浙教版七年级下册数学知识点总结及例题

合集下载

2023年浙教版七年级数学下册各章知识点汇总

2023年浙教版七年级数学下册各章知识点汇总

新浙教版七年级下册数学各章知识点第一章:平行线与相交线一、知识构造⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎨⎨⎪⎪⎩⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎪⎪⎪⎩⎪⎩同位角相等,两直线平行直线平行的判定内错角相等,两直线平行同旁内角相等,两直线平行两直线平行,同位角相等平行线直线平行的性质两直线平行,内错角相等平行线与相交线两直线平行,同旁内角互补作一条线段等于已知线段尺规作图作一个角等于已知角相交线:补角、余角、对顶角二、要点诠释1.两条直线旳位置关系(1)在同一平面内,两条直线旳位置关系只有两种:相交与平行。

(2)平行线:在同一平面内,不相交旳两条直线交平行线。

2.几种特殊关系旳角(1)余角和补角:①定义:假如两个角旳和是直角,称这两个角互为余角;假如两个角旳和是平角,称这两个角互为补角。

②性质:同角或等角旳余角相等,同角或等角旳补角相等。

(2)对顶角:①定义:两条直线相交所得有公共顶点、没有公共边旳两个角②性质:对顶角相等。

(3)同位角、内错角、同旁内角两条直线分别与第三条直线相交,构成八个角。

①在两条直线同一侧并且在第三条直线旳旁边旳两个角叫同位角。

②在两条直线之间并且在第三条直线旳两旁旳两个角叫做内错角。

③在两条直线之间并且在第三条直线旳同旁旳两个角叫做同旁内角。

三、重要内容(1)平行线旳鉴定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角相等,两直线平行;平行于同一直线旳两条直线平行;垂直于同一条直线旳两直线平行。

(2)平行线旳性质两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;通过直线外一点有且只有一条直线与已知直线平行。

