcm3C.细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD.该沙漏的一个沙时大约是1565秒(π≈3.14)答案:AC解析:A.根据圆锥的体积公式直接计算出细沙的体积;B.根据圆锥的体积公式直接计算出沙漏的体积;C.根据等体积法计算出沙堆的高度;D.根据细沙体积以及沙时定义计算出沙时.A.根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径r=23×4=83cm,所以体积V=13⋅πr2⋅2ℎ3=13⋅64π9⋅163=1024π81cm3B.沙漏的体积V=2×13×π×(ℎ2)2×ℎ=2×13×π×42×8=2563πcm3;C.设细沙流入下部后的高度为ℎ1,根据细沙体积不变可知:1024π81=13×(π(ℎ2)2)×ℎ1,所以1024π81=16π3ℎ1,所以ℎ1≈2.4cm;D.因为细沙的体积为1024π81cm3,沙漏每秒钟漏下0.02cm3的沙,所以一个沙时为:1024π810.02=1024×3.1481×50≈1985秒.故选:AC.小提示:该题考查圆锥体积有关的计算,涉及到新定义的问题,难度一般.解题的关键是对于圆锥这个几何体要有清晰的认识,同时要熟练掌握圆锥体积有关的计算公式.10、(多选题)在四棱锥A-BCDE中,底面四边形BCDE为梯形,BC∥DE.设CD,BE,AE,AD的中点分别为M,N,P,Q,则()A.PQ=1MN B.PQ∥MN2C.M,N,P,Q四点共面D.四边形MNPQ是梯形答案:BCD分析:根据中位线的性质,结合平行的性质逐个判定即可DE,且DE≠MN,由题意知PQ=12所以PQ≠1MN,故A不正确;又PQ∥DE,DE∥MN,2所以PQ∥MN,又PQ≠MN,所以B,C,D正确.故选:BCD11、给出以下关于斜二测直观图的结论,其中正确的是()A.水平放置的角的直观图一定是角B.相等的角在直观图中仍然相等C.相等的线段在直观图中仍然相等D.两条平行线段在直观图中仍是平行线段答案:AD分析:根据直观图和斜二测画法的规则,判断选项.水平放置的角的直观图一定是角,故A正确;角的大小在直观图中都会发生改变,有的线段在直观图中也会改变,比如正方形的直方图中,故BC错误;由斜二测画法规则可知,直观图保持线段的平行性,所以D正确.故选:AD填空题12、如图所示,P为平行四边形ABCD所在平面外一点,E为AD的中点,F为PC上一点,若PA//平面EBF,则PF=_______FC答案:12##0.5 分析:连接AC 交BE 于点M ,连接FM ,由线面平行的性质得线线平行,由平行线性得结论. 连接AC 交BE 于点M ,连接FM ,∵PA//平面EBF ,PA ⊂平面PAC ,平面PAC ∩平面EBF =EM ,∴PA//EM ,又AE//BC ,∴PF FC =AM MC =AE BC =12. 所以答案是:12. 13、已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.答案:39π分析:利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. ∵V =13π62⋅ℎ=30π∴ℎ=52∴l =√ℎ2+r 2=√(52)2+62=132 ∴S 侧=πrl =π×6×132=39π. 所以答案是:39π.14、如图,拿一张矩形纸片对折后略微展开,竖立在桌面上,折痕与桌面的关系是______.答案:垂直分析:根据给定条件,利用线面垂直的判定推理作答.令桌面所在的平面为α,折痕所在直线为l,纸片与桌面公共部分所在直线为a,b,如图,依题意有a∩b=A,因l⊥a,l⊥b,a,b⊂α,所以l⊥α,所以折痕与桌面垂直.所以答案是:垂直解答题15、如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.答案:(1)证明见解析;(2)√23.分析:(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.(1)因为PD⊥底面ABCD,AM⊂平面ABCD,所以PD⊥AM,又PB⊥AM,PB∩PD=P,所以AM⊥平面PBD,而AM⊂平面PAM,所以平面PAM⊥平面PBD.(2)[方法一]:相似三角形法由(1)可知AM⊥BD.于是△ABD∽△BMA,故ADAB =ABBM.因为BM=12BC,AD=BC,AB=1,所以12BC2=1,即BC=√2.故四棱锥P−ABCD的体积V=13AB⋅BC⋅PD=√23.[方法二]:平面直角坐标系垂直垂直法由(2)知AM⊥DB,所以k AM⋅k BD=−1.建立如图所示的平面直角坐标系,设BC =2a(a >0).因为DC =1,所以A(0,0),B(1,0),D(0,2a),M(1,a).从而k AM ⋅k BD =a−01−0×2a−00−1=a ×(−2a)=−2a 2=−1. 所以a =√22,即DA =√2.下同方法一.[方法三]【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系D −xyz ,设|DA|=t ,所以D(0,0,0),C(0,1,0),P(0,0,1),A(t,0,0),B(t,1,0).所以M (t 2,1,0),PB ⃑⃑⃑⃑⃑ =(t,1,−1),AM ⃑⃑⃑⃑⃑⃑ =(−t 2,1,0).所以PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =t ⋅(−t 2)+1×1+0×(−1)=−t 22+1=0. 所以t =√2,即|DA|=√2.下同方法一.[方法四]:空间向量法由PB ⊥AM ,得PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以(PD⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ )⋅AM ⃑⃑⃑⃑⃑⃑ =0. 即PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.又PD ⊥底面ABCD ,AM 在平面ABCD 内,因此PD ⊥AM ,所以PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0,由于四边形ABCD 是矩形,根据数量积的几何意义,得−12|DA ⃑⃑⃑⃑⃑ |2+|AB ⃑⃑⃑⃑⃑ |2=0,即−12|BC ⃑⃑⃑⃑⃑ |2+1=0. 所以|BC⃑⃑⃑⃑⃑ |=√2,即BC =√2.下同方法一. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.。
