高中数学全套讲义 选修2-3 组合 中等教师版

合集下载

2020届高中数学分册同步讲义(选修2-3) 第1章 1.2.1 第1课时 排列与排列数公式

2020届高中数学分册同步讲义(选修2-3) 第1章 1.2.1 第1课时 排列与排列数公式

§1.2排列与组合1.2.1排列第1课时排列与排列数公式学习目标1.理解并掌握排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题.知识点一排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二排列数的定义及公式1.排列数的定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m 个元素的排列数,用符号A m n表示.2.排列数公式A m n=n(n-1)(n-2)…(n-m+1)(n,m∈N*,m≤n)=n!(n-m)!.A n n=n(n-1)(n-2)…2·1=n!(叫做n的阶乘).另外,我们规定0!=1.1.123与321是相同的排列.(×)2.同一个排列中,同一个元素不能重复出现.(√)3.在一个排列中,若交换两个元素的位置,则该排列不发生变化.(×)4.从4个不同元素中任取3个元素,只要元素相同得到的就是相同的排列.(×)一、排列的概念例1判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)是排列问题,(1)(3)(4)不是排列问题.反思感悟判断一个具体问题是否为排列问题的思路跟踪训练1判断下列问题是否为排列问题.(1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法?(2)从集合M={1,2,…,9}中,任取两个元素作为a,b,可以得到多少个焦点在x轴上的椭圆方程x2a2+y2b2=1?可以得到多少个焦点在x轴上的双曲线方程x2a2-y2b2=1?(3)平面上有5个点,其中任意三个点不共线,这5个点最多可确定多少条直线?可确定多少条射线?解(1)第一问不是排列问题,第二问是排列问题.“入座”问题同“排队”问题,与顺序有关,故选3个座位安排三位客人是排列问题.(2)第一问不是排列问题,第二问是排列问题.若方程x2a2+y2b2=1表示焦点在x轴上的椭圆,则必有a>b,a,b的大小关系一定;在双曲线x2a2-y2b2=1中,不管a>b还是a<b,方程x2a2-y2b2=1均表示焦点在x轴上的双曲线,且是不同的双曲线,故是排列问题.(3)确定直线不是排列问题,确定射线是排列问题.二、排列数公式的应用命题角度1 利用排列数公式求值例2-1 计算A 315和A 66.解 A 315=15×14×13=2 730, A 66=6×5×4×3×2×1=720. 命题角度2 利用排列数公式化简例2-2 (1)用排列数表示(55-n )(56-n )…(69-n )(n ∈N *且n <55); (2)化简n (n +1)(n +2)(n +3)…(n +m ).解 (1)∵55-n ,56-n ,…,69-n 中的最大数为69-n ,且共有(69-n )-(55-n )+1=15(个)数, ∴(55-n )(56-n )…(69-n )=A 1569-n .(2)由排列数公式可知n (n +1)(n +2)(n +3)…(n +m )=A m +1n +m .命题角度3 利用排列数公式证明例2-3 求证A m n +1-A m n =m A m -1n. 证明 ∵A m n +1-A mn =(n +1)!(n +1-m )!-n !(n -m )!=n !(n -m )!·⎝⎛⎭⎪⎫n +1n +1-m -1=n !(n -m )!·mn +1-m=m ·n !(n +1-m )!=m A m -1n, ∴A m n +1-A m n =m A m -1n. 反思感悟 排列数公式有两种形式,一种是连乘积的形式,另一种是阶乘的形式,若要计算含有数字的排列数的值,常用连乘积的形式进行计算,而要对含有字母的排列数的式子进行变形或作有关的论证时,一般用阶乘式.跟踪训练2 不等式A x 8<6A x -28的解集为( )A .[2,8]B .[2,6]C .(7,12)D .{8} 答案 D解析 由A x 8<6A x -28,得8!(8-x )!<6×8!(10-x )!,化简得x 2-19x +84<0,解得7<x <12,①又⎩⎪⎨⎪⎧x ≤8,x -2≥0,所以2≤x ≤8,② 由①②及x ∈N *,得x =8.三、排列的简单应用例3 用排列数表示下列问题.(1)从100个两两互质的数中取出2个数,其商的个数;(2)由0,1,2,3组成的能被5整除且没有重复数字的四位数的个数;(3)有4名大学生可以到5家单位实习,若每家单位至多招1名新员工,每名大学生至多到1家单位实习,且这4名大学生全部被分配完毕,其分配方案的个数.解 (1)从100个两两互质的数中取出2个数,分别作为商的分子和分母,其排列数为A 2100. (2)因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,其排列数为A 33.(3)可以理解为从5家单位中选出4家单位,分别把4名大学生安排到4家单位,其排列数为A 45. 反思感悟 首先分析问题是不是排列问题,若是排列问题,则利用定义解题.跟踪训练3 京沪高速铁路自北京南站至上海虹桥站,双线铁路全长1 318公里,途经北京、天津、河北、山东、安徽、江苏、上海7个省市,设立包括北京南、天津西、济南西、南京南、苏州北、上海虹桥等在内的21个车站,计算铁路部门要为这21个车站准备多少种不同的火车票?解 对于两个火车站A 和B ,从A 到B 的火车票与从B 到A 的火车票不同,因为每张票对应一个起点站和一个终点站.因此,结果应为从21个不同元素中,每次取出2个不同元素的排列数A 221=21×20=420(种).所以一共需要为这21个车站准备420种不同的火车票.1.排列有两层含义:一是“取出元素”,二是“按照一定顺序排成一列”.这里“一定的顺序”是指每次取出的元素与它所排的“位置”有关,所以,取出的元素与“顺序”有无关系就成为判断问题是否为排列问题的标准.2.排列数公式有两种形式,可以根据要求灵活选用.1.下面问题中,是排列问题的是()A.由1,2,3三个数字组成无重复数字的三位数B.从40人中选5人组成篮球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案 A解析选项A中组成的三位数与数字的排列顺序有关,选项B,C,D只需取出元素即可,与元素的排列顺序无关.2.A39等于()A.9×3 B.93C.9×8×7 D.9×8×7×6×5×4×3答案 C3.若A m10=10×9×…×5,则m=________.答案 64.从1,2,3,4这4个数字中选出3个数字构成无重复数字的三位数有________个.答案245.从n个不同的元素中取出m个(m≤n)元素排成一列,不同排法有________种.答案n(n-1)(n-2)…(n-m+1)一、选择题1.4·5·6·…·(n-1)·n等于()A.A4n B.A n-4nC.n!-4! D.A n-3n答案 D解析因为A m n=n(n-1)(n-2)…(n-m+1).所以A n-3n=n(n-1)(n-2)…[n-(n-3)+1]=n·(n-1)·(n-2)·…·6·5·4.2.将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.90答案 C解析5本书进行全排列,A55=120.3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有()A.12种B.24种C.48种D.120种答案 B解析∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A44=24(种).4.下列各式中与排列数A m n相等的是()A.n!(n-m+1)!B.n(n-1)(n-2)…(n-m)C.n A m n -1n -m +1 D .A 1n ·A m -1n -1答案 D 解析∵A m n =n !(n -m )!,而A 1n ·A m -1n -1=n ·(n -1)![(n -1)-(m -1)]!=n !(n -m )!,∴A m n =A 1n ·A m -1n -1.5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20 答案 C解析 首先从1,3,5,7,9这五个数中任取两个不同的数排列,共有A 25=20(种)排法, 因为31=93,13=39,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是20-2=18.6.将4张相同的博物馆的参观票分给5名同学,每名同学至多1张,并且票必须分完,那么不同的分法的种数为( ) A .54B .45C .5×4×3×2D .5答案 D解析 由于参观票只有4张,而人数为5人,且每名同学至多1张,故一定有1名同学没有票.因此从5名同学中选出1名没有票的同学,有5种选法.又因为4张参观票是相同的,不加以区分,所以不同的分法有5种. 二、填空题7.若A 42x +1=140·A 3x ,则x =________. 答案 3解析 根据原方程,知x 应满足⎩⎪⎨⎪⎧2x +1≥4,x ≥3,x ∈N *,解得x ≥3,x ∈N *.由排列数公式,得(2x +1)·2x ·(2x -1)·(2x -2)=140x ·(x -1)·(x -2),所以x =3.8.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)答案 1 560解析 根据题意,得A 240=1 560,故全班共写了1 560条毕业留言.9.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则共有________种不同的排法. 答案 3 600解析 不同排法的种数为A 55A 26=3 600(种).10.若把英语单词“good ”的字母顺序写错了,则可能出现的错误共有________种. 答案 11解析 根据题意,因为“good ”四个字母中的两个“O ”是相同的, 则其不同的排列有12×A 44=12种, 而正确的排列只有1种, 则可能出现的错误共有11种.11.5名同学排成一列,甲同学不排排头的排法种数为________.(用数字作答) 答案 96解析 可分两步:第一步,甲同学不排排头,故排头的位置可以从余下的四个同学中选一个排,有A 14种方法;第二步,余下的四个同学全排列,有A 44种不同的排法,根据分步乘法计数原理,所求的排法种数为A 14A 44=96.故填96.12.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有______种不同的招聘方案.(用数字作答) 答案 60解析 将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有A 35=5×4×3=60(种). 三、解答题13.A ,B ,C ,D 四人站成一排,其中A 不站排头,写出所有的站法. 解 作出“树形图”如下:故所有的站法:BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.14.某国的篮球职业联赛共有16支球队参加.(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?解(1)任意两队之间要进行一场主场比赛及一场客场比赛,对应于从16支球队任取两支的一个排列,比赛的总场次是A216=16×15=240.(2)由(1)中的分析,比赛的总场次是A28×2+1=8×7×2+1=113.15.一条铁路有n个车站,为适应客运需要,新增了m个车站,且m>1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?解 由题意可知,原有车票的种数是A 2n 种,现有车票的种数是A 2n +m 种,∴A 2n +m -A 2n =62,即(n +m )(n +m -1)-n (n -1)=62.∴m (2n +m -1)=62=2×31,∵m <2n +m -1,且n ≥2,m ,n ∈N *,∴⎩⎪⎨⎪⎧ m =2,2n +m -1=31,解得m =2,n =15, 故原有15个车站,现有17个车站.。