第二章:二元一次方程组2.1二元一次方程具有两个未知数,且具有未知数旳项旳次数都是一次旳方程叫做二元一次方程。

使二元一次方程两边旳值相等旳一对未知数旳值,叫做二元一次方程旳一种解。

2.2二元一次方程组由两个二元一次方程构成,并且具有两个未知数旳方程组,叫做二元一次方程组。

浙教版七年级下册数学知识点总结及例题

浙教版七年级下册数学知识点总结及例题

浙教版七年级下册数学知识点总结及例题第1章平行线1.在同一平面内,两条直线的位置关系只有两种:相交与平行.2.平行线的定义:在同一平面内......,不相交的两条直线叫做平行线.“平行”用符号“∥”表示.思考:定义中为什么要有“在同一平面内”这个条件?3.平行线的基本事实:经过直线外...一点,有且只有一条直线与这条直线平行.思考:为什么要经过“直线外”一点?4.用三角尺和直尺画平行线的方法:一贴,二靠,三推,四画.(注意:作图题要写结论)5.★★★★★同位角、内错角、同旁内角判断过程:①画出给定的两个角的边(共三条边),公共边就是截线,剩下两条边就是被截线;②根据同位角、内错角、同旁内角的概念判断.同位角:在截线的同旁,被截线的同一侧.内错角:在截线的异侧,被截线之间.同旁内角:在截线的同旁,被截线之间.练习:如图,∠1和∠2是一对___________;∠2和∠3是一对___________;∠1和∠5是一对___________;∠1和∠3是一对___________;∠1和∠4是一对___________;∠4和∠5是一对___________;6.★★★★★平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)平行线的定义:在同一平面内......,不相交的两条直线平行;(5)平行于同一条直线的两条直线平行;(不必在同一平面内)(6)在同一平面内......,垂直于同一条直线的两条直线互相平行.练习:如图,要得到AB∥CD,那么可添加条件______________________________.(写出全部)7.★★★★★平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.练习:如图,已知∠1=58°,∠3=42°,∠4=138°,则∠2=________°.8.★★★★★图形的平移(1)概念:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.(2)性质:平移不改变图形的形状、大小和方向;一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.(3)描述一个图形的平移时,必须指出平移的方向..!..和距离练习:如图,已知△ABC和其平移后的△DEF.①点A的对应点是________,点B的对应点是________;②线段AC的对应线段是________;线段AB的对应线段是________;③平移的方向是__________,平移的距离是______________________.④若AC=AB=5,BC=4,平移的距离是3,则CF=________,DB=________,AE=________,四边形AEFC的周长是_________.9.★★★折叠问题方法:(1)找到折叠后和折叠前的图形,若折叠前的图形没有画出,自己必须补画上去;(2)找到折叠前后能重合的角,它们的度数相等;(3)利用平行线的性质、对顶角的性质、三角形的内角和、邻补角的性质、平角等计算出角度.练习:(1)如图,将一张纸条ABCD沿EF折叠,若折叠角∠FEC=64°,则∠1=________.(2)如图,有一条直的宽纸带,按图折叠,则∠α=_______.(3)如图,将一条两边沿互相平行的纸带折叠,①写出图中所有与∠6相等的角;②若∠6=x°,请用含x的代数式表示∠4的度数.第2章二元一次方程组1.★★★二元一次方程的概念三个条件:(1)含有两个未知数;(2)未知数的项的次数是一次;(3)都是整式.练习:方程①x -1 y+2=0,②xy =-2,③x 2-5x =5,④2x =1-3y 中,为二元一次方程的是____________.2.★★★★把二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式(1)用含x 的代数式表示y ,则应变形为“y =…”的形式;(2)用含y 的代数式表示x ,则应变形为“x =…”的形式.练习:(1)已知方程2x -3y =7,用关于x 的代数式表示y 得_______________.(2)已知方程3x +2y =6,用关于y 的代数式表示x 得_______________.3.★二元一次方程的整数解方程3x +2y =21的正整数解是_________________________.4.二元一次方程组的概念三个条件:(1)两个一次方程;(2)两个方程共有两个未知数;(3)都是整式.5.★★★★★解二元一次方程组基本思路:消元消元方法:(1)代入消元;(2)加减消元.(注意:一定要把解代入原方程组检验,保证正确)练习:(1)⎩⎪⎨⎪⎧x -2y =23x +2y =10 (2)⎩⎪⎨⎪⎧y =3x 3x +y =126.★★★★常考题型练习:(1)已知代数式kx +b ,当x =2时值为-1,当x =3时值为-3,则a +b =_________.(2)若方程组⎩⎪⎨⎪⎧ax -2y =12x +by =5的解是⎩⎪⎨⎪⎧x =1y =a ,则b =________.(3)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =k x +2y =-1的解互为相反数,则k 的值是_______.(4)请你写出一个以⎩⎪⎨⎪⎧x =3y =-1为解的二元一次方程组:_______________. (5)已知方程组⎩⎪⎨⎪⎧2x +y =5x +3y =5,则x +y 的值为___________.7.某公司有甲、乙两个工程队.(1)两队共同完成一项工程,乙队先单独做1天后,再由两队合做2天完成了全部工程.已知甲队单独完成此项工程所需的天数是乙队单独完成所需的天数的三分之二,则甲、乙两队单独完成各需多少天?(2)甲工程队工作5天和乙工程队工作1天的费用和为34000元;甲工程队工作3天和乙工程队工作2天的费用和为26000元,则两队每天工作的费用各多少元?(3)该公司现承接一项(1)中2倍的工程由两队去做,且甲、乙两队不在同一天内合做,又必须各自做整数天,试问甲、乙两队各需做多少天?若按(2)中的付费,你认为哪种方式付费最少?8.某企业承接了一批礼盒的制作业务,该企业进行了前期的试生产,如图 1 所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图 2 所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该企业原计划用若干天加工纸箱 300 个,后来由于提升工作效率,实际加工时每天加工速度为原计划的 1.5 倍,这样提前 3 天超额完成了任务,且总共比原计划多加工 15 个,问原计划每天加工礼盒多少个;(2)若该企业购进正方形纸板 550 张,长方形纸板 1200 张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(3)该企业某一天使用的材料清单上显示,这天一共使用正方形纸板 100 张,长方形纸板a 张,全部加工成上述两种纸盒,且 150<a<168,试求在这一天加工两种纸盒时a 的所有可能值.(请直接写出结果)第3章整式的乘除1.★★★★★公式与法则(1)同底数幂的乘法:底数不变,指数相加.a m·a n=a m+n(m,n都是正整数)(2)幂的乘方:底数不变,指数相乘.(a m) n=a mn(m,n都是正整数)(3)积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab) n=a n b n(n都是正整数)(4)乘法公式:①平方差公式:(a+b)(a-b)=a2-b2②完全平方公式:(a+b)2=a2+b2+2ab(a-b)2=a2+b2-2ab(5)同底数幂的除法:底数不变,指数相减.a m÷a n=a m-n(a≠0)(6)a0=1(a≠0)(7)a-p=1a p(a≠0),当a是整数时,先指数变正,再倒数.当a是分数时,先把底数变倒数,再指数变正.(8)单项式乘单项式:系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式.(9)单项式乘多项式:用单项式去乘多项式的每一项,再把所得的积相加.m(a+b)=ma+mb(10)多项式乘多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. (a+n)(b+m)=ab+am+nb+nm(11)单项式除以单项式:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(12)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.(a+b+c)÷m=a÷m+b÷m+c÷m(m≠0)练习:(1)(2a2)3=___________;3y·(-2x2y3)=___________;(9x3-3x)÷(3x)=___________;(-2)0=___________;(-3)-3=___________;(-23)-2=___________;(2a-1)2=_______________;(a3)2•a-2a3• a4=______________;(1-2a)2-(2-a)(1+a)=_______________;(x-2)(x+2)-(1-2x)2=_________________.2.★★★★★用科学记数法表示较小的数:a×10-n(1≤|a|<10)方法:第一个不为零的数前面有几个零就是负几次方.练习:(1)科学记数法表示0.0000103=_________________.(2)1纳米=0.000000001米,则0.33纳米=________米.(用科学计数法表示)(3)把用科学记数法表示的数7.2×10-4写成小数形式为___________________.3.★★★★常考题型(1)已知a+b=3,ab=-1,则a2+b2=___________.(2)若多项式x2-(x-a)(x+2b)+4的值与x的取值大小无关,那么a,b一定满足_____________.(3)关于x的代数式(3-ax)(x2+2x-1)的展开式中不含x2项,则a=___________.(4)若代数式x2+3x+2可以表示为(x-1)2+a(x-1)+b的形式,则a+b的值是.(5)若(x-m)(2x+3)=2x2-nx+3,则m-n=__________.(6)若(2x-5y)2=(2x+5y)2+M,则代数式M应是__________________.(7)如图,一块砖的外侧面积为a,那么图中残留部分的墙面的面积为_______________.(8)如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为a米,则绿化的面积为________________m2.(9)定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2k(其中k是使n2k为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是_________.第4章因式分解1.★★★★因式分解的概念:把一个多项式...化成几个整式的积....的形式,叫做因式分解,也叫分解因式.因式分解和整式乘法是互逆关系.练习:下列从左到右边的变形,是因式分解的是()A.(3-x)(3+x)=9-x2 B.(y+1)(y-3)=-(3-y)(y+1)C.4yz-2y2z+z=2y(2z-yz)+z D.-8x2+8x-2=-2(2x-1)22.★★★★★因式分解的方法(1)提公因式法:先确定应提取的公因式,然后用公因式去除这个多项式,所得的商作为另一个因式,最后把多项式写成这两个因式的积的形式.ma+mb+mc=m(a+b+c)确定公因式的方法:系数的最大公因数和相同字母的最低次幂.即:(□)2-(△)2=(□+△)(□-△)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2即:(□)2±2(□)(△)+(△)2=(□±△)2练习:(1)下列多项式能用完全平方公式分解因式的是()A.x2-4 B.x2+2x+4 C.4x2+4x+1 D.x2+y2(2)下列多项式能用平方差公式分解因式的是()A.x2+4 B.x2+2x+1 C.x2-4x D.-x2+9(3)因式分解:①a3-9a=_____________________. ②x-xy2=_____________________.③x2-8x+16=_________________. ④3ax2-6axy+3ay2=________________.⑤a3-4a(a-1)=_________________.⑥(x-2y)2-x+2y=________________.3.★★★★完全平方式:我们把多项式a2+2ab+b2和a2-2ab+b2叫做完全平方式.即:(□)2±2(□)(△)+(△)2练习:(1)若x2+(2p-3)x+9是完全平方式,则p的值等于=____________.(2)多项式9x2-x+1加上一个单项式后成为一个整式的平方,请写出3个满足条件的单项式:_____________________________.4.十字相乘法:十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。