新高中数学立体几何多选题专题复习及答案

新高中数学立体几何多选题专题复习及答案一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -的高为22222262213⎛⎫--⨯= ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 所成的角的余弦值为32C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.3.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M 为AB 的中点,则( ) A .BD ⊥平面PACB .当P 为11AC 的中点时,四棱锥P ABCD -外接球半径为72C .三棱锥A PCD -体积为定值D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π 【答案】ACD 【分析】利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1BD AA ∴⊥,1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;对于B 选项,当点P 为11A C 的中点时,()22221182262PA AA PA =+=+=同理可得PB PC PD ===因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN上,设该四棱锥的外接球半径为R ,由几何关系可得222PN R AN R -+=, 即2288R R -+=,解得92R =,B 选项错误; 对于C 选项,2114822ACDSAD CD =⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,116433A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点, 连接EN 、MN ,则1142EN DD ==,122MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,MN ⊂平面ABCD ,EN MN ∴⊥,EM ∴==过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为d ,直线EM 与平面α所成的角为θ,则sin d EM θθ==≤ 当且仅当2πθ=时,等号成立,长方体1111ABCD A B C D -的外接球半径为R '==,所以,截面圆的半径2r =≥=,因此,截面圆面积的最小值为4π,D 选项正确.故选:ACD. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.4.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A DA B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短,即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.5.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCDC .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【答案】BC 【分析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误. 【详解】取BD 中点E ,连接,AE CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF ==即点A 到平面BCD 的距离为3,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径, 因为11433A BCD BCD BCD V S AF S OF -=⋅=⨯⋅△△,所以4AF OF =,即2=6OF AO =,所以四面体ABCD 的外接球体积334433V R OA ππ===,故C 正确;建系如图:26230,0,,0,,0A C ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设(,,0)P x y ,则262326,,0,,333AP x y AC →→⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为cos 60AP AC AP AC →→→→⋅=,所以22232481224193972y x y +=++⨯+⨯, 即222388=33y x y +++,平方化简可得:2232340039y x y ----,可知点P 的轨迹为双曲线,故D 错误. 故选:BC .【点睛】方法点睛:立体几何中动点轨迹的求解问题,解决此类问题可采用空间向量法,利用空间向量法表示出已知的角度或距离的等量关系,从而得到轨迹方程.6.(多选题)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上C .1AP BC ⊥D .AP ∥平面11AC D【答案】BD 【分析】 对于A ,1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=, 对于B,C,D ,如图以D 为坐标原点可建立空间直角坐标系,利用空间向量判即可. 