人教版高中数学选修2-3二项式定理 (共16张PPT)教育课件

人教版高中数学选修2-3二项式定理 (共16张PPT)教育课件





















































































































































–■
① 项: a 3
a 2b ab 2 b 3
a3kbk

高中数学选修2-3二项式定理讲义含答案

高中数学选修2-3二项式定理讲义含答案

二项式定理公式(a+b)n=C0n a n+C1n a n-1b+C2n a n-2b2+…+C r n a n-r b r所表示的规律叫做二项式定理.2、相关概念(1)公式右边的多项式叫做(a+b)n的二项展开式.(2)各项的系数C r n(r=0,1,2,…,n)叫做展开式的二项式系数.(3)展开式中的C r n a n-r b r叫做二项展开式的通项,记作:T r+1,它表示展开式的第r+1项.(4)在二项式定理中,如果设a=1,b=x,则得到公式(1+x)n=C0n+C1n x+C2n x2+…+C r n x r+…+C n n x n3、展开式具有以下特点(1)项数:共有n+1项;(2)二项式系数:依次为C0n,C1n,C2n,…,C r n,…,C n n;(3)每一项的次数是一样的,即为n次,展开式依a的降幂、b的升幂排列展开;(4)通项是第r+1项.[例1](1)用二项式定理展开(2x-32x2)5.(2)化简:C0n(x+1)n-C1n(x+1)n-1+C2n(x+1)n-2-…+(-1)r C r n(x+1)n-r+…+(-1)n C n n.[思路点拨](1)二项式的指数为5,可直接按二项式定理展开;(2)可先把x+1看成一个整体,分析结构形式,逆用二项式定理求解.[答案](1)(2x-32x2)5=C05(2x)5+C15(2x)4·(-32x2)+…+C55(-32x2)5=32x5-120x2+180x-135x4+4058x7-24332x10.(2)原式=C0n(x+1)n+C1n(x+1)n-1(-1)+C2n(x+1)n-2(-1)2+…+C r n(x+1)n-r(-1)r+…+C n n(-1)n=[(x +1)+(-1)]n=x n.1.求(3x+1x)4的展开式.解:法一:(3x+1x)4=C04(3x)4+C14(3x)3·1x+C24(3x)2·(1x)2+C34(3x)(1x)3+C44(1x)4=81x2+108x+54+12x+1x2.法二:(3x +1x)4=(3x +1)4x 2=1x 2(81x 4+108x 3+54x 2+12x +1)=81x 2+108x +54+12x +1x 2. 2.求C 26+9C 36+92C 46+93C 56+94C 66的值.解:原式=192(92C 26+93C 36+94C 46+95C 56+96C 66) =192(C 06+91C 16+92C 26+93C 36+94C 46+95C 56+96C 66)-192(C 06+91C 16) =192(1+9)6-192(1+6×9)=192(106-55)=12 345. [例2] (1)(x +12 x)8的展开式中常数项为( ) A.3516 B.358 C.354D .105(2)设二项式(x -a x)6(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________. [答案] (1)二项展开式的通项为 T r +1=C r 8(x )8-r (12 x)r =C r 8(12)r x 4-r. 当4-r =0时,r =4,所以展开式中的常数项为 C 48(12)4=358.故选B. (2)由题意得T r +1=C r 6x6-r (-a x)r =(-a )r C r 6x 36-2r, ∴A =(-a )2C 26,B =(-a )4C 46.又∵B =4A ,∴(-a )4C 46=4(-a )2C 26,解之得a 2=4.又∵a >0,∴a =2. 3.在(2x 2-1x )5的二项展开式中,x 的系数为( )4.A .10B .-10C .40D .-40解析:二项式(2x 2-1x )5的展开式的第r +1项为T r +1=C r 5(2x 2)5-r (-1x)r =C r 5·25-r ×(-1)r x 10-3r .当r =3时含有x ,其系数为C 35·22×(-1)3=-40.4.(1+3x )n (其中n ∈N 且n ≥6)的展开式中,若x 5与x 6的系数相等,则n = ( )A .6B .7C .8D .9解析:二项式(1+3x )n 的展开式的通项是T r +1=C r n 1n -r ·(3x )r =C r n ·3r ·x r.依题意得C 5n ·35=C 6n·36,即n (n -1)(n -2)(n -3)(n -4)5! =3×n (n -1)(n -2)(n -3)(n -4)(n -5)6!(n ≥6),解得n =7.5.在(32x -12)20的展开式中,系数是有理数的项共有( )A .4项B .5项C .6项D .7项解析:T r +1=C r 20(32x )20-r (-12)r =(-22)r ·(32)20-r C r 20·x 20-r . ∵系数为有理数,∴(2)r与20r 32-均为有理数,∴r 能被2整除,且20-r 能被3整除. 故r 为偶数,20-r 是3的倍数,0≤r ≤20, ∴r =2,8,14,20.引入:nb)+(a 的展开式的二次项系数,当n 取正整数时可以表示成如下形式:二项式系数的性质(1)每一行的两端都是1,其余每个数都等于它“肩上”两个数的和.即C 0n =C n n =1,C m n +1=C m -1n +C m n . (2)每一行中,与首末两端“等距离”的两个数相等,即C m n =C n -mn.(3)如果二项式的幂指数n 是偶数,那么其展开式中间一项12+n T 的二项式系数最大;如果n 是奇数,那么其展开式中间两项12121++++n n T T 的二项式系数相等且最大.(4)二项展开式的各二项式系数的和等于2n .即C 0n +C 1n +C 2n +…+C n n =2n .且C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.[例1] 如图,在“杨辉三角”中,斜线AB 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,….记其前n 项和为Sn ,求S19的值.[思路点拨] 由图知,数列中的首项是C 22,第2项是C 12,第3项是C 23,第4项是C 13,…,第17项是C 210,第18项是C 110,第19项是C 211.[答案] S 19=(C 22+C 12)+(C 23+C 13)+(C 24+C 14)+…+(C 210+C 110)+C 211=(C 12+C 13+C 14+…+C 110)+(C 22+C 23+…+C 210+C 211)=(2+3+4+…+10)+C 312=(2+10)×92+220=274.n 行的首尾两个数均为________.解析:由1,3,5,7,9,…可知它们成等差数列,所以an =2n -1.答案:2n -12.如图,由二项式系数构成的杨辉三角中,第________行从左到右第14个数与第15个数之比为2∶3.解析:设第n 行从左至右第14与第15个数之比为2∶3,则3C 13n =2C 14n ,即3n !13!(n -13)!=2n !14!(n -14)!.解得n =34. [例2] 设)(2x )-(12012201222102012R x x a x a x a a ∈++++=(1)求2012210a a a a ++++ 的值. (2)求2011531a a a a ++++ 的值. (3)求||||||||2012210a a a a ++++ 的值.[思路点拨] 先观察所要求的式子与展开式各项的特点,用赋值法求解.[答案] (1)令x =1,得a 0+a 1+a 2+…+a 2 012=(-1)2 012=1.①(2)令x =-1,得a 0-a 1+a 2-…+a 2 012=32 012.② ①-②得2(a 1+a 3+…+a 2 011)=1-32 012, ∴a 1+a 3+a 5+…+a 2 011=1-32 0122.(3)∵T r +1=C r 2 012(-2x )r =(-1)r ·C r 2 012·(2x )r,∴a 2k -1<0(k ∈N +),a 2k >0(k ∈N). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2 012| =a 0-a 1+a 2-a 3+…+a 2 012 =32 012.[总结] 赋值法是解决二项展开式中项的系数问题的常用方法.根据题目要求,灵活赋给字母不同值是解题的关键.一般地,要使展开式中项的关系变为系数的关系,令x =0可得常数项,令x =1可得所有项的和,令x =-1可得偶次项系数之和与奇次项系数之和的差.3.()()()nx x x ++++++1112的展开式中各项系数的和为( )A .12+n B .12-n C .121-+nD .221-+n解析:令x =1,则222222132-=+++++n n答案:D4.已知14141313221072)21x a x a x a x a a x x +++++=-+ a14x14.(1)求1413210a a a a a +++++ (2)求13531a a a a +++ 解:(1)令x =1,则1413210a a a a a +++++ =72=128. ①(2)令x =-1,则14133210a a a a a a +-+-+- =7)2(-=-128.②①-②得2(13531a a a a ++++ )=256,∴13531a a a a ++++ =128.[例3] (10分)已知(23x+3x 2)n 的展开式中,各项系数和与它的二项式系数和的比为32.