《流体动力学基础B》流体力学基本方程
流体动力学基本方程

Chapter 3 流体动力学基本方程例如求解定常均匀来流绕流桥墩时的桥墩受力问题:流场和桥墩表面受力由(边界条件+控制方程组)决定。
本章任务建立控制方程组,确定边界条件的近似描述和数学表达。
I 质量连续性方程(质量守恒方程) I-1方程的导出物质体(或系统)的质量恒定不变——质量守恒假设。
质量守恒假设对于很多流动问题是良好近似,分子热运动引起的系统与外界的物质交换可忽略不计。
在此假设下,对物质体τ有0dd dtτρτ=⎰。
根据输运定理,设t 时刻该系统所占控制体为CV ,对应控制面CS ,则有0v vÒCVCSd v ds t ρτρ∂+⋅=∂⎰⎰⎰——质量守恒方程积分形式。
上式亦表明,CV 内单位时间内的质量减少=CS 上的质量通量。
由奥高公式得()v vvÒCSCVv ds v d ρρτ⋅=∇⋅⎰⎰⎰,于是有()0v CV v d t ρρτ∂⎡⎤+∇⋅=⎢⎥∂⎣⎦⎰。
考虑到τ的任意性,故有()0vv t ρρ∂+∇⋅=∂,即 0vd v dtρρ+∇⋅= ——质量守恒方程微分形式 I-2各项意义分析: 1)dt d ρ——流体微团密度随时间的变化率;定常流动0=∂∂t ρ;不可压缩流动0=dt d ρ;均质流体的不可压缩流动.const ρ=。
2)由0=dtm d δ(m δ为微团的质量)知11d d dt dt ρδτρδτ=-(δτ为该微团t 时刻体积),从而知v ∇⋅r=流体微团体积随时间的相对变化率,即体膨胀率。
3)不可压缩流体0d dt ρ=,故有 0v ∇⋅=v。
由奥高公式有v v v ÒCVCSv ds vd τ⋅=∇⋅⎰⎰⎰,可见对于不可压缩流动,任意闭合曲面上有0v vÒCSv ds ⋅=⎰⎰。
不可压缩流动满足的0v ∇⋅=v或0v vÒCSv ds ⋅=⎰⎰是对速度场的一个约束。
例1、1)定常流场中取一段流管,则由0v vÒCSv ds ⋅=⎰⎰易知:222111S V S V ρρ=;如为均质不可压缩流动,则1122V S V S =。
工程流体力学 第3章 流体运动基本概念和基本方程

流管——在流场中作一不是流线的封闭周线C,过该周线 上的所有流线组成的管状表面。 流束——充满流管的一束流体。 微元流束——截面积无穷小的流束。 总流——无限多微元流束组成总的流束。
3. 缓变流和急变流 缓变流— 流线近似平行;
急变流— 流线不平行;
缓变流
急变流
缓变流
急变流
4. 有效截面 流量 平均流速
v v( x, y, z, t ) , p p( x, y, z, t ) , ( x, y, z, t )
欧拉法
Euler法(欧拉法) 描述流体运动
第一节
一
流体运动的描述方法
Z
Euler法(欧拉法 )
流体质点运动的速度:
v x v x ( x, y , z , t ) v y v y ( x, y , z , t ) vz v z ( x , y , z , t )
n CV CS
方程含义:单位时间内控制体内流体质量的增量,等于通过 控制体表面的质量的净通量。 定常流动的积分形式的连续性方程:
dA 0
n CS
二. 定常管流
定常流动连续性方程: 应用于定常管流时:
dA 0
n CS
A1
1 1n
dA 2 2 n dA
t 0
lim
Ⅲ
t
cosdA v dA dA
CS 2 CS 2 CS 2
(dV) t Ⅰ lim cosdA v dA -n dA t 0 t CS1 CS1 CS1
CS2为控制体表面上的出流面积;
A2
截面A1上的质量流量
截面A2上的质量流量
《流体力学》流体力学基本方程

