2017年秋季新版北师大版九年级数学上学期第2章、一元二次方程单元复习试卷18
北师大数学九年级上册《第二章一元二次方程》检测卷(含答案)

第二章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列方程是一元二次方程的是( ) A .3x 2+1x=0 B .2x -3y +1=0C .(x -3)(x -2)=x 2D .(3x -1)(3x +1)=32.一元二次方程x 2-8x -1=0配方后可变形为( )A .(x +4)2=17B .(x +4)2=15C .(x -4)2=17D .(x -4)2=153.方程(x -1)(x +3)=12化为ax 2+bx +c =0的形式后,a ,b ,c 的值分别为( ) A .1,2,-15 B .1,-2,-15 C .-1,-2,-15 D .-1,2,-154.要使代数式3x 2-6的值等于21,则x 的值是( ) A .3 B .-3 C .±3 D .± 35.方程x 2-2x +3=0的根的情况是( ) A .有两个相等的实数根 B .只有一个实数根 C .没有实数根 D .有两个不相等的实数根6.方程3x 2-2=1-4x 的两个根的和为( ) A.43 B.13 C .-23 D .-437.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n 人参加聚会,根据题意可列出方程为( )A.n (n +1)2=20 B .n (n -1)=20 C.n (n -1)2=20 D .n (n +1)=208.一个等腰三角形的两边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或99.若关于x 的方程ax 2-(3a +1)x +2(a +1)=0有两个不相等的实数根x 1,x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( )A .1B .-1C .1或-1D .210.如图,在一次函数y =-x +6的图象上取一点P ,作PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,且矩形PBOA 的面积为5,则在x 轴上方满足上述条件的点P 个数共有( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.把一元二次方程(x-3)2=4化为一般形式,其中二次项为_______,一次项系数为_______,常数项为________.12.若一元二次方程ax2-bx-2017=0有一根为x=-1,则a+b=_______.13.已知关于x的一元二次方程x2-23x-k=0有两个相等的实数根,则k的值为_____.14.已知方程x2+mx+3=0的一个根是1,则它的另一个根是_____,m的值是_______.15.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是_________.16.已知一个两位数,它的十位数字比个位数字小3,个位数字的平方恰好等于这个两位数,则这个两位数是___________.17.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,则x2+3x的值为_______.18.已知m,n是方程x2+2x-5=0的两个实数根,则m2-mn+3m+n=_________.三、解答题(共66分)19.(12分)用适当的方法解下列方程:(1)(6x-1)2=25;(2)x2-2x=2x-1;(3)x2-2x=2;(4)x(x-7)=8(7-x).20.(6分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.21.(8分)“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:因为x2-4x+6=(x_____)2+______,所以当x=_____时,代数式x2-4x+6有最_____(填“大”或“小”)值,这个最值为_______;(2)比较代数式x2-1与2x-3的大小.22.(8分)如图,在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.23.(10分)已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若x1,x2是原方程的两根,且|x1-x2|=22,求m的值.24.(10分)泰兴鑫都小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副.鑫都小商品市场为增加销售量,决定降价销售.根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(2)如果鑫都小商品市场希望通过销售这批羽毛球拍获利9200元,那么十月份的销售单价应是多少元?25.(12分)如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q 以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:(1)P ,Q 两点从开始出发多长时间时,四边形PBCQ 的面积是33 cm 2?