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.[思路点拨] 根据已知条件求出n ,再根据n 为奇数或偶数确定二项式系数最大的项和系数最大的项.[答案] 令x =1,则展开式中各项系数和为(1+3)n =22n .(1分)又展开式中二项式系数和为2n , ∴22n 2n =2n=32,n =5. (2分)(1)∵n =5,展开式共6项,∴二项式系数最大的项为第三、四两项, (3分) ∴T 3=C 25(23x)3(3x 2)2=90x 6,(4分) T 4=C 35(23x)2(3x 2)3=270223x.(5分)(2)设展开式中第k +1项的系数最大, 则由T k +1=C k 5(23x)5-k (3x 2)k =3k C k51043k x+,(6分)得⎩⎪⎨⎪⎧3k C k 5≥3k -1C k -15,3k C k 5≥3k +1C k +15,,∴72≤k ≤92,∴k =4, (8分)即展开式中系数最大的项为T 5=C 45(23x)(3x 2)4=405263x.(10分)[总结] (1)求二项式系数最大的项,根据二项式系数的性质,当n 为奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组、解不等式的方法求得.变式训练5.若(x 3+1x 2)n 的展开式中第6项系数最大,则不含x 的项是( )A .210B .120C .461D .416解析:由题意知展开式中第6项二项式系数最大, n2+1=6,∴n =10, T r +1=C r 10x3(10-r )(1x2)r =C r 10x 30-5r . ∴30-5r =0.∴r =6.常数项为C 610=210. 答案:A 5.已知()nx 31+的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数最大的项.解:由题意知C n n +C n -1n +C n -2n =121, 即C 0n +C 1n +C 2n =121,∴1+n+n(n-1)2=121,即n2+n-240=0,解得n=15或-16(舍).∴在(1+3x)15的展开式中二项式系数最大的项是第八、九两项,且T8=C715(3x)7=C71537x7,T9=C815(3x)8=C81538x8.1.二项式展开式中的常数项是()A.180B.90C.45D.3602.二项式的展开式中x3 的系数是()A.84B. -84C.126D. -1263.设,则=()A.﹣2014B.2014C.﹣2015D.20154.的展开式中含有常数项为第( )项A.4B.5C.6D.75.若对于任意的实数x ,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值为()A.3B.6C.9D.126.在二项式的展开式中,含x4 的项的系数是()A.﹣10B.10C.﹣5D.57.展开式中不含x4项的系数的和为( )A.-1B.0C.1D.28.812014 除以100的余数是()A.1B.79C.21D.819.除以9的余数为( )A.8B.7C.6D.510.二项式展开式中的常数项是()A.第7项B.第8项C.第9项D.第10项11.在二项式的展开式中,前三项的系数成等差数列,则该二项式展开式中x-2项的系数为()A.1B.4C.8D.1612.将二项式的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的指数是整数的项共有()个A.3B.4C.5D.613.已知展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于()A.4B.5C.6D.714.展开式中x3的系数为10,则实数a等于()A. -1B.C.1D.215.在的二项式展开式中,只有第5项的二项式系数最大,则n= ()A.6B.7C.8D.9二、填空题16.设的展开式的各项系数之和为M ,二项式系数之和为N ,若M-N=240 ,则n =________.17.的展开式中各项系数的和为2,则该展开式中常数项为________.18.(a+2x+3x2)(1+x)5的展开式中一次项的系数为-3 ,则x5的系数为________19.已知的展开式中的常数项为T ,f(x) 是以T 为周期的偶函数,且当时,f(x)=x ,若在区间[-1,3] 内,函数g(x)=f(x)-kx-k有4个零点,则实数k 的取值范围是________20.对任意实数x ,有,则a3 的值为________.三、解答题21.求的二项展开式中的第5项的二项式系数和系数.22.在二项式的展开式中:(1)求展开式中含x3项的系数;(2)如果第3k项和第k+2项的二项式系数相等,试求k的值.23.已知(+3x2)n的展开式中,各项系数和比它的二项式系数和大992,求:(1)展开式中二项式系数最大的项;(2)展开式中系数最大的项.24.已知,且.(1)求n的值;(2)求的值25.已知的展开式的二项式系数之和为32,且展开式中含x3项的系数为80.(1)求m和n的值;(2)求展开式中含x2项的系数.课堂运用答案解析一、选择题1.【答案】A【考点】二项式定理【解析】【解答】二项式展开式的通项为令得r=2所以二项式展开式中的常数项是.故选A.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式通项计算即可.2.【答案】B【考点】二项式系数的性质【解析】【解答】由于二项式的通项公式为,令9-2r=3,解得r=3,∴展开式中x3的系数是(−1)3• ,故答案为B.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质计算即可.3.【答案】D【考点】二项式定理的应用【解析】【解答】由题意可得即为展开式第2015项的系数,再根据通项公式可得第2015项的系数为:,故选D.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式定理的性质分析计算即可.4.【答案】B【考点】二项式定理【解析】【解答】由二项展开式公式:,当8-2r=0,即r=4时,T5为常数项,所以常数项为第5项.故选B【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式计算即可.5.【答案】B【考点】二项式定理的应用【解析】【解答】因为,所以,故选择B.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式的性质计算即可.6.【答案】B【考点】二项式系数的性质【解析】【解答】由二项式定理知,二项式的展开式通项为:,令,得,则的项的系数为:.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式定理的性质计算即可.7.【答案】B【考点】二项式系数的性质【解析】【解答】由二项式定理知,展开式中最后一项含x4,其系数为1,令x=1得,此二项展开式的各项系数和为,故不含x4项的系数和为1-1=0,故选B.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式的特征计算即可.8.【答案】C【考点】二项式定理的应用【解析】【解答】== 4,即除以100的余数为21.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式性质分析计算即可.9.【答案】B【考点】二项式定理的应用【解析】【解答】依题意S=++…+=227-1=89-1=(9-1)9-1=×99-×98+…+×9--1=9( ×98-×97+…+)-2.∴ ×98-×97+…+是正整数,∴S被9除的余数为7.选B.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式展开性质计算即可.10.【答案】C【考点】二项式定理【解析】【解答】根据二项式定理可得的第项展开式为,要使得为常数项,要求,所以常数项为第9项.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式定理的性质分析计算即可.11.【答案】A【考点】二项式系数的性质【解析】【解答】由题意可得,成等差数列,∴ ,解得n=8.故展开式的通项公式为,令,求得r=8,故该二项式展开式中项的系数为,故选:A.【分析】本题主要考查了二项式系数的性质,解决问题的关键是二项式性质计算即可.12.【答案】A【考点】二项式系数的性质【解析】【解答】展开式的通项为∴前三项的系数分别是,∴前三项系数成等差数列∴∴∴当时,∴,展开式中x 的指数是整数,故共有3个,答案为A.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据实际问题结合二项式系数的性质计算即可.13.【答案】C【考点】二项式系数的性质【解析】【解答】展开式中各项系数和为x取时式子的值,所以各项系数和为,而二项式系数和为,因此,所以,答案选C.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质分析计算即可. 14.【答案】D【考点】二项式定理【解析】【解答】二项式的展开式的通项,当5-2r=3 时,r=1,系数,解得a=2,答案选D.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式定理分析其通项计算即可.15.【答案】C【考点】二项式系数的性质【解析】【解答】因为在的二项式展开式中,只有第5项的二项式系数最大所以由此可得:,即所以即.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的单调性计算即可.二、填空题16.【答案】4【考点】二项式系数的性质【解析】【解答】由题设知:,解得:,所以答案应填:4.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质计算即可.17.