2.2 描述流体运动的一些基本概念
2.2.1定常流与非定常流
流场中所有的运动 要素不随时间变化
u u(x, y, z)
(x, y, z)
p p(x, y, z)
u 0 t p 0 t
0
t
流场中有运动 要素随时间变化
u u(x, y, z,t)
(x, y, z,t)
p p(x, y, z,t)
p p(x, y, z,t) (x, y, z,t)
x, y, z ,t--欧拉变量,其中x,y,z与时间t有关。
欧拉法是常用的方法。
5
16 October 2021
欧拉法中的加速度 -- 质点速度矢量对时间的变化率。
a
u t
ux
u x
uy
u y
uz
u z
三个分量:
ax
ux t
ux
ux x
拉格朗日法 从流体质点的运动着手,描述每一个流体质点自始至 终的运动过程。如果知道了所有流体质点的运动规律,那么整个流 体的运动规律也就清楚了。是质点--时间描述法。
质点运动的轨迹
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
ln x t ln y t ln c
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
y x
12
16 October 2021
2. 求迹线
将已知速度分布代入式(2.2.1)可得
dx x t, dy ( y t), dz 0
流体力学第六章流体动力学积分形式基本方程

右端为零。
第1页
退出 返回
第六章 流体动力学积分形式基本方程
第三节 动量矩方程
例题6.3 如图6.4所示,离心压缩机叶轮转
速为 ,带动流体一起旋转,圆周速度
为 u ,流体沿叶片流动速度为w ,流量
为Q,流体密度为 ,求叶轮传递给流体
的功率。
解:流体绝对速度为 c u w
当叶片足够多时,可认为流动是稳定的。取
则控制体内流体内能的增量将由辐射热提供,于是有
qR d
de dt
d
d dt
ed
qR
de dt
,即 (6.11)
第3页
退出 返回
第六章 流体动力学积分形式基本方程
第四节 能量方程
据系统导数公式(输运公式),有
d dt
ed
t
ed
A w
nedA
稳定流动时由式(6.11)、(6.12)可得
(6.12)
d
u
t
d
(b)
第4页
退出
返回
第六章 流体动力学积分形式基本方程
第二节 动量方程
将式(a),(b)代入式(6.4)得到
A wr nwrdA u
A wr ndA
Fd
A pndA
t
wrd
u t
d
u t
d
(c)
由连续性方程可知
u
t
d
uA
wr
ndA
0
,则(c)式变为
Awr nwrdA
第1页
退出
返回
第六章 流体动力学积分形式基本方程
第一节 连续性方程
如图6.1所示,令 为控制体体积,A为控制面面积,n为 dA 控制面外
流体力学三大基本方程公式

流体力学三大基本方程公式流体力学是研究流体(液体和气体)行为的一门学科,而其中的三大基本方程就像是流体世界里的三位“大神”,每一个都有自己的风格和特点。
今天我们就来轻松聊聊这三大基本方程,看看它们是如何影响我们日常生活的。
1. 连续方程1.1 理论基础连续方程说的就是流体在流动时质量是守恒的,也就是说流体不会凭空消失或者出现。
这就好比你在喝饮料,吸管里的液体不管你怎么吸,它的总量始终不变。
你想,假如你吸得太快,吸管里液体都没了,那饮料可就喝不到了,真是要命!1.2 实际应用在现实生活中,这个方程的应用可广泛了。
比如,水管里流动的水,流量是一定的。
如果管道变窄,水速就会变快,简直就像是高速公路上的汽车,车道窄了,车速得加快才能不堵车。
你可以想象一下,如果这条“水路”被堵了,后果可就不堪设想,真是“水深火热”啊。
2. 纳维斯托克斯方程2.1 理论基础说到纳维斯托克斯方程,这可是流体力学里的“超级英雄”。
它描述了流体的运动,考虑了粘性、压力、速度等多个因素,就像一位全能运动员,无论是短跑、游泳,还是足球,样样精通!这个方程让我们能够预测流体的流动,简直就像是给流体穿上了“预测未来”的眼镜。
2.2 实际应用说到实际应用,纳维斯托克斯方程可是在天气预报、飞机设计等领域大显身手。
在气象学中,气象学家利用这个方程来模拟风暴、降雨等自然现象,真的是“未雨绸缪”,让我们提前做好准备。
想象一下,若是没有它,我们可能在大雨来临时还在悠哉悠哉地喝着茶,结果被“浇”了个透心凉。
3. 伯努利方程3.1 理论基础最后我们得提提伯努利方程,它可是流体动力学的明星。
简单来说,伯努利方程告诉我们,流体的压力和速度之间有着“爱恨交织”的关系。
流速快的地方,压力就低;流速慢的地方,压力就高。
这就像是你在一个热闹的派对上,越往外挤,周围的人越少,反而显得格外“安静”。
3.2 实际应用伯努利方程的应用那可是多得数不胜数,尤其是在飞行器设计上。
第3章流体力学连续性方程微分形式