浙教版七年级数学下册知识点汇总

浙教版七年级数学下册知识点汇总

浙教版七年级数学下册知识点汇总七年级(下册)1.平行线1.1.平行线在同一个平面内,不相交的两条直线叫做平行线。

“平行”用符号“//”表示。

经过直线外一点,有且只有一条直线与这条直线平行。

1.2.同位角、内错角、同旁内角如图所示:同位角:∠1和∠5内错角:∠3和∠5同旁内角:∠4和∠51.3.平行线的判定两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

(同位角相等,两直线平行) 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

(内错角相等,两直线平行) 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

(同旁内角互补,两直线平行) 在同一平面内,垂直于同一条直线的两条直线互相平行。

1.4.平行线的性质两条直线被第三条直线所截,同位角相等。

(两直线平行,同位角相等)两条直线被第三条直线所截,内错角相等。

(两直线平行,内错角相等)两条直线被第三条直线所截,同旁内角互补。

(两直线平行,同旁内角互补)1.5.图形的平移图形平移的定义:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相同的距离,这样的图形运动叫做图形的平移。

图形平移的性质:(1)图形平移不改变图形的形状和大小。

(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。

图形平移的描述:要描述一个平移,必须先指出平移的方向和距离。

平移的方向和距离是决定平移的因素。

平移图形的画法:(1)找出原图形的关键点(如顶点或者端点)(2)按平移的方向和距离分别描出各个关键点平移后的对应点(3)按原图将各对应点顺次连接2.二元一次方程组2.1.二元一次方程像0.6x + 0.8y = 3.8这样,含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解。

2.2.二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。

浙教版七下数学知识点(整理)

浙教版七下数学知识点(整理)

浙教版七下数学知识点(整理)第一章三角形的初步认识1。

1认识三角形①由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

“三角形”用符号“△”表示,顶点是ABC的三角形记做“△ABC”读作“三角形ABC”。

由两点之间线段最短,可以得到如下性质:三角形任何两边的和大于第三边。

②三角形三个内角的和等于180°。

由三角形一条边的延长线和另一条相邻的边组成的角,叫做该三角形的外角。

三角形的一个外角等于和它不相邻两个内角的和.1。

2三角形的平分线和中线在三角形中,一个内角的角平分线与它对边相交,这个角的顶点与交点之间的线段叫做三角形的三角形的平分线。

在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。

1。

3三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。

锐角三角形的三条高在三角形的内部,垂足在相应顶点的对边上.直角三角形的直角边上的高分别与另一条直角边重合,垂足都是直角的顶点。

而在钝角三角形中,夹钝角两边上的高都在三角形的外部,它们的垂足都在相应顶点的对边的延长线上。

1。

4全等三角形能够重合的两个图形称为全等图形。

能够重合的两个三角形称为全等三角形。

两个全等三角形重合时,能互相重合的顶点叫做全等三角形的对应顶点,互相重合的边叫做全等三角形的对应边,互相重合的角叫做全等三角形的对应角。

“全等”可用符号“≌"来表示。

全等三角形的性质:全等三角形对应边相等,对应角相等.1.5三角形全等的条件①三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)。

当三角形三边长确定是,三角形的形状、大小完全被确定,这个性质叫做三角形的稳定性,这是三角形特有的性质。

②有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS”)。

垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。

线段垂直平分线上的点到线段两端点的距离相等.③有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角"或“ASA”)。

浙教版七年级数学下册知识点汇总-精品

浙教版七年级数学下册知识点汇总-精品

浙教版七年级数学下册知识点汇总七年级(下册)1.平行线1.1.平行线在同一个平面内,不相交的两条直线叫做平行线。

“平行”用符号“//”表示。

经过直线外一点,有且只有一条直线与这条直线平行。

如图所示:同位角:∠1和∠5内错角:∠3和∠5同旁内角:∠4和∠51.3.平行线的判定两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

(同位角相等,两直线平行)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

(内错角相等,两直线平行)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

(同旁内角互补,两直线平行)在同一平面内,垂直于同一条直线的两条直线互相平行。

1.4.平行线的性质两条直线被第三条直线所截,同位角相等。

(两直线平行,同位角相等)两条直线被第三条直线所截,内错角相等。

(两直线平行,内错角相等)两条直线被第三条直线所截,同旁内角互补。

(两直线平行,同旁内角互补)1.5.图形的平移图形平移的定义:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相同的距离,这样的图形运动叫做图形的平移。

图形平移的性质:(1)图形平移不改变图形的形状和大小。

(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。

图形平移的描述:要描述一个平移,必须先指出平移的方向和距离。

平移的方向和距离是决定平移的因素。

平移图形的画法:(1)找出原图形的关键点(如顶点或者端点)(2)按平移的方向和距离分别描出各个关键点平移后的对应点(3)按原图将各对应点顺次连接2.二元一次方程组2.1.二元一次方程像0.6x + 0.8y = 3.8这样,含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解。

2.2.二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。

71 浙教版七年级数学下册各章知识点汇总

71 浙教版七年级数学下册各章知识点汇总

新浙教版七年级下册数学各章知识点第一章:平行线与相交线一、知识结构⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎨⎨⎪⎪⎩⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎪⎪⎪⎩⎪⎩同位角相等,两直线平行直线平行的判定内错角相等,两直线平行同旁内角相等,两直线平行两直线平行,同位角相等平行线直线平行的性质两直线平行,内错角相等平行线与相交线两直线平行,同旁内角互补作一条线段等于已知线段尺规作图作一个角等于已知角相交线:补角、余角、对顶角二、要点诠释1.两条直线的位置关系(1)在同一平面内,两条直线的位置关系只有两种:相交与平行。

(2)平行线:在同一平面内,不相交的两条直线交平行线。

2.几种特殊关系的角(1)余角与补角:①定义:如果两个角的与就是直角,称这两个角互为余角;如果两个角的与就是平角,称这两个角互为补角。

②性质:同角或等角的余角相等,同角或等角的补角相等。

(2)对顶角:①定义:两条直线相交所得有公共顶点、没有公共边的两个角②性质:对顶角相等。

(3)同位角、内错角、同旁内角两条直线分别与第三条直线相交,构成八个角。

①在两条直线同一侧并且在第三条直线的旁边的两个角叫同位角。

②在两条直线之间并且在第三条直线的两旁的两个角叫做内错角。

③在两条直线之间并且在第三条直线的同旁的两个角叫做同旁内角。

三、主要内容(1)平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角相等,两直线平行;平行于同一直线的两条直线平行;垂直于同一条直线的两直线平行。