【答案】40【考点】二项式系数的性质【解析】【解答】由题意,,解得:,所以的展开式中常数项为:所以答案应填:40.【分析】本题主要考查了二项式系数的性质,解决问题的关键是二项式系数的性质计算即可.18.【答案】39【考点】二项式系数的性质【解析】【解答】由题意:,解得:,所以,展开式中的系数为,所以答案应填:39【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式性质计算即可.19.【答案】""【解析】【解答】∴ 的常数项为∴f(x)是以2为周期的偶函数∴区间[-1,3]是两个周期∴区间[-1,3]内,函数有4个零点可转化为f(x)与有四个交点当k=0时,两函数图象只有两个交点,不合题意,当k≠0时,∴ ,两函数图象有四个交点,必有解得,故填:.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式定理的性质结合函数性质计算即可.20.【答案】8【考点】二项式系数的性质【解析】【解答】,所以.【分析】本题主要考查了二项式系数的性质,解决问题的关键是要配成指定形式,再展开三、解答题21.【答案】【解答】解:,所以二项式系数为,系数为.【考点】二项式系数的性质【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是利用二项式定理的通项公式写出,再求出二项式系数与系数.22.【答案】(1)【解答】解:展开式第r+1项:令,解得r=2,∴展开式中含x3项的系数为(2)【解答】解:∴第3k项的二项式系数为,第k+2项的二项式系数∴故3k-1=k+1或3k-1+k+1=12 解得k=1或k=3【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是(1)写出二项式的展开式的特征项,当x的指数是3时,把3代入整理出k 的值,就得到这一项的系数的值.(2)根据上一问写出的特征项和第3k项和第k+2项的二项式系数相等,表示出一个关于k的方程,解方程即可.23.【答案】(1)解:令x=1,则展开式中各项系数和为(1+3)n=22n.又展开式中二项式系数和为2n,∴22n-2n=992,n=5∴n=5,展开式共6项,二项式系数最大的项为第3、4两项,∴T3=C52 ( )3(3x2)2=90x6,T4=C53 ( )2(3x2)3=(2)解:设展开式中第r+1项系数最大,则T r+1=C5r ( )5-r(3x2)r=3r C5r,∴ ,则,∴r=4,即展开式中第5项系数最大,T5=C54 ( )(3x2)4=405.【考点】二项式系数的性质【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是(1)利用赋值法求出各项系数和,与二项式系数和求出值,利用二项式系数的性质求展开式中二项式系数最大的项;(2)设出展开式中系数最大的项,利用进行求解即可.24.【答案】(1)【解答】解:由已知得:,由于, 所以(2)【解答】解:当x=1时,当x=0时,所以,【考点】二项式系数的性质,二项式定理的应用【解析】【分析】本题主要考查了二项式系数的性质;二项式定理的应用,解决问题的关键是:(1)首先注意等式中n的取值应满足:且n为正整数,其次是公式和的准确使用,将已知等式转化为n的方程,解此方程即得;(2)应用赋值法:注意观察已知二项式及右边展开式,由于要求,所以首先令x=1,得;然后就只要求出a0的值来即可,因此需令x=0,得,从而得结果25.【答案】(1)【解答】解:由题意,,则n=5,由通项公式,则r=3,所以,所以m=2(2)【解答】解:=,所以展开式中含x2项的系数为.【考点】二项式系数的性质,二项式定理的应用【解析】【分析】本题主要考查了二项式系数的性质;二项式定理的应用,解决问题的关键是(1)二项式系数之和为:,令易求得n,其次利用二项展开式的通项公式中令r=3,易求得m;(2)在前小题已求得的m,n的基础上,要求展开式中求特定项(含x2项)的系数,只需把两个二项式展开,对于展开式中的常数项与展开式中的x2项的系数乘,一次项系数与其一次项系数乘,二次项系数与其常数项乘,再把所得值相加即为所求.一、选择题1.二项式展开式中的系数为()A.5B.16C.80D.2.在的展开式中,含的项的系数是()A.60B.160C.180D.2403.展开式的各项系数之和大于8,小于32,则展开式中系数最大的项是()A. B. C. D.或4.设,那么的值为()A. B. C. D.5.的展开式中含项的系数为()A. B. C. D.6.的展开式中,的系数为()A.15B.C.60D.7.的展开式中常数项为()A. B. C. D.8.的展开式中,各项系数之和为,各项的二项式系数之和为,且,则展开式中常数项为()A.6B.9C.12D.18二、填空题9.若的展开式中第三项与第五项的系数之比为,则展开式中常数项是________.10.在的展开式中,项的系数为________.(结果用数值表示)11.二项式的展开式中,前三项的系数依次成等差数列,则此展开式中有理项有________项.三、解答题12.已知在的展开式中,第6项为常数项.(1)求;(2)求含项的系数;(3)求展开式中所有的有理项.13.已知二项式.(1)若它的二项式系数之和为.①求展开式中二项式系数最大的项;②求展开式中系数最大的项;(2)若,求二项式的值被除的余数.14.已知在的展开式中,第5项的系数与第3项的系数之比是14∴1.(1)求展开式中的系数;(2)求展开式中系数绝对值最大的项;(3)求的值.课后作业答案解析1.【答案】C【考点】二项式定理,二项式系数的性质【解析】【解答】二项展开式的通项公式为,则当时,其展开式中的的系数为.故答案为:C.【分析】先求出二项的展开式的通项,然后令x的指数为1,求出r,从而可求出x的系数.2.【答案】D【考点】二项式定理的应用【解析】【解答】展开式的通项为,令,则,则含的项的系数为.故答案为:D.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为7得含x7项的系数.3.【答案】A【考点】二项式定理的应用【解析】【解答】令,可得各项系数的之和为,则,解得,中间一项的系数最大,则,故答案为:A.【分析】令x=1,可求出展开式中的各项系数之和,通过各项系数之和大于8,小于32由已知求出n,即可求解中间项系数最大.4.【答案】B【考点】二项式系数的性质【解析】【解答】时,;时,,∴ ,,∴ ,故答案为:B.【分析】利用展开式,分别令x=1与-1,两式相加或相减可得结论.5.【答案】A【考点】二项式定理的应用【解析】【解答】∴ ,故展开式中含项的系数为.故答案为:A.【分析】把(1+x)5 按照二项式定理展开,可得展开式中含x3项的系数.6.【答案】C【考点】二项式系数的性质【解析】【解答】,系数为.故答案为:C.【分析】根据二项式展开式的通项公式,利用展开式中x4y2,即可求出对应的系数.7.【答案】B【考点】二项式系数的性质,二项式定理的应用【解析】【解答】因为,常数项为,中常数项为,故展开式中常数项为,故答案为:B.【分析】把所给的三项式变为二项式,利用二项式展开式的通项公式,求得展开式中常数项.8.【答案】B【考点】二项式系数的性质【解析】【解答】由二项展开式的性质,可得,所以,所以.展开式的通项为,令可得,常数项为,故答案为:B.【分析】通过给x 赋值1得各项系数和,据二项式系数和公式求出B,列出方程求出n,利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.9.【答案】【考点】二项式定理的应用【解析】【解答】的展开式中第三项的系数为,第五项的系数为,由题意有,解得. 的展开式的通项为,由得,所以展开式的常数项为.【分析】利用二项展开式的通项公式求出展开式中第三项与第五项的系数,列出方程求出n;利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项.10.【答案】【考点】二项式定理的应用【解析】【解答】,令,得,,的展开式的通项为,则项的系数为.【分析】先把三项式写成二项式,求得二项式展开式的通项公式,再求一次二项式的展开式的通项公式,令x的幂指数等于4,求得r、m的值,即可求得x4项的系数.11.【答案】3【考点】二项式系数的性质,二项式定理的应用【解析】【解答】由题意可得成等差数列,即,化简可得,解得n=8,或n=1(舍去).二项式的展开式的通项公式为,为整数,可得r=0,4,8,故此展开式中有理项的项数是3.【分析】利用二项展开式的通项公式求出展开式的通项,求出前三项的系数,利用等差数列得到关于n的等式,求出n的值,将n的值代入通项,令x的指数为整数,得到r的值,得到展开式中有理项的项数.12.【答案】(1)解:的展开式的通项为= ,又第6项为常数项,则当r=5时,,即=0,可得n=10.(2)解:由(1)可得,,令,可得r=2,所以含x2项的系数为(3)解:由(1)可得,,若T r+1为有理项,则,且0≤r≤10,所以r=2,5,8,则展开式中的有理项分别为,,【考点】二项式系数的性质【解析】【分析】(1)利用通项公式即可得出.(2)根据通项公式,由题意得x的指数是整数,通过取值即可得出.13.【答案】(1)解:,通项为.①二项式系数最大的项为第项,.② ,则展开式中系数最大的项为第项,(2)解:,转化为被除的余数,,即余数为【考点】二项式系数的性质,二项式定理的应用【解析】【分析】(1)根据二项式系数之和为2n=128 求得n的值,可得二项式系数最大的项为第四项和第五项,利用二项展开式的通项公式求出这2项.(2)假设第r+1项的系数最大,列出不等式组求得r的值,可得结论.14.【答案】(1)解:由题意得,解得.通项为,令,得,于是系数为(2)解:设第项系数的绝对值最大,则解得,于是只能为6,所以系数绝对值最大的项为(3)解:原式【考点】二项式系数的性质,二项式定理的应用【解析】【分析】(1)利用二项展开式的通项公式求出展开式的通项,求出展开式中第3项与第5项的系数列出方程求出n的值.(2)设出第r+1项为系数的绝对值最大的项,即可列出关于r的不等式,解得即可,(3)利用二项式定理求得结果.。