【详解】对于A ,因为点P 在平面11BCC B ,平面11BCC B ∥平面1AA D , 所以点P 到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长, 所以1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=,A 错误; 对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则11(1,0,0),(,1,),(1,1,0),(0,0,1),(1,1,1),(0,1,0)A P x z B D B C 所以11(1,1,),(1,1,1),(1,0,1)AP x z BD BC =-=--=--, 因为1AP BD ⊥,所以1110AP BD x z ⋅=--+=,所以x z =,即(,1,)P x x , 所以(,0,)CP x x =,所以1CP xBC =-,即1,,B C P 三点共线, 所以点P 必在线段1B C 上,B 正确;对于C ,因为1(1,1,),(1,0,1)AP x x BC =-=-, 所以111AP BC x x ⋅=-+=, 所以1AP BC ⊥不成立,C 错误;对于D ,因为11(1,0,1),(0,1,1),(0,0,0)A C D , 所以11(1,0,1),(0,1,1)DA DC ==, 设平面11AC D 的法向量为(,,)n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 令1x =,则1,1z y =-=,所以(1,1,1)n =-,所以110AP n x x ⋅=-+-=,所以AP n ⊥,所以AP ∥平面11AC D ,D 正确,故选:BD【点睛】此题考查了空间线线垂直的判定,线面平行的判定,三棱锥的体积,考查空间想象能力,考查计算能力,属于较难题.7.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++ C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN =【答案】ABC【分析】作出四面体P ABC -直观图,在每个三角形中利用向量的线性运算可得.【详解】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++= 即111333PQ PA PB PC ∴=++,故B 正确; 对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+=0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+22211122222222222222222=++-⨯⨯⨯-⨯⨯⨯+⨯⨯⨯= 2MN ∴=,故D 错误.故选:ABC【点睛】用已知向量表示某一向量的三个关键点(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.(3)在立体几何中三角形法则、平行四边形法则仍然成立.8.如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,//EF AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且2AB =,1EF AD ==,则下述正确的是( )A .//OF 平面BCEB .BF ⊥平面ADFC .点A 到平面CDFE 的距离为7D .三棱锥C BEF -【答案】ABC【分析】由1EF OB ==,//EF OB ,易证//OF 平面BCE ,A 正确;B , 由所矩形ABCD 所在平面和圆O 所在平面垂直, 易证AD ⊥平面ABEF ,所以AD BF ⊥,由线段AB 为圆O 的直径,所以BF FA ⊥,易证故B 正确.C ,由C DAF A CDF V V --=可求点A 到平面CDFE ,C 正确.D ,确定线段DB 的中点M 是三棱锥C BEF -外接球心,进一步可求其体积,可判断D 错误.【详解】解:1EF OB ==,//EF OB ,四边形OFEB 为平行四边形,所以//OF BE , OF ⊄平面BCE ,BE ⊂平面BCE ,所以//OF 平面BCE ,故A 正确.线段AB 为圆O 的直径,所以BF FA ⊥,矩形ABCD 所在平面和圆O 所在平面垂直,平面ABCD平面ABEF AB =,AD ⊂平面 ABCD ,所以AD ⊥平面ABEF ,BF ⊂平面ABEF ,所以AD BF ⊥AD ⊂平面ADF ,AF ⊂平面ADF ,AD AF A =,所以BF ⊥平面ADF ,故B 正确.1OF OE EF ===,OFE △是正三角形,所以1EF BE AF ===,//DA BC ,所以BC ⊥平面ABEF ,BC BF ⊥,BF =2CF ==,DF ===2AB CD ==,CDF 是等腰三角形,CDF 的边DF 上的高2==,122CDF S =⨯=△ //DA BC ,AD ⊂平面ADF ,BC ⊄平面ADF ,//BC 平面ADF ,点C 到平面ADF 的距离为BF =111122DAF S =⨯⨯=△,C DAF A CDF V V --=, 设点A 到平面CDFE 的距离为h ,1133ADF CFD S FB S h ⨯⨯=⨯⨯△△,111733232h ⨯⨯=⨯⨯, 所以21h =,故C 正确. 取DB 的中点M ,则//MO AD ,12MO =,所以MO ⊥平面CDFE ,所以215122ME MF MB MC ⎛⎫====+= ⎪⎝⎭所以M 是三棱锥C BEF -5, 三棱锥C BEF -外接球的体积为33445553326V r ππ⎛==⨯= ⎝⎭,故D 错误, 故选:ABC.【点睛】综合考查线面平行与垂直的判断,求点面距离以及三棱锥的外接球的体积求法,难题.9.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且ADAC λ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫ ⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDE C .