(2)平行线的性质两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;经过直线外一点有且只有一条直线与已知直线平行。

第二章:二元一次方程组2、1二元一次方程含有两个未知数,且含有未知数的项的次数都就是一次的方程叫做二元一次方程。

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

2、2二元一次方程组由两个二元一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。

7-1.浙教版七年级数学下册各章知识点汇总

7-1.浙教版七年级数学下册各章知识点汇总

新浙教版七年级下册数学各章知识点第一章:平行线与订交线一、知识构造同位角相等,两直线平行直线平行的判断内错角相等,两直线平行同旁内角相等,两直线平行两直线平行,同位角相等平行线与订交线平行线直线平行的性质两直线平行,内错角相等两直线平行,同旁内角互补尺规作图作一条线段等于已知线段作一个角等于已知角订交线:补角、余角、对顶角二、重点解说1. 两条直线的地点关系(1)在同一平面内,两条直线的地点关系只有两种:订交与平行。

(2)平行线:在同一平面内,不订交的两条直线交平行线。

2. 几种特别关系的角(1)余角和补角:①定义:假如两个角的和是直角,称这两个角互为余角;假如两个角的和是平角,称这两个角互为补角。

②性质:同角或等角的余角相等,同角或等角的补角相等。

(2)对顶角:①定义:两条直线订交所得有公共极点、没有公共边的两个角②性质:对顶角相等。

(3)同位角、内错角、同旁内角两条直线分别与第三条直线订交,构成八个角。

①在两条直线同一侧而且在第三条直线的旁边的两个角叫同位角。

②在两条直线之间而且在第三条直线的两旁的两个角叫做内错角。

③在两条直线之间而且在第三条直线的同旁的两个角叫做同旁内角。

三、主要内容(1)平行线的判断:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角相等,两直线平行;平行于同向来线的两条直线平行;垂直于同一条直线的两直线平行。

(2)平行线的性质两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;经过直线外一点有且只有一条直线与已知直线平行。

第二章:二元一次方程组2.1 二元一次方程含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

2.2 二元一次方程组由两个二元一次方程构成,而且含有两个未知数的方程组,叫做二元一次方程组。

同时知足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解。

浙教版七年级下册数学 专题10 矩形的性质与判定(知识点串讲)(解析版)

浙教版七年级下册数学 专题10 矩形的性质与判定(知识点串讲)(解析版)