高中数学选修2-3优质课件:组合与组合数公式

高中数学选修2-3优质课件:组合与组合数公式
第十五页,编辑于星期一:点 三十六分。
解:(1)从 10 名教师中选 2 名去参加会议的选法种数为 C210= 120××19=45. (2)可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C62种选法; 第 2 类,选出的 2 名是女教师有 C42种选法. 根据分类加法计数原理,共有 C62+C42=15+6=21 种不同的 选法.
由此可得所有的组合为 ab,ac,ad,ae,bc,bd,be,cd,ce,de.
第六页,编辑于星期一:点 三十六分。
与组合数有关的计算
[例 2] (1)计算:C140-C37·A33; (2)已知C15m-C16m=107Cm7 ,求 C8m+C58-m. [解] (1)原式=C140-A73=140××39××28××17-7×6×5=210 -210=0. (2)原式=m!55!-m!-m!66!-m! =7×71-0×m7!!m!,
第十页,编辑于星期一:点 三十六分。
解:(1)原式=C38+C2100×1=83× ×72× ×61+1020××199=56+4 950 =5 006. (2)原方程可变形为CC53nn- -31+1=159,Cn5-1=154Cn3-3, 即n-1n-2n5-!3n-4n-5 =154·n-3n3-!4n-5,化简整理,得 n2-3n-54=0.解此 二次方程,得 n=9 或 n=-6(不合题意,舍去),所以 n=9 为所求.
)
A.4 或 9
B.4
C.9
D.其他
解析:当 x=3x-8 时,解得 x=4;当 28-x=3x-8
时,解得 x=9.
答案:A
第十八页,编辑于星期一:点 三十六分。
2.某班级要从 4 名男生、2 名女生中选派 4 人参加某次社区服