若12λ=,当二面角A DE B '--为直二面角时,||10A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()fλ,()f λ23【答案】ABC【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论.对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出. 【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形,∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确.对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos120222A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得33λ=时,函数()f λ取得最大值()312313f λ⎛⎫=-= ⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC.故选:ABC.【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.10.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D DB .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2D .过点1A 与异面直线AD 与1CB 成60角的直线有2条【答案】ABD【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D .【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥,由于四边形1111D C B A 为正方形,则1111AC B D ⊥,1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D ,1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥, 1ACB C C =,1BD ∴⊥平面1ACB ,故B 正确; 对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA mDA m DA m y z ⋅<>===⋅++, 1122111cos ,221CB m z CB m CB m y z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =±因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确.故选:ABD.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.。
高中数学立体几何10道大题

高中数学立体几何10道大题1.在四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC垂直于面ABCD,已知∠ABC=45°,AB=2,BC=22,SB=SC=3.1) 证明平面SCD与平面SAB的交线l平行于AB;2) 证明SA垂直于BC;3) 求直线SD与面SAB所成角的正弦值。
2.在四棱锥P-ABCD中,底面ABCD是平行四边形,P为其顶点,O为其中心,PO平行于AB且PO=2,M为PD的中点,AD=AC=1,O为AC的中点。
1) 证明PB平行于平面ACM;2) 证明AD在平面PAC上;3) 求直线AM与平面ABCD所成角的正切值。
3.在四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD均为等边三角形。
1) 证明CD垂直于平面PBD;2) 求二面角CPBD的平面角的余弦值。
4.在四棱锥P-ABCD中,PA垂直于底面ABCD,AC垂直于AD,ABCD为梯形,AB平行于DC,AB垂直于BC,PA=AB=BC=3,点E在棱PB上,且PE=2EB。
Ⅰ) 证明平面PAB垂直于平面PCB;Ⅱ) 证明PD平行于平面EAC;Ⅲ) 求平面AEC和平面PBC所成锐二面角的余弦值。
5.在图中,矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,平面ABCD与平面ABPE的交线为AB,且AB=BP=2,AD=AE=1,AE垂直于AB,且AE平行于BP。
1) 在面ABCD内是否存在点N,使得MN垂直于平面ABCD?若存在,请证明;若不存在,请说明理由;2) 求二面角D-PE-A的余弦值。
6.在直三棱柱ABC-A1B1C1中,平面A1BC垂直于侧面A1BB1,且AA1=AB=2.1) 证明AB垂直于BC;2) 若直线AC与平面A1BC所成角为α,求锐二面角AAC1B的大小。
7.在四棱锥V-ABCD中,底面ABCD为正方形,侧面VAD 为正三角形,平面VAD垂直于底面ABCD。
高中空间立体几何经典例题精选全文完整版

可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。
立体几何复习专题及答案-高中数学

立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
(完整)高中数学《立体几何》大题及答案解析.doc

高中数学《立体几何》大题及答案解析( 理)1.( 2009 全国卷Ⅰ)如图,四棱锥S ABCD 中,底面 ABCD 为矩形, SD底面ABCD,AD2 ,DCo SD 2 ,点 M 在侧棱 SC 上,∠ABM=60。
(I )证明:M是侧棱SC的中点;求二面角 S AM B 的大小。