专题10 矩形的性质与判定知识网络重难突破知识点一矩形的性质1.矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形2.性质:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).【典例1】(2019春•西湖区期末)如图,将一长方形纸片ABCD沿着EF折叠,已知AF∥BE,DF∥CE,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.(1)判断∠CGH与∠DFE是否相等,并说明理由;(2)①判断GH是否平分∠AGE,并说明理由;②若∠DF A=52°,求∠HGE的度数.【点拨】(1)由四边形ABCD是矩形,得到AD∥BC,得到CG∥DF根据平行线的性质得到∠AGC=∠AFD,∠AGH=∠AFE,于是得到∠CGH=∠DFE;(2)①根据平行线的性质得到和角平分线的定义即可得到结论;②由折叠的性质得到∠EFG=∠1,根据平行线的性质和平角的定义即可得到结论.【解析】解:(1)∠CGH=∠DFE,理由:∵四边形ABCD是矩形,∴AD∥BC,∴CG∥DF,∵GH∥EF,∴∠AGC=∠AFD,∠AGH=∠AFE,∵∠CGH=∠AGC+∠AGH,∠DFE=∠DF A+∠AFE,∴∠CGH=∠DFE;(2)①GH平分∠AGE;理由如下:∵GH∥EF,∴∠AGH=∠AFE,∠HGE=∠GEF,∵CE∥DF,∴∠1=∠GEF,∴∠AGH=∠EGH,∴GH平分∠AGE;②∵将一长方形纸片ABCD沿着EF折叠,∴∠EFG=∠1,∵∠DFG=52°,∴∠EFG=64°,∵GH∥EF,∴∠AGH=∠AFE=64°,∵∠EGF=∠DFG=52°,∴∠HGE=64°.【点睛】本题考查了矩形的性质,平行线的性质,折叠的性质,正确的识别图形是解题的关键.【变式训练】1.(2020•宁波模拟)矩形ABCD中,AB=6,BC=8,则点A到BD的距离是()A.4B.4.6C.4.8D.5【点拨】先根据矩形的性质和勾股定理求出BD=10,再根据△ABD的面积的不同计算方法即可得出答案.【解析】解:设点A到BD的距离为h,在矩形ABCD中,∴AB=6,BC=AD=8,∴由勾股定理可知:BD=10,∴h•BD=AD•AB,∴h==4.8,故选:C.【点睛】本题考查矩形的性质,解题的关键是熟练运用勾股定理以及矩形的性质,本题属于基础题型.2.(2019春•嘉兴期末)矩形不一定具有的性质是()A.对边相等B.对角相等C.邻边相等D.对角线相等【点拨】利用矩形的性质对每个选项进行判断后即可确定正确的选项.【解析】解:A、矩形的对边相等,正确;B、矩形的对角相等,正确;C、矩形的邻边不一定相等,错误;D、矩形的对角线相等,正确,故选:C.【点睛】考查了矩形的性质,了解矩形的所有性质是解答本题的关键,难度不大.3.(2019春•温州期末)如图,矩形ABCD的对角线交于点O.若∠BAO=55°,则∠AOD等于()A.110°B.115°C.120°D.125°【点拨】根据矩形的性质可得∠BAO=∠ABO=55°,再依据三角形外角性质可知∠AOD=∠BAO+∠ABO=55°+55°=110°.【解析】解:∵四边形ABCD是矩形,∴OA=OB.∴∠BAO=∠ABO=55°.∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故选:A.【点睛】本题主要考查了矩形的性质,矩形中对角线互相平分且分成的四条线段都相等.4.(2019春•东阳市期末)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB、CD于E、F,连接PB、PD.若AE=2,PF=5.则图中阴影部分的面积为10.【点拨】由矩形的性质可证明S△PEB=S△PFD,即可求解.【解析】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×5=5,∴S阴=5+5=10,故答案为10【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.知识点二矩形的判定矩形的判定:1.有一个角是直角的平行四边形是矩形;2.有三个角是直角的四边形是矩形;3.对角线相等的平行四边形是矩形.【典例2】(2018春•杭州期末)已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A 作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.【点拨】(1)根据平行四边形的判定定理得出即可;(2)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.【解析】(1)证明:∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形;(2)解:当AB=AC时,四边形ADCF为矩形,理由是:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠F AE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,,∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC.∵AB=AC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形,即当AB=AC时,四边形ADCF为矩形.【点睛】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用,熟记特殊平行四边形的判定方法是解题的关键【变式训练】1.(2019春•温岭市期末)下列给出的条件中不能判定一个四边形是矩形的是()A.一组对边平行且相等,一个角是直角B.对角线互相平分且相等C.有三个角是直角D.一组对边平行,另一组对边相等,且对角线相等【点拨】利用矩形的判定方法即可对各选项进行判断,得到符合题意的选项.【解析】解:A、正确.一组对边平行且相等,一个角是直角的四边形是矩形;B、正确.对角线互相平分且相等的四边形是矩形;C、正确.有三个角是直角的四边形是矩形;D、错误.一组对边平行,另一组对边相等,且对角线相等,等腰梯形满足此条件,不是矩形;故选:D.【点睛】此题考查了矩形的判定,矩形的判定方法有:有一个角是直角的平行四边形是矩形;三个角都是直角的四边形是矩形;对角线相等的平行四边形是矩形,熟练掌握矩形的判定方法是解本题的关键.2.四边形ABCD的对角线AC,BD,下面给出的三个条件中,选取两个,能使四边形ABCD是矩形,①AC,BD互相平分;②AC⊥BD;③AC=BD,则正确的选法是()A.①②B.①③C.②③D.以上都可以【点拨】根据对角线相等的平行四边形是矩形进行判断即可.【解析】解:当具备①③两个条件,能得到四边形ABCD是矩形.理由如下:∵对角线AC、BD互相平分,∴四边形ABCD为平行四边形.又∵AC=BD,∴四边形ABCD为矩形.故选:B.【点睛】本题主要考查的是矩形的判定,掌握矩形的判定定理是解题的关键.3.(2020•资兴市一模)如图,AC∥DB,且AC=2DB,E是AC的中点.(1)求证:四边形BDEC是平行四边形;(2)连接AD、BE,直接写出△ABC添加一个什么条件使四边形DBEA是矩形?(不需说明理由)【点拨】(1)证出DB=EC,即可得出结论;(2)先证四边形DBEA是平行四边形,再证AB=DE,即可得出结论.【解析】(1)证明:∵E是AC中点,∴AC=2EC.∵AC=2DB,∴DB=EC.又∵DB∥EC,∴四边形DBCE是平行四边形.(2)解:添加AB=BC,理由如下:连接AD、BE,如图,∵DB∥AE,DB=AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴四边形DBEA是矩形.【点睛】本题考查了矩形的判定、平行四边形的判定与性质等知识;熟练掌握矩形的判定和平行四边形的判定是解题的关键.4.(2020•徐汇区二模)已知:如图,在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,BE=DG,BF=DH.(1)求证:四边形EFGH是平行四边形;(2)当AB=BC,且BE=BF时,求证:四边形EFGH是矩形.【点拨】(1)利用全等三角形的性质可得EF=HG,EH=FG,可得结论;(2)由等腰三角形的性质可得∠BEF=∠BFE=,∠AEH=∠AHE=,可求∠FEH=90°,可得结论.