新人教A版高中数学(选修2-3)1.2《排列与组合》(排列)ppt课件

新人教A版高中数学(选修2-3)1.2《排列与组合》(排列)ppt课件

例2.解方程
A
3 2x
100Ax
2
解:原方程可化为2x(2x-1)(2x-2)=100x(x-1) ∵x≠0,x≠1 ∴ 2x-1=25 解得x=13 经检验x=13 是原方程的根。 例3.证明:A m
=A +mA n+1
。 。
m n
m-1 n
n! n! 证明:右边 m (n m )! (n m 1)! n ! (n m 1) n ! m (n 1)n ! (n m 1)! (n m 1)! (n 1)! Anm1 左 [(n 1) m ]!
一列,共有多少种不同的排法?
解决这个问题,需分3个步骤: 第1步,先确定左边的字母,在4个字母中任取1个,有4种方法; 第2步,确定中间的字母,从余下的3个字母中去取,有3种方法; 第3步,确定右边的字母,只能从余下的2个字母中去取,有2种方法. 根据分步计数原理,共有4×3×2=24
一般地,从n个不同元素中取出m(m≤n)个元素,按照一 定的顺序排成一列,叫做从n个不同元素中取出m个元素的一 个排列. 注意: 1.我们所研究的排列问题,是不同元素的排列,这里既没有 重复元素,也没有重复抽取相同的元素. 2.排列的定义中包含两个基本内容:一是“取出元素”;二是 “按照一定顺序排列”.“一定顺序”就是与位置有关,这也 是判断一个问题是不是排列问题的重要标志. 3.根据排列的定义,两个排列相同,当且仅当这两个排列的元 素完全相同,而且元素的排列顺序也完全相同.也就是说,如 果两个排列所含的元素不完全一样,那么就可以肯定是不同的 排列;如果两个排列所含的元素完全一样,但摆的顺序不同, 那么也是不同的排列. 4.如果m<n,这样的排列(也就是只选一部分元素作排列), 叫做选排列;如果m=n,这样的排列(也就是取出所有元素 作排列),叫做全排列.

高中数学全套讲义 选修2-3 排列 中等教师版

高中数学全套讲义 选修2-3 排列   中等教师版

目录考点一:排列 (2)题型一、排列数计算 (3)题型二、排列在实际问题中的应用 (5)课后综合巩固练习 (6)考点一:排列排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2)(1)mn n n n n m =---+,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列.n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.排列组合一些常用方法1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. 6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.实际问题的解题策略排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答. 具体的解题策略有: ①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面. ⑦对于一些排列数与组合数的问题,需要构造模型.题型一、排列数计算1.(2017春•西夏区校级月考)若12320081232008M A A A A =+++⋯+,则M 的个位数字是( )A .3B .8C .0D .5【分析】根据题意,由排列数公式计算可得111A =,222A =,336A =,4424A =,55120A =,分析可得66A ,77A ,⋯,20082008A 的个位数都是0,由此分析可得答案.【解答】解:根据题意,由排列数公式计算可得111A =,222A =,336A =,4424A =,55120A =, 66A ,77A ,⋯,20082008A 的个位数都是0,1262433+++=,则M 的个位数字是3; 故选:A .【点评】本题考查排列数公式的应用,解题时要注意总结规律.2.(2017春•临朐县期中)已知自然数x 满足322121326x x x A A A +++-=,则(x )A .3B .5C .4D .6【分析】利用排列数公式构造关于x 的方程,由此能求出结果.【解答】解:自然数x 满足322121326x x x A A A +++-=,3(1)(1)2(2)(1)6(1)x x x x x x x ∴+--++=+,整理,得:231140x x --=,故选:C .【点评】本题考查实数值的求法,二查排列数公式的应用,考查推理论证能力、运算求解能力,考查化归与转化思想,考查创新意识、应用意识 3.(2017春•西夏区校级月考)解下列各式中的n 值.(1)2490n n A A =;(2)4424242n n n n n A A A ----=.【分析】(1)利用排列数公式得到90(1)(1)(2)(3)n n n n n n -=---,由此能求出n . (4)!42(4)!n -=能求出n .【解答】解:(1)2490nn A A =, 90(1)(1)(2)(3)n n n n n n ∴-=---, 25840n n ∴--=, (12)(7)0n n ∴-+=,解得12n =或7n =-(舍). 12n ∴=.(2)4424242n n n n n A A A ----=,(4)!42(4)!n -=(1)42n n ∴-=,2420n n ∴--=,解得7n =或6n =-(舍), 7n ∴=.【点评】本题考查方程的解法,考查排列数公式、组合数公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.题型二、排列在实际问题中的应用1.(2019春•广东期末)用数字0,1,2,3,4组成没有重复数字且大于3000的四位数,这样的四位数有()A.250个B.249个C.48个D.24个【分析】由排列组合及简单的计数问题得:用数字0,1,2,3,4组成没有重复数字且大于3000的四位数,这样的四位数有242448+=个,得解.【解答】解:①当千位数字为3时,由数字0,1,2,3,4组成没有重复数字的四位数有3 424A=个,②当千位数字为4时,由数字0,1,2,3,4组成没有重复数字的四位数有3424A=个,综合①②得:用数字0,1,2,3,4组成没有重复数字且大于3000的四位数,这样的四位数有242448+=个,故选:C.【点评】本题考查了排列组合及简单的计数问题.2.(2019春•南山区期末)某班某天上午有五节课,需安排的科目有语文,数学,英语,物理,化学,其中语文和英语必须连续安排,数学和物理不得连续安排,则不同的排课方法数为()A.60B.48C.36D.24【分析】由排列组合中的相邻问题与不相邻问题得:不同的排课方法数为22222324A A A=,得解.【解答】解:先将语文和英语捆绑在一起,作为一个新元素处理,再将此新元素与化学全排,再在3个空中选2个空将数学和物理插入即可,即不同的排课方法数为22222324A A A=,故选:D.【点评】本题考查了排列组合中的相邻问题与不相邻问题.3.(2019春•丽水期末)某班上午有五节课,计划安排语文、数学、英语、物理、化学各一节,要求语文与化学相邻,且数学不排第一节,则不同排法的种数为()A.24B.36C.42D.48【分析】由排列组合中的捆绑问题得:不同排法的种数为24232423481236A A A A-=-=,得解.【解答】解:先将语文与化学捆绑在一起,作为一个元素,再将四个元素全排,再减去数学排第一节的排法即可即不同排法的种数为24232423481236A A A A-=-=,故选:B.【点评】本题考查了排列组合中的捆绑问题.课后综合巩固练习1.(2019春•白山期末)六位同学站成一排照相,若要求同学甲站在同学乙的左边,则不同的站法有()A.180 种B.240 种C.360 种D.720 种【分析】根据题意,首先计算6人并排站成一排的情况数目,进而分析可得,甲站在乙的左边与甲站在乙的右边的数目是相等的,计算可得答案.【解答】解:根据题意,6人并排站成一排,有66A种情况,而其中甲站在乙的左边与甲站在乙的右边是等可能的,则其情况数目是相等的,故选:C.【点评】本题考查排列、组合的应用,关键在于明确甲站在乙的左边与甲站在乙的右边是等可能的即其数目是相等的.2.(2019•怀化三模)北京APEC峰会期间,有2位女性和3位男性共5位领导人站成一排照相,则女性领导人甲不在两端,3位男性领导人中有且只有2位相邻的站法有() A.12种B.24种C.48种D.96种【分析】将3名男性排成一排,形成了2个空,不包含两端,将其中的女性甲插入到里面,此时形成了4个空,再将另1名女性插入即可,问题得以解决.【解答】解:将3名男性排成一排,形成了2个空,不包含两端,将其中的女性甲插入到里面,此时形成了4个空,再将另1名女性插入即可,故有31132448A A A=种,故选:C.【点评】本题考查的是排列问题,把排列问题包含在实际问题中,属于中档题.3.(2019•岳麓区校级模拟)本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种B.144种C.288种D.360种【分析】将数学与物理插入到语文、英语、化学、生物,且化学排在生物前面,此时形成了4个空(不包含最后的一个空)即可求出.【解答】解:先排语文、英语、化学、生物,且化学排在生物前面,此时形成了4个空(不包含最后的一个空),再将数学与物理插入到其中两个空中,42 44144A=种,故选:B.【点评】本题考查分类计数原理,特殊元素优先安排的原则,分类不重不漏4.(2019春•浉河区校级月考)某小学开家长会,会场第一排有连在一起的8个座位,有4位同学和她们的妈妈共8人坐在第一排的这8个座位上,则每位同学和她们的妈妈坐一起的不同排法种数为()A.378B.384C.396D.412【分析】由排列组合中的相邻问题得:先将4位同学和她们的妈妈分别捆绑在一起,作为一个新元素处理,再将4个新元素全排即可得解.【解答】解:由排列组合中的相邻问题得:每位同学和她们的妈妈坐一起的不同排法种数为2222422224384A A A A A=,故选:B.【点评】本题考查了排列组合中的相邻问题,通常用捆绑法5.(2019春•连云港期末)计算123452!3!4!5!6!++++=.解:n【点评】本题考查排列数公式的性质,考查数学转化思想方法6.(2017春•让胡路区校级期中)设*a N ∈,28a <,则等式35(28)(29)(35)maa a a A ---⋯-=中m = .【分析】利用排列数计算公式即可得出.【解答】解:等式35(28)(29)(35)m a a a a A ---⋯-=,*a N ∈,28a <,∴83535m a a A A --=.8m ∴=.故答案为:8.【点评】本题考查了排列数计算公式,考查了推理能力与计算能力。