2.( 2009 全国卷Ⅱ)如图,直三棱柱DE ⊥平面 BCC 1(Ⅰ)证明: AB=AC 的角的大小ABC-A 1B1C1中, AB ⊥ AC,D 、E 分别为 AA 1、 B1C 的中点,(Ⅱ)设二面角A-BD-C 为 60°,求 B 1C 与平面 BCD 所成A 1 C1B1D EACB3. ( 2009浙江卷)如图,DC平面ABC,EB / / DC,AC BC EB 2DC 2 ,ACB 120o, P,Q 分别为 AE , AB 的中点.(I)证明: PQ / / 平面ACD;(II)求AD与平面 ABE 所成角的正弦值.4.( 2009 北京卷)如图,四棱锥P ABCD 的底面是正方形,PD 底面 ABCD ,点E在棱PB上.(Ⅰ)求证:平面AEC 平面 PDB ;(Ⅱ)当 PD2AB 且E为PB的中点时,求 AE 与平面 PDB 所成的角的大小.5.( 2009 江西卷)如图,在四棱锥P ABCD 中,底面 ABCD 是矩形, PA平面ABCD,PA AD 4 , AB 2 .以 BD 的中点 O 为球心、 BD 为直径的球面交PD 于点 M .(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;(3)求点O到平面ABM的距离.PMA DOBC6(. 2009 四川卷)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ ABE 是等腰直角三角形,AB AE , FA FE , AEF 45 (I)求证: EF 平面 BCE ;( II )设线段 CD 、 AE 的中点分别为 P 、 M ,求证: PM ∥平面BCE ( III )求二面角 F BD A 的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中课程复习专题——数学立体几何一 空间几何体 ㈠ 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
㈡ 几种空间几何体的结构特征 1 棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类1.3 棱柱的性质⑴ 侧棱都相等,侧面是平行四边形;⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶ 过不相邻的两条侧棱的截面是平行四边形; ⑷ 直棱柱的侧棱长与高相等,侧面的对角面是矩形。
1.4 长方体的性质⑴ 长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12⑵ 长方体的一条对角线AC 1与过定点A 的三条棱所成 的角分别是α、β、γ,那么:cos 2α + cos 2β + cos 2γ = 1 sin 2α + sin 2β + sin 2γ = 2⑶ 长方体的一条对角线AC 1与过定点A 的相邻三个面所组成的角分别为α、β、γ,则:cos 2α + cos 2β + cos 2γ = 2 sin 2α + sin 2β + sin 2γ = 11.5 棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。
图1-1 棱柱图1-2 长方体图1-1 棱柱1.6 棱柱的面积和体积公式S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 圆柱的结构特征2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。
2-2 圆柱的性质⑴ 上、下底及平行于底面的截面都是等圆; ⑵ 过轴的截面(轴截面)是全等的矩形。
2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。
2-4 圆柱的面积和体积公式S 圆柱侧面 = 2π·r ·h (r 为底面半径,h 为圆柱的高) S 圆柱全 = 2π r h + 2π r 2 V 圆柱 = S 底h = πr 2h 3 棱锥的结构特征 3-1 棱锥的定义⑴ 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
⑵ 正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心, 这样的棱锥叫做正棱锥。
3-2 正棱锥的结构特征⑴ 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;⑵ 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;⑶ 正棱锥中的六个元素,即侧棱(SB)、高(SO)、斜高(SH)、侧棱在底面上的射影(OB)、斜高在底面上的射影(OH)、底面边长的一半(BH),构成四个直角三角形(三角形SOB 、SOH 、SBH 、OBH 均为直角三角形)。
3-3 正棱锥的侧面展开图:正n 棱锥的侧面展开图是由n 个全等的等腰三角形组成。
3-4 正棱锥的面积和体积公式S 正棱锥侧 = 0.5 c h ’ (c 为底面周长,h ’为侧面斜高) S 正棱锥全 = 0.5 c h ’ + S 底面V 棱锥 = 1/3 S 底面·h (h 为棱锥的高)图1-3 圆柱图1-4 棱锥4 圆锥的结构特征4-1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥。
4-2 圆锥的结构特征⑴ 平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比; ⑵ 轴截面是等腰三角形;⑶ 母线的平方等于底面半径与高的平方和: l 2 = r 2 + h 24-3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。
4-4 圆锥的面积和体积的公式S 圆锥侧 = π r ·l (r 为底面半径,l 为母线长) S 圆锥全 = πr ·(r + l)V 圆锥 = 1/3 πr 2·h (h 为圆锥高) 5 棱台的结构特征5.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。