【解析】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D,∠A=∠C,∵BE=DG,BF=DH,且∠B=∠D,∴△BEF≌△DGH(SAS),∴EF=HG,同理可得EH=FG,∴四边形EFGH是平行四边形;(2)∵AB=BC,BE=BF∴AB=BC=CD=AD,BE=BF=DH=DG,∴AE=AH,∵AD∥BC,∴∠B+∠A=180°,∵BE=BF,AE=AH,∴∠BEF=∠BFE=,∠AEH=∠AHE=,∴∠AEH+∠BEF=90°,∴∠FEH=90°,∴平行四边形EFGH是矩形.【点睛】本题考查了矩形的判定,平行四边形的判定和性质,全等三角形的判定和性质,灵活运用这些性质进行推理证明是本题的关键.知识点三矩形的性质与判定综合【典例3】(2020•温州模拟)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,BE⊥AC于点E,CF⊥BD于点F,BE=CF.(1)求证:平行四边形ABCD是矩形.(2)若OD=13,CF=12,求BF的长.【点拨】(1)根据垂直的定义得到∠BEO=∠CFO,根据全等三角形的性质得到OB=OC,根据平行四边形的性质得到=OC,OB=OD,求得AC=BD,于是得到结论;(2)根据矩形的性质和勾股定理即可得到结论.【解析】(1)证明:∵BE⊥AC于点E,CF⊥BD于点F,∴∠BEO=∠CFO=90°,∵∠BOE=∠COF,BE=CF,∴△BOE≌△COF(AAS),∴OB=OC,∵四边形BCD是平行四边形,∴OA=OC,OB=OD,∴AO=OB=OC=OD,∴AC=BD,∴平行四边形ABCD是矩形;(2)解:∵OD=13,∴OB=OC=OD=13,∵CF=12,∴OF===5,∴BF=OB+OF=18.【点睛】本题考查了矩形的判定和性质,平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.【变式训练】1.(2020•北京一模)如图,平行四边形ABCD中,点E,F分别在边BC,AD上,BE=DF,∠AEC=90°.(1)求证:四边形AECF是矩形;(2)连接BF,若AB=4,∠ABC=60°,BF平分∠ABC,求AD的长.【点拨】(1)根据平行四边形的下载得到BC=AD,BC∥AD,求得ECAF,根据矩形的判定定理即可得到结论;(2)解直角三角形得到BE=2,AE=,根据矩形的性质得到FC⊥BC,FC=AE=.由角平分线的定义得到∠FBC=∠ABC=30°,根据直角三角形的性质即可得到结论.【解析】(1)证明:∵四边形ABCD是平行四边形,∴BC=AD,BC∥AD,又∵BE=DF,∴BC﹣BE=AD﹣DF,即EC=AF,∴EC=AF,∴四边形AECF为平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)解:在Rt△ABE中,∠AEB=90°,∠ABE=60°,AB=4,∴BE=2,AE=,∵四边形AECF是矩形,∴FC⊥BC,FC=AE=.∵BF平分∠ABC,∴∠FBC=∠ABC=30°,在Rt△BCF中,∠FCB=90°,∠FBC=30°,FC=,∴BC=6,∴AD=BC=6.【点睛】本题考查了矩形的判定和性质,平行四边形的判定和性质,解直角三角形,熟练掌握矩形的判定和性质定理是解题的关键.2.(2020•萧山区一模)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【点拨】(1)证出∠BAD=∠BCD,得出四边形ABCD是平行四边形,得出OA=OC,OB=OD,证出AC=BD,即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【解析】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:作OF⊥BC于F,如图所示.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点睛】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.3.(2019春•香坊区校级期中)四边形ABCD是平行四边形,∠A=∠B.(1)求证:平行四边形ABCD是矩形;(2)若BC=AB,求∠ACB的度数;(3)在(2)的条件下,点E,F分别在AB,AD上,且CE=CF,∠ECF=30°,AC=4,求2AE﹣FD 的值.【点拨】(1)如图1中,根据平行四边形的性质得到AD∥BC,求得∠A=∠B=90°,于是得到四边形ABCD是矩形;(2)如图2中,根据三角函数的定义即可得到结论;(3)如图3中,作FH⊥AC于H,根据全等三角形的性质得到BE=FH,根据直角三角形的性质得到AE+AF=AE+FH=AE+BE=AB,求得AB=AC=2,于是得到结论.【解析】(1)证明:如图1中,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴四边形ABCD是矩形;(2)解:如图2中,在Rt△ACB中,tan∠ACB==,∴∠ACB=30°;(3)解:如图3中,作FH⊥AC于H.∵∠ACB=∠ECF=30°,∴∠BCE=∠FCH,∵CE=CF,∠B=∠FHC=90°,∴△BCE≌△HCF,∴BE=FH,在Rt△AFH中,∵∠F AH=30°,∴FH=AF,∴AE+AF=AE+FH=AE+BE=AB,在Rt△ACB中,∵∠ACB=30°,∴AB=AC=2,∴AE+AF=2,∴2AE+AF=4,∴AF=4﹣2AE,∴DF=AD﹣AF=2﹣(4﹣2AE),∴2AE﹣FD=4﹣2.【点睛】本题考查平行四边形的性质、矩形的判定和性质、直角三角形30度角的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.巩固训练1.(2019春•海曙区期末)如图,在矩形ABCD中,AC与BD交于点O,E是CD的中点,已知AB=5,OE=6,则AC的长为()A.10B.11C.12D.13【点拨】首先利用三角形的中位线定理求得BC的长,然后利用勾股定理求得AC的长即可.【解析】解:∵四边形ABCD为矩形,∴O为BD的中点,∵E为CD的中点,∴OE为△ABC的中位线,∵OE=6,∴BC=2OE=12,∵AB=5,∴AC==13,故选:D.【点睛】考查了矩形的性质,了解矩形的性质是解答本题的关键,难度不大.2.(2018秋•江东区校级月考)已知在四边形ABCD中,∠ABC=90°,再补充一个条件使得ABCD为矩形,这个条件可以是()A.AC=BD B.AB=BCC.AC与BD互相平分D.AC⊥BD【点拨】由矩形的判定可求解.【解析】解:∵有一个直角的平行四边形是矩形,∴只要四边形ABCD是平行四边形,即可判定四边形ABCD是矩形,∴添加AC与BD互相平分故选:C.【点睛】本题考查了矩形的判定,熟练掌握矩形的判定是本题的关键.3.(2019春•柘城县期末)如图,在矩形ABCD中,对角线AC与BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数等于75°.【点拨】由矩形ABCD,得到OA=OB,根据AE平分∠BAD,得到等边三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度数,根据平行线的性质和等角对等边得到OB=BE,根据三角形的内角和定理即可求出答案.【解析】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°﹣15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°﹣60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=(180°﹣30°)=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.4.(2019秋•朝阳区校级期末)如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC 上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.【点拨】由勾股定理求出BC的长,再证明四边形DMAN是矩形,可得MN=AD,根据垂线段最短和三角形面积即可解决问题.