高中数学选修2-3说课稿 组合说课稿

高中数学选修2-3说课稿 组合说课稿

一、教材分析1、教材的地位和作用(1)本节课主要学习组合概念,组合数,组合数公式;(2)它是在学习排列的基础进行学习的,同时又为概率的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(3)它是历年高考的热点、难点问题重点:理解组合的意义难点:掌握组合数的计算公式重难点突破:在学生已有知识的基础上,通过小组合作探究的办法来实现重难点突破。

二、教学目标知识目标:(1)理解组合的意义(2)掌握组合数的计算公式能力目标:培养学生类比分析的能力,由特殊到一般的思想方法。

情感目标:培养学生辩证唯物主义观点和勇于探索的精神和善于合作的意识三、教法学法分析1、教法分析新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。

本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、反馈式评价法2、学法分析学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。

在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

四、教学过程1、以旧引新,导入新知通过复习上一节排列的相关知识及课前问题发现他们的区别与联系引入组合的定义2、创设问题,探索新知学生阅读课本,并小组讨论完成导学案中的相应问题可分为两个阶段:第一阶段是通过解决问题发现他们的共同特征,抽象概括出组合的定义,在解决问题的过程中,仍然使用加法,乘法计数原理和枚举法计算组合数;第二阶段引入组合数符号,利用排列与组合的关系及乘法计数原理,探索计算组合数的一般方法,得出组合数公式。

进而利用组合数公式计算组合的种数。

这样安排为了突出的意义和组合数公式的原理,使学生更多地体验组合的过程及排列与组合的关系,掌握处理组合问题的一般方法。

3、例题讲解,学以致用例1主要让学生熟练计算组合数,并配套完成课后练习1变式题目较有难度,是组合数公式的应用。

教师加以讲解。

例2理解组合的意义后运用它解决简单应用问题例3涉及到组合与计数原理的综合应用,教师帮助学生加以分析4、巩固练习,学生自测学生完成导学案上练习题及课堂检测。

北师大版高中数学选修2-3课件:1.3 组合(共62张PPT)

北师大版高中数学选修2-3课件:1.3 组合(共62张PPT)