5.2 正棱台的结构特征⑴ 各侧棱相等,各侧面都是全等的等腰梯形; ⑵ 正棱台的两个底面和平行于底面的截面都是正多边形;⑶ 正棱台的对角面也是等腰梯形;⑷ 棱台经常被补成棱锥,然后利用形似三角形进行研究。
5-3 正棱台的面积和体积公式S 棱台侧= n/2 (a + b)·h ’ (a 为上底边长,b 为下底边长,h ’为棱台的斜高,n 为边数) S 棱台全 = S 上底 + S 下底 + S 侧 V 棱台 =6 圆台的结构特征6-1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台。
6-2 圆台的结构特征⑴ 圆台的上下底面和平行于底面的截面都是圆; ⑵ 圆台的截面是等腰梯形;⑶ 圆台经常补成圆锥,然后利用相似三角形进行研究。
图1-5 圆锥图1-6 棱台 图1-7 圆台6-3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)S圆台全= π·r2 + π·R2 + π·(R + r)·lV圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7-1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体。
空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体。
7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方图1-8 球差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;⑷注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线;球外切正方体,球直径等于正方体的边长。
7-4 球的面积和体积公式S球面= 4 π R2(R为球半径)V球= 4/3 π R3㈢空间几何体的视图1 三视图:观察者从三个不同的位置观察同一个空间几何体而画出的图形。
正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左边向右边正投影,得到的投影图。
俯视图:光线从几何体的上面向右边正投影,得到的投影图。
注意:⑴俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右方,“高度”与正视图相等,“宽度”与俯视图相等。
(正侧一样高,正俯一样长,俯侧一样宽)⑵正视图、侧视图、俯视图都是平面图形,而不是直观图。
2 直观图2-1 直观图的定义:是观察者站在某一点观察一个空间几何体而画出的图形,直观图通常是在平行投影下画出的空间图形。
2-2 斜二测法做空间几何体的直观图⑴在已知图形中取互相垂直的轴Ox、Oy,即取∠xOy = 90°;⑵画直观图时,把它画成对应的轴O’x’、O’y,取∠x’O’y’= 45°或135°,它们确定的平面表示水平平面;⑶在坐标系x’o’y’中画直观图时,已知图形中平行于数轴的线段保持平行性不变;平行于x轴的线段保持长度不变;平行于y轴的线段长度减半。
结论:采用斜二测法作出的直观图的面积是原平面图形的2-3 解决关于直观图问题的注意事项⑴由几何体的三视图画直观图时,一般先考虑“俯视图”;⑵由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
二点、直线、平面之间的关系㈠平面的基本性质1 立体几何中图形语言、文字语言和符号语言的转化图形语言文字语言符号语言点A在直线a上点B在直线a外A∈a B a点A在平面α内点B在平面α外A∈αBα直线a在平面α内直线b在平面α外aαbα直线a与平面α相交于点A a∩α=A 直线a与直线b相交于点A a∩b=A平面α与平面β交于直线a α∩β=a★2 平面的基本性质公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。
公理二:不共线的三点确定一个平面。
推论一:直线与直线外一点确定一个平面。
推论二:两条相交直线确定一个平面。
推论三:两条平行直线确定一个平面。
公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。
㈡空间图形的位置关系1 空间直线的位置关系(相交、平行、异面)1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。
即:a∥b,b∥c a∥c1.2 等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
1.3 异面直线⑴定义:不在任何一个平面内的两条直线称为异面直线。
⑵判定定理:连平面内的一点与平面外一点的直线与这个平面内不过此点的直线为异面直线。
即:1.4 异面直线所成的角图2-1 异面直线⑴异面直线成角的范围:(0°,90°].⑵作异面直线成角的方法:平移法。
注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。
2 直线与平面的位置关系(直线在平面内、相交、平行)3 平面与平面的位置关系(平行、斜交、垂直)㈢ 平行关系(包括线面平行和面面平行) 1 线面平行1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。
1.2 判定定理:1.3 性质定理:1.4 判断或证明线面平行的方法⑴ 利用定义(反证法):l ∩ α = ф ,l ∥α (用于判断); ⑵ 利用判定定理:线线平行线面平行 (用于证明); ⑶ 利用平面的平行:面面平行线面平行 (用于证明);⑷ 利用垂直于同一条直线的直线和平面平行(用于判断)。
2 线面斜交和线面角:l ∩ α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ。
2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°; 当直线垂直于平面时,θ=90° 3 面面平行3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。