【解析】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020春•鄂州期中)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;【点拨】(1)利用平行线的性质得:∠OEC=∠ECB,根据角平分线的定义可知:∠ACE=∠ECB,由等量代换和等角对等边得:OE=OC,同理:OC=OF,可得结论;(2)先根据对角线互相平分证明四边形AECF是平行四边形,再由角平分线可得:∠ECF=90°,利用有一个角是直角的平行四边形可得结论;【解析】解:(1)OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠ECB,∵CE平分∠ACB,∴∠ACE=∠ECB,∴∠OEC=∠ACE,∴OE=OC,同理可得:OC=OF,∴OE=OF;(2)当O为AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,OE=OF(已证),∴四边形AECF是平行四边形,∵EC平分∠ACB,CF平分∠ACG,∴∠ACE=∠ACB,∠ACF=∠ACG,∴∠ACE+∠ACF=(∠ACB+∠ACG)=×180°=90°,即∠ECF=90°,∴四边形AECF是矩形.【点睛】本题主要考查了平行四边形的判定、矩形的判定以及正方形的判定、平行线的性质、角平分线的定义,熟练掌握并区分平行四边形、矩形、正方形的判定是解题关键.6.(2019春•西湖区校级月考)如图,在平行四边形ABCD中,点M,N是AD边上的点,BM,CN交于点O,AN=DM,BM=CN.(1)求证:平行四边形ABCD是矩形.(2)若∠BOC=90°,MN=1,AM•MD=12,求矩形ABCD的面积.【点拨】(1)先由平行四边形的性质得出∠A+∠D=180°,再证明△ABM≌△DCN得出∠A=∠D,证出∠A=∠D=90°,即可得出结论;(2)证明△ABM是等腰直角三角形,得出AB=AM,求出AM=4,MD=3,得出AB=AM=4,AD=AM+MD=7,即可得出结果.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,AD∥BC,∴∠A+∠D=180°,∵AN=DM,∴AM=DN,在△ABM和△DCN中,,∴△ABM≌△DCN(SSS),∴∠A=∠D,∵∠A+∠D=180°,∴∠A=∠D=90°,∴平行四边形ABCD是矩形.(2)解:∴△ABM≌△DCN,∴∠AMB=∠DNC,∵AD∥BC,∴∠AMB=∠OBC,∠DNC=∠OCB,∴∠OBC=∠OCB,∵∠BOC=90°,∴△OBC是等腰直角三角形,∴AMB=∠OBC=45°,∴△ABM是等腰直角三角形,∴AB=AM,∵AM•MD=12,AN=DM,∴AM(AM﹣1)=12,解得:AM=4,或AM=﹣3(舍去),∴AB=AM=4,MD=3,∴AD=AM+MD=7,∴矩形ABCD的面积=AD×AB=7×4=28.【点睛】本题考查了矩形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握矩形的判定与性质,证明三角形全等是解题的关键.7.(2019•福田区一模)如图,在平行四边形ABCD中,AC⊥AD,延长DA于点E,使得DA=AE,连接BE.(1)求证:四边形AEBC是矩形;(2)过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若AB=6,∠CAB=30°,求△OGC的面积.【点拨】(1)根据平行四边形的性质得到AD∥BC,AD=BC,推出四边形AEBC是平行四边形,求得∠CAE=90°,于是得到四边形AEBC是矩形;(2)根据三角形的内角和得到∠AGF=60°,∠EAF=60°,推出△AOE是等边三角形,得到AE=EO,求得∠GOF=∠GAF=30°,根据直角三角形的性质得到OG=2,根据三角形的面积公式即可得到结论.【解析】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DA=AE,∴AE=BC,AE∥BC,∴四边形AEBC是平行四边形,∵AC⊥AD,∴∠DAC=90°,∴∠CAE=90°,∴四边形AEBC是矩形;(2)∵EG⊥AB,∴∠AFG=90°,∵∠CAB=30°,∴∠AGF=60°,∠EAF=60°,∵四边形AEBC是矩形,∴OA=OC=OB=OE,∴△AOE是等边三角形,∴AE=EO,∴AF=OF,∴AG=OG,∴∠GOF=∠GAF=30°,∴∠CGO=60°,∴∠COG=90°,∵OC=OA=AB=3,∴OG=,∴△OGC的面积=×3×=.【点睛】本题考查了矩形的判定和性质,平行四边形的性质,等边三角形的性质,直角三角形的性质,正确的识别图形是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版七年级下册数学知识点总结及例题第1章平行线1.在同一平面内,两条直线的位置关系只有两种:相交与平行.2.平行线的定义:在同一平面内......,不相交的两条直线叫做平行线.“平行”用符号“∥”表示.思考:定义中为什么要有“在同一平面内”这个条件?3.平行线的基本事实:经过直线外...一点,有且只有一条直线与这条直线平行.思考:为什么要经过“直线外”一点?4.用三角尺与直尺画平行线的方法:一贴,二靠,三推,四画.(注意:作图题要写结论)5.★★★★★同位角、内错角、同旁内角判断过程:①画出给定的两个角的边(共三条边),公共边就就是截线,剩下两条边就就是被截线;②根据同位角、内错角、同旁内角的概念判断.同位角:在截线的同旁,被截线的同一侧.内错角:在截线的异侧,被截线之间.同旁内角:在截线的同旁,被截线之间.练习:如图,∠1与∠2就是一对___________;∠2与∠3就是一对___________;∠1与∠5就是一对___________;∠1与∠3就是一对___________;∠1与∠4就是一对___________;∠4与∠5就是一对___________;6.★★★★★平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)平行线的定义:在同一平面内......,不相交的两条直线平行;(5)平行于同一条直线的两条直线平行;(不必在同一平面内)(6)在同一平面内......,垂直于同一条直线的两条直线互相平行.练习:如图,要得到AB∥CD,那么可添加条件______________________________.(写出全部) 7.★★★★★平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.练习:如图,已知∠1=58°,∠3=42°,∠4=138°,则∠2=________°、8.★★★★★图形的平移(1)概念:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.(2)性质:平移不改变图形的形状、大小与方向;一个图形与它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.(3)描述一个图形的平移时,必须指出平移的方向..!..与距离练习:如图,已知△ABC与其平移后的△DEF.①点A的对应点就是________,点B的对应点就是________;②线段AC的对应线段就是________;线段AB的对应线段就是________;③平移的方向就是__________,平移的距离就是______________________.④若AC=AB=5,BC=4,平移的距离就是3,则CF=________,DB=________,AE=________,四边形AEFC的周长就是_________.9.★★★折叠问题方法:(1)找到折叠后与折叠前的图形,若折叠前的图形没有画出,自己必须补画上去;(2)找到折叠前后能重合的角,它们的度数相等;(3)利用平行线的性质、对顶角的性质、三角形的内角与、邻补角的性质、平角等计算出角度.练习:(1)如图,将一张纸条ABCD沿EF折叠,若折叠角∠FEC=64°,则∠1=________.(2)如图,有一条直的宽纸带,按图折叠,则∠α=_______.(3)如图,将一条两边沿互相平行的纸带折叠,①写出图中所有与∠6相等的角;②若∠6=x°,请用含x的代数式表示∠4的度数.第2章二元一次方程组1.★★★二元一次方程的概念三个条件:(1)含有两个未知数;(2)未知数的项的次数就是一次;(3)都就是整式.练习:方程①x -1 y+2=0,②xy =-2,③x 2-5x =5,④2x =1-3y 中,为二元一次方程的就是____________.2.★★★★把二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式(1)用含x 的代数式表示y ,则应变形为“y =…”的形式;(2)用含y 的代数式表示x ,则应变形为“x =…”的形式.练习:(1)已知方程2x -3y =7,用关于x 的代数式表示y 得_______________、(2)已知方程3x +2y =6,用关于y 的代数式表示x 得_______________、3.★二元一次方程的整数解方程3x +2y =21的正整数解就是_________________________.4.二元一次方程组的概念三个条件:(1)两个一次方程;(2)两个方程共有两个未知数;(3)都就是整式.5.★★★★★解二元一次方程组基本思路:消元消元方法:(1)代入消元;(2)加减消元.