考点类析
考点一 组合数性质的应用 10
考点类析
[答案] (1)B (2)D
考点类析
考点类析
考点类析
考点类析
考点二 简单的组合应用题 [导入] 从17人中任选11人参加一项活动,这是 组合 问题,其方法有
种.
考点类析
例2 如果一名足球教练要从 17名队员中任选1名守门员和 10名队员参加一场足球比赛, 那么这名足球教练有多少种 不同的安排方案?
解:选正、副组长时要考虑顺序,所以是排列 问题,排列数是 A29=72,所以正、副组长的选 法有 72 种.选代表参加会议不用考虑顺序问题, 所以是组合问题,组合数是 C29=36,所以选代 表参加会议,不同的选法有 36 种.
备课素材
2.利用公式法计算和证明
m+1 [例 2] 求证:Cmn =n-m·Cmn +1.
新课导入
[导入二]问题导入 在日常生活中,我们经常遇到下面一些问题,这些问题有什么共同特征? 它们与排列问题有什么不同吗? 问题一:从a,b,c,d这四个元素中任意取出两个,共有多少种取法? 问题二:某次团代会,要从候选人a,b,c,d,e这5人中选出3人担任代 表,有多少种选法?
预习探究
知识点一 组合及其特点
备课素材
1.细解组合的定义 (1)组合要求n个元素是不同的,被取的m个元素也是不同的,即从n个不同 元素中进行m次不放回地抽取; (2)抽取的m个元素不讲究顺序,也就是说元素没有位置要求,无序性是组 合的本质.根据组合的定义,只要两个组合中的元素相同,不管元素的顺 序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是 不同的组合,这一点与两个集合相等有类似之处.
【拓展】若从4名男生和5名
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录考点一:组合 (2)题型一、组合数计算 (3)题型二、组合在实际问题中的应用 (5)课后综合巩固练习 (6)考点一:组合组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n表示.组合数公式:(1)(2)(1)!C !!()!mnn n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)排列组合一些常用方法特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.实际问题的解题策略排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答. 具体的解题策略有: ①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面. ⑦对于一些排列数与组合数的问题,需要构造模型.题型一、组合数计算1.(2019春•安徽期末)若0k m n ,且m ,n ,k N ∈,则0(mn m kn k n k C C --==∑ )A .2m n+B .2mnm CC .2n mn C D .2m m n C【分析】运用组合数的阶乘可得:n m k m kn k n n m C C C C --=,再由二项式系数的性质,可得所求和. !)!!()!n k n k -!)!!()!m k m k -则010()2mn m k m m m mn k n n m m m n k C C C C C C C --==++⋯+=∑, 故选:D .【点评】本题考查组合数公式的运用和二项式系数的性质,考查转化思想和运算能力,属于中档题.2.(2019春•淮安期末)已知3888x x C C -=,则实数x 的值为【分析】根据m n mn n C C -=求解即可.【解答】解:依题意,38x x =-或者(38)8x x +-=,且8388x N x x ∈⎧⎪⎨⎪-⎩,解得:4x =. 故答案为:4.【点评】本题考查了组合数公式的性质,属于基础题.3.(2019春•高邮市期中)若212626x x C C -=,则x =【分析】由212626x x C C -=,再根据组合的互补性质可得26(21)2626x x C C --=,即可解得x 的值.【解答】解:由212626x x C C -=,可得:21x x =-,解得:1x =,又根据组合的互补性质可得26(21)2626x x C C --=,可得:26(21)x x =--,解得:9x =.故答案为:1或9.【点评】本题主要考查了组合及组合数公式的应用,掌握组合数的性质和组合数公式是解题的关键,属于基础题.4.(2017春•青山区校级月考)计算:0121334516C C C C +++⋯+= .(用数字作答)【分析】 原式12333333334333334567151667151666715161410=+++++⋯++=+++++⋯++=+++⋯++,利用111r r r nnn ++++=即可得出.【解答】解:原式0123333345671516=+++++⋯++33336715161410=+++++⋯++433336671516=+++⋯++4333771516=++⋯++431616=+417=2380=.故答案为:2380.【点评】本题考查了组合数的计算公式及其性质,考查了推理能力与计算能力,属于中档题.5.(2017春•东安区校级期中)222223411C C C C +++⋯= . 【分析】利用111r r r nnn ++++=即可得出.【解答】解:原式322233411=+++⋯+3224411=++⋯+321111=+312220==.故答案为:220.【点评】本题考查了组合数的性质及其计算公式,考查了推理能力与计算能力,属于中档题.题型二、组合在实际问题中的应用1.(2019春•湖州期末)若90件产品中有5件次品,现从中任取3件产品,则至少有一件是次品的取法种数是( )A .12585C C B .12589C C C .339085C C - D .329085C C -【分析】根据题意,用间接法分析:先计算从90件产品中任取3件的取法,再排除其中全部为正品的取法,分析可得答案. 【解答】解:根据题意,用间接法分析:从90件产品中任取3件,有390C 种取法,其中没有次品,即全部为正品的取法有385C 种取法,则至少有一件是次品的取法有339085C C -种;故选:C .【点评】本题考查排列、组合的应用,注意用间接法分析,避免分类讨论,属于基础题. 2.(2019春•静宁县校级月考)某中学从4名男生和4名女生中推荐4人参加社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( ) A .68种B .70种C .240种D .280种【分析】先求出所有的选择4人的种数,再排除全是男生和全是女生的种数,即可求出.【解答】解:选出的4人中既有男生又有女生,则有4484270268C C -=-=, 故选:A .【点评】本题考查了简单的排列组合问题,属于基础题.3.(2019春•城关区校级月考)从5名男生和4名女生中选出4人参加比赛,如果4人中须既有男生又有女生,选法有( )种 A .21B .120C .60D .91【分析】由排列组合及简单的计数问题,分类讨论4人中男生属即可得解. 【解答】解:分类讨论4人中男生属即可,即4人中须既有男生又有女生,选法有132231545454120C C C C C C ++=种, 故选:B .【点评】本题考查了排列组合及简单的计数问题,4.(2019春•黄冈期末)只用1,2,3,4四个数字组成一个五位数,规定这四个数字必须同时使用,且同一数字不能相邻出现,这样的五位数有( ) A .96B .144C .240D .288【分析】由排列组合中的不相邻问题插空法可得:这样的五位数有132434144C A C =个,得解.【解答】解:由已知有这四个数字必须同时使用,且同一数字不能相邻出现,这样的五位数有132434144C A C =个, 故选:B .【点评】本题考查了排列组合中的不相邻问题,属中档题.课后综合巩固练习1.(2019春•乐山期末)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是( ) A .18B .24C .30D .36【分析】根据题意,分2种情况讨论:①,选出的3人为2男1女,②,选出的3人为1男2女,由加法原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①,选出的3人为2男1女,有214318C C =种选法; ②,选出的3人为1男2女,有124312C C =种选法; 则男女生都有的选法有181230+=种; 故选:C .【点评】本题考查排列、组合的应用,涉及分类计数原理2.(2019春•天津期末)四大名著是中国文学史上的经典作品,是世界宝贵的文化遗产.在某学校举行的“文学名著阅读月”活动中,甲、乙、丙、丁、戊五名同学相约去学校图书室借阅四大名著《红楼梦》、《三国演义》、《水浒传》、《西游记》(每种名著至少有5本),若每人只借阅一本名著,则不同的借阅方案种数为( ) A .54B .45C .45CD .45A【分析】根据题意,分析可得甲、乙、丙、丁、戊每人有4种解法,由分步计数原理计算可得答案.【解答】解:根据题意,甲、乙、丙、丁、戊五名同学借阅4种图书, 每人有4种解法,则五个人有5444444⨯⨯⨯⨯=种借阅方案, 故选:A .【点评】本题考查分步计数原理的应用,属于基础题.3.(2019春•西城区期末)某班级要从4名男生、2名女生中选派4人参加某次社区服务,要求必须有女生,那么不同的选派方案种数为( ) A .14B .24C .28D .48【分析】根据题意,由排除法分析:先计算从4名男生、2名女生中选派4人的选法,再排除其中没有女生即全部为男生的选法,分析可得答案.【解答】解:根据题意,从4名男生、2名女生中选派4人,有4615C =种选法,其中没有女生即全部为男生的选法有441C =种选法, 则必须有女生的选法有15114-=种; 故选:A .【点评】本题考查排列、组合的应用,注意排除法分析,避免分类讨论.4.(2019春•龙岩期末)将3名教师,5名学生分成3个小组,分别安排到甲、乙、丙三地参加社会实践活动,每地至少去1名教师和1名学生,则不同的安排方法总数为( )A .1800B .1440C .300D .900【分析】由排列组合中的平均分组问题可得:不同的安排方法总数为3333)900A A =【解答】解:将3名教师,5名学生分成3个小组,每组至少1名教师和1名学生,33)150A =种不同的分法,再将分成3个小组安排到甲、乙、丙三地参加社会实践活动,共336A =种不同的分法, 则不同的安排方法总数为1506900⨯=, 故选:D .【点评】本题考查了平均分组问题、排列组合及简单的计数问题,属中档题.5.(2019春•许昌期末)高二年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,去哪个工厂可以自由选择,但甲工厂必须有班级要去,则不同的分配方案有( ) A .48种B .37种C .18种D .16种【分析】满足题意的不同的分配方案有以下三类:①三个班中只有一个班去甲工厂;②三个班中只有两个班去甲工厂;③三个班都去甲工厂.利用排列与组合及分步乘法原理即可得出. 【解答】解:满足题意的不同的分配方案有以下三类:①三个班中只有一个班去甲工厂有123327C ⨯=种方案;②三个班中只有两个班去甲工厂有2339C ⨯=种方案; ③三个班都去甲工厂有1种方案.综上可知:共有279137++=种不同方案. 故选:B .【点评】熟练掌握排列与组合的计算公式、分步乘法原理是解题的关键.6.(2019春•广陵区校级月考)已知212310889xx x x C C C C ---=++,则x = . 【分析】由组合数的性质11mm m nn n C -++=,mn m nn-=;得到关于n 的方程解得即可.【解答】解:212310889x x x x C C C C ---=++,∴1231099xx x C C C --=+,。

相关文档
最新文档