X方向
( ux ) dxdydz x
同理可得:
在dt时间内因密度变化而减少的 质量为:
3
y方向:
z方向:
( u y ) y dxdydz ( u z ) dxdydz z
dxdydz ( ) dxdydz t t dxdydz
0 t
适用范围:理想、实际、可压缩、不可压缩的恒定流。
(2)不可压缩流体的连续性微分方程
当为不可压缩流时
u x u y u z 0 x y z
Const
物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量) , 与流出的流体体积(质量)之差等于零。 适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。
1
第三章 流体动力学基础
第三节 流体动力学基本方程式
一、连续性微分方程 二、理想流体运动微分方程
三、粘性流体的运动微分方程
第四节 欧拉运动微分方程的积分
一、在势流条件下的积分
二、沿流线的积分
第三节 流体动力学基本方程式
一、连续性微分方程
2
在流场内取一微元六面体(如图),边长为dx,dy,dz,中心点O流速为 ( ux,uy,uz ) D' z C' ux dx ux dx A' dz u B' u z u x x 2 x x 2 o’ M uy ux N 以x轴方向为例: C D ux dx 1 dx dy u u 左表面流速 M A x 2 x B o u x x 1 右表面流速 u N u x dx 2 x y ∴ 单位时间内x方向流出流进的质量流量差: ( u x ) ( u x ) 1 1 M M [ u x dx]dydz [ u x dx]dydz 右 左 2 x 2 x ( u x ) x dxdydz
高等流体力学—流体力学基本方程组

图 3-1 流场中的微元平行六面体
4
一、直角坐标系下连续性微分方程式
先分析x轴方向,已知u和ρ都是坐标和时间的连续函数, 即u=u (x,y,z,t)和ρ = ρ (x,y,z,t)。根据泰勒级数
展开式,略去高于一阶的无穷小量,得在dt时间内,沿轴 方向从左边微元面积dydz流入的流体质量为
图 3-1 流场中的微元平行六面体
0.5 (m/s) 2 0 . 5 1
21
图 3-14 输水管道
22
流体流动的连续性方程推导-欧拉法
在空间取一以S面为界的有限体积τ,该面由流面及两 个非流面组成。
23
有限体积τ-流管内流体质量的变化由两部分组成:
1 通过表面S流体的进入或流出(以流入为正)
程。
11
若流体是定常流动,则
0, t
上式成为
u v w 0 x y z
(3-6)
式(3-6)为可压缩流体定常三维流动的连续 性方程。
12
对不可压缩均质流体, ρ为常数,故式(3-6)成为
u v w 0 x y z
19
【例3-2】 有一不可压缩流体平面流动,其速度分布
规律为u=x2siny,v=2xcosy,试分析该流动是否连续。 【解】 根据式(3-8)
所以
u 2 x sin y x
v 2 x sin y y
u v 2 x sin y (2 x sin y ) 0 x y
( x, y, z, t dt ) dt t
10
则可求出在dt时间内,六面体内因密度的变化而引起的质量
dt dxdydz dxdydz dxdydzdt t t
流体力学第五章流体动力学微分形式基本方程