(注意:一定要把解代入原方程组检验,保证正确)练习:(1)⎩⎪⎨⎪⎧x -2y =23x +2y =10 (2)⎩⎪⎨⎪⎧y =3x 3x +y =126.★★★★常考题型练习:(1)已知代数式kx +b ,当x =2时值为-1,当x =3时值为-3,则a +b =_________.(2)若方程组⎩⎪⎨⎪⎧ax -2y =12x +by =5的解就是⎩⎪⎨⎪⎧x =1y =a ,则b =________.(3)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =k x +2y =-1的解互为相反数,则k 的值就是_______.(4)请您写出一个以⎩⎪⎨⎪⎧x =3y =-1为解的二元一次方程组:_______________、 (5)已知方程组⎩⎪⎨⎪⎧2x +y =5x +3y =5,则x +y 的值为___________.7.某公司有甲、乙两个工程队.(1)两队共同完成一项工程,乙队先单独做1天后,再由两队合做2天完成了全部工程.已知甲队单独完成此项工程所需的天数就是乙队单独完成所需的天数的三分之二,则甲、乙两队单独完成各需多少天?(2)甲工程队工作5天与乙工程队工作1天的费用与为34000元;甲工程队工作3天与乙工程队工作2天的费用与为26000元,则两队每天工作的费用各多少元?(3)该公司现承接一项(1)中2倍的工程由两队去做,且甲、乙两队不在同一天内合做,又必须各自做整数天,试问甲、乙两队各需做多少天?若按(2)中的付费,您认为哪种方式付费最少?8.某企业承接了一批礼盒的制作业务,该企业进行了前期的试生产,如图 1 所示的长方形与正方形纸板(长方形的宽与正方形的边长相等)加工成如图 2 所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该企业原计划用若干天加工纸箱 300 个,后来由于提升工作效率,实际加工时每天加工速度为原计划的 1、5 倍,这样提前 3 天超额完成了任务,且总共比原计划多加工 15 个,问原计划每天加工礼盒多少个;(2)若该企业购进正方形纸板 550 张,长方形纸板 1200 张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(3)该企业某一天使用的材料清单上显示,这天一共使用正方形纸板 100 张,长方形纸板a张,全部加工成上述两种纸盒,且 150<a<168,试求在这一天加工两种纸盒时 a 的所有可能值.(请直接写出结果)第3章整式的乘除1.★★★★★公式与法则(1)同底数幂的乘法:底数不变,指数相加.a m·a n=a m+n(m,n都就是正整数)(2)幂的乘方:底数不变,指数相乘.(a m) n=a mn(m,n都就是正整数)(3)积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n都就是正整数)(4)乘法公式:①平方差公式:(a+b)(a-b)=a2-b2②完全平方公式:(a+b)2=a2+b2+2ab(a-b)2=a2+b2-2ab(5)同底数幂的除法:底数不变,指数相减.a m÷a n=a m-n(a≠0)(6)a0=1(a≠0)(7)a-p= 1ap(a≠0),当a就是整数时,先指数变正,再倒数.当a就是分数时,先把底数变倒数,再指数变正.(8)单项式乘单项式:系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式.(9)单项式乘多项式:用单项式去乘多项式的每一项,再把所得的积相加.m(a+b)=ma+mb(10)多项式乘多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. (a+n)(b+m)=ab+am+nb+nm(11)单项式除以单项式:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(12)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.(a+b+c)÷m=a÷m+b÷m+c÷m(m≠0)练习:(1)(2a2)3=___________;3y·(-2x2y3)=___________;(9x3-3x)÷(3x)=___________;(-2)0=___________;(-3)-3=___________;(- 23)-2=___________;(2a-1)2=_______________;(a3)2•a-2a3• a4=______________;(1-2a)2-(2-a)(1+a)=_______________;(x-2)(x+2)-(1-2x)2=_________________.2.★★★★★用科学记数法表示较小的数:a×10-n(1≤|a|<10)方法:第一个不为零的数前面有几个零就就是负几次方.练习:(1)科学记数法表示0、0000103=_________________.(2)1纳米=0、000000001米,则0、33纳米=________米.(用科学计数法表示)(3)把用科学记数法表示的数7、2×10-4写成小数形式为___________________.3.★★★★常考题型(1)已知a+b=3,ab=-1,则a2+b2=___________.(2)若多项式x2-(x-a)(x+2b)+4的值与x的取值大小无关,那么a,b一定满足_____________.(3)关于x的代数式(3-ax)(x2+2x-1)的展开式中不含x2项,则a=___________.(4)若代数式x2+3x+2可以表示为(x-1)2+a(x-1)+b的形式,则a+b的值就是.(5)若(x-m)(2x+3)=2x2-nx+3,则m-n=__________.(6)若(2x-5y)2=(2x+5y)2+M,则代数式M应就是__________________.(7)如图,一块砖的外侧面积为a,那么图中残留部分的墙面的面积为_______________.(8)如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为a米,则绿化的面积为________________m2.(9)定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为 n2k(其中k就是使n2k为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果就是_________.第4章因式分解1.★★★★因式分解的概念:把一个多项式...化成几个整式的积....的形式,叫做因式分解,也叫分解因式.因式分解与整式乘法就是互逆关系.练习:下列从左到右边的变形,就是因式分解的就是( )A.(3-x)(3+x)=9-x2B.(y+1)(y-3)=-(3-y)(y+1)C.4yz-2y2z+z=2y(2z-yz)+zD.-8x2+8x-2=-2(2x-1)22.★★★★★因式分解的方法(1)提公因式法:先确定应提取的公因式,然后用公因式去除这个多项式,所得的商作为另一个因式,最后把多项式写成这两个因式的积的形式.ma+mb+mc=m(a+b+c)确定公因式的方法:系数的最大公因数与相同字母的最低次幂.即:(□)2-(△)2=(□+△)(□-△)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2即:(□)2±2(□)(△)+(△)2=(□±△)2练习:(1)下列多项式能用完全平方公式分解因式的就是( )A.x2-4B.x2+2x+4C.4x2+4x+1D.x2+y2(2)下列多项式能用平方差公式分解因式的就是( )A.x2+4B.x2+2x+1C.x2-4xD.-x2+9(3)因式分解:①a3-9a=_____________________、②x-xy2=_____________________.③x2-8x+16=_________________、④3ax2-6axy+3ay2=________________.⑤a3-4a(a-1)=_________________、⑥(x-2y)2-x+2y=________________.3.★★★★完全平方式:我们把多项式a2+2ab+b2与a2-2ab+b2叫做完全平方式.即:(□)2±2(□)(△)+(△)2练习:(1)若x2+(2p-3)x+9就是完全平方式,则p的值等于=____________.(2)多项式9x2-x+1加上一个单项式后成为一个整式的平方,请写出3个满足条件的单项式:_____________________________.4.十字相乘法:十字分解法的方法简单来讲就就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。

相关文档
最新文档