或 D w 0
Dt
第4页 退 出 返 回
(5.3a)
第五章 流体动力学微分形式基本方程
第一节 连续性方程
对于稳定流动, 0,于是式(5.1)变为
t wx wy wz 0
x
y
z
即
w 0
对于不可压缩流体, 为常数,则连续性方程为
wx wy wz 0 x y z
即
w 0
和为零,六面体中流体的质量是不变的,即
wx
wy
wz
0
t x
y
z
(5.1)
式(5.1)就是流体的连续性方程。将上式展开,并且注意到
d dt
t
wx
x
wy
y
wz
z
则连续性方程也可写成 1 d wx wy wz 0 dt x y z
(5.2)
写成向量形式 (w) 0
t
(5.3)
Fr
1
p r
w t
wr
w r
w r
w
wz
w z
wr w r
F
1
p r
(5.9)
wz t
wr
wz r
w r
wz
wz
wz z
Fz
1
p z
式中 Fr 、F 、Fz 分别为单位质量的体积力在r、、z方向的分量。
第4页 退出
返回
第五章 流体动力学微分形式基本方程
第二节 理想流体运动方程
其中,f1至f6是给定的函数。 对于稳定流动,流场中各点的物理量不随时间改变,所以不存在初始条
件。
边界条件是指所求物理量在边界上的取值。如对静止的固体壁面,由于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加速度:
由于流体质点的运动轨迹非常复杂,而实用上 也无须知道个别质点的运动情况,所以除少数情况 外,工程流体力学中很少采用拉格朗日法。
6
2.欧拉(Euler)法
——空间—时间描述法
基本思想:考察空间每一点上的物理量及其变化。
空间点上的物理量是指占据该空间点的流体质点的物理量。
独立变量:仅时间 t . 空间坐标 ( x, y, z ) ux ux ( x, y, z, t ) u y u y ( x, y, z, t ) uz uz ( x, y, z, t ) p p( x, y, z, t ) ( x, y, z, t ) x, y, z, t—欧拉变量, 欧拉法是常用的方法。
空间点: 是一个几何点,表示空间位置。 特点一:空间点是一个几何位置,不随流体运动; 特点二:同一空间点,不同时刻被不同的流体质点所 占据或经过。
2 2018年9月3日 2
2-1 描述流体运动的两种方法
一个比喻:城市公Biblioteka 交通部门统计客运量,可采用两种方法:
①在每一辆公交车上设记录员,记录每辆车在不同时刻 (站点)上下车人数,此法称为随体法; ②在每一站点设记录员,记录不同时刻经过该站点的车 辆上下车人数,此法称为当地法。
图2.1.1 迹线
5
直角坐标系下速度和加速度可写为:
x u t y 速度: v t z w t
u 2 x 2 ax t t v 2 y 2 ax t t w 2 z 2 az t t
注意: 同一个质点, va, b, c, t 坐标(a, b, c)不变
v a aa, b, c, t t a ,b,c
4
质点运动的轨迹
x x(a, b, c, t ) y y (a, b, c, t ) z z (a, b, c, t )
时变加速度
迁移加速度
10
Dv v v v v a u v w Dt t x y z
Dv v a ( v ) v Dt t
质点加速度在直角坐标系下的分量形式:
u u u u ax t u x v y w z v v v v u v w a y t x y z w w w w u v w az t x y z
M1 (r vt )
v(r, t ) ui vj wk
质点
z z(t )
Dv Dv x, y, z, t Dt Dt
根据求导链式法则, 于是
Dv v v v v a u v w Dt t x y z
a Dv v ( v ) v Dt t
迁移加速度
当地加速度
9
即
Dv v ( v ) v Dt t 可见,质点的加速度包括两个部分: v (1)当地加速度(时变加速度,局部加速度) t a
— 特定空间点处速度对时间的变化率; (2)迁移加速度(位变加速度,对流加速度) ( v ) v — 对应于质点空间位置改变所产生的速度变化。
x, y, z与时间t有关。
x x(t ), y y(t ), z z(t )
可见,流体质点和空间点是二个完全不同的概念。
8
欧拉法中的加速度 -- 质点速度矢量对时间 的变化率。
x x(t ), y y(t ),
v(r vt , t t )
v(r, t ) M 0 (r)
1
流 体 质 点 是 物 理 点
流体质点:是从作为连续介质的流体中取出的宏观尺度 非常小而微观尺度又足够大的任意一个物理实体。它具 有4层含义: 宏观尺度非常小:几何尺寸可不计,视为一几何点; 微观尺度足够大:>>分子的平均自由行程,包含足够 多分子; 形状可任意划分; 具有一定的物理量,如速度、加速度、压力和密度等.
7
欧拉法中的加速度 -- 质点速度矢量对时间 的变化率。
v(r vt , t t )
v(r, t ) M 0 (r)
M1 (r vt )
v(r, t ) ui vj wk
质点
Dv v ( x ut , y vt , z wt , t t ) v( x, y, z , t ) lim Dt t 0 t
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
质点物理量:B(a, b, c, t), 如: p p(a, b, c, t )
质点位移: 速 度: 加速度:
r r(a, b, c, t )
r v t a ,b,c
第二章
流体力学基本方程
1. 流体运动的基本概念-流体运动的特征 2. 4个重要方程:
连续性方程 - 根据质量守恒定律导出 运动方程- 根据牛顿第二运动定律导出 伯努利方程- 根据能量守恒定律导出
动量积分方程和动量矩积分方程- 根据动量定理 和动量矩定理导出.
这些方程是分析研究和解决流体力学问题的基础.
11
质点导数:
D ( v ) Dt t
Dv v a ( v ) v Dt t
对流导数
Convective derivative
质点导数
Material derivative
局部导数
Local derivative
流体力学采用类似方法研究流体运动。
2.1.1拉格朗日(Lagrange)法 2.1.2欧拉(Euler)法
3
2.1.1拉格朗日(Lagrange)法 —质点--时间描述法
基本思想:跟踪每个流体质点的运动全过程,记录 它们在运动过程中的各物理量及其变化. 独立变量:(a, b, c, t)——区分流体质点的标志