(2)P ,Q 两点从开始出发多长时间时,点P 与点Q 之间的距离是10 cm?第二章答案1.D 2.C 3.A 4.C 5.C 6.D 7.B8.A 解析:∵x 2-7x +10=0,∴(x -2)(x -5)=0,∴x 1=2,x 2=5.若等腰三角形的三边为2,5,5,则2+5>5,满足三角形三边关系,此时周长为12;若等腰三角形的三边为2,2,5,则2+2<5,不满足三角形三边关系,舍去.故选A.9.B 解析:依题意得Δ=(3a +1)2-8a (a +1)>0,∴a 2-2a +1>0,∴(a -1)2>0,∴a ≠1.∵关于x 的方程ax 2-(3a +1)x +2(a +1)=0有两个不相等的实数根x 1,x 2,且有x 1-x 1x 2+x 2=1-a ,∴3a +1a -2(a +1)a=1-a ,解得a =±1.∴a =-1.故选B.10.C 解析:根据题意,可设点P 的坐标为(x ,-x +6).∵点P 在x 轴上方,∴y >0,即-x +6>0,x <6.∵矩形PBOA 的面积为5,∴|x |(-x +6)=5,即x (-x +6)=5或-x (-x +6)=5,解得x 1=1,x 2=5,x 3=3+14,x 4=3-14.∵3+14>6,∴符合要求的点P 共有3个.故选C.11.x 2 -6 5 12.2017 13.-3 14.3 -415.k >12且k ≠1 16.25或3617.1 解析:∵(x 2+3x )2+2(x 2+3x )-3=0,∴(x 2+3x +3)(x 2+3x -1)=0,∴x 2+3x +3=0或x 2+3x -1=0,而x 2+3x +3=0时,Δ=-3<0,∴x 2+3x =1.18.8 解析:由已知得m 2+2m -5=0,∴m 2=5-2m ,∴m 2-mn +3m +n =5-2m -mn +3m +n =m +n -mn +5.根据根与系数的关系,得m +n =-2,mn =-5,∴原式=-2-(-5)+5=8.19.解:(1)两边开平方,得6x -1=±5,即6x -1=5或6x -1=-5,∴x 1=1,x 2=-23;(3分) (2)移项,得x 2-4x =-1,配方,得x 2-4x +4=-1+4,即(x -2)2=3,两边开平方,得x -2=±3,即x -2=3或x -2=-3,∴x 1=2+3,x 2=2-3;(6分)(3)将原方程化为一般形式,得x 2-2x -2=0.∴b 2-4ac =(-2)2-4×1×(-2)=10,∴x =2±102×1,∴x 1=2+102,x 2=2-102;(9分)(4)移项,得x (x -7)+8(x -7)=0,变形,得(x -7)(x +8)=0,∴x -7=0或x +8=0,∴x 1=7,x 2=-8.(12分)20.解:设该种药品平均每次降价的百分率是x ,(1分)根据题意得200(1-x )2=98,(3分)解得x 1=1.7(不合题意,舍去),x 2=0.3=30%.(5分)答:该种药品平均每次降价的百分率是30%.(6分) 21.解:(1)-2 2 2 小 2(5分)(2)∵x 2-1-(2x -3)=x 2-2x +2=(x -1)2+1>0,∴x 2-1>2x -3.(8分)22.解:设花边的宽度为x m ,(1分)依题意得(2-2x )(1.4-2x )=1.6,(3分)解得x 1=1.5,x 2=0.2.(5分)∵2-2x >0,1.4-2x >0,∴x <0.7,∴x =0.2.(7分)答:花边的宽度为0.2m.(8分)23.(1)证明:∵Δ=(m +3)2-4(m +1)=m 2+2m +5=(m +1)2+4>0,(2分)∴无论m 取何值,原方程总有两个不相等的实数根;(4分)(2)解:∵x 1,x 2是原方程的两根,∴x 1+x 2=-(m +3),x 1x 2=m +1.(6分)∵|x 1-x 2|=22,∴(x 1-x 2)2=8,(7分)∴(x 1+x 2)2-4x 1x 2=8,(8分)∴(-m -3)2-4(m +1)=8,整理,得m 2+2m -3=0,解得m 1=1,m 2=-3.(10分)24.解:(1)100-x 200+2x 800-200-(200+2x )(3分)(2)根据题意得100×200+(100-x )(200+2x )+50[800-200-(200+2x )]-60×800=9200,(5分)解得x 1=20,x 2=-70(舍去).(8分)当x =20时,100-x =80>60,符合题意.(9分)答:十月份的销售单价应是80元.(10分)25.解:(1)设P ,Q 两点从开始出发x s 时,四边形PBCQ 的面积是33cm 2.(1分)则由题意得12×(16-3x +2x )×6=33,(2分)解得x =5.(3分)∵16÷3=163>5,∴x =5符合题意.(4分)故P ,Q 两点从开始出发5s 时,四边形PBCQ 的面积是33cm 2;(5分) (2)设P ,Q 两点从开始出发y s 时,点P 与Q 之间的距离是10cm.(6分)过点Q 作QH ⊥AB 于H ,∴∠QHA =90°.∵四边形ABCD 是矩形,∴∠A =∠D =90°,∴四边形ADQH 是矩形,∴AH =DQ =(16-2y )cm ,QH =AD =6cm ,∴当P 点在H 点上方时,PH =AH -AP =16-2y -3y =(16-5y )(cm);当P 点在H 点下方时,PH =AP -AH =3y -(16-2y )=(5y -16)(cm),∴PH =|16-5y |cm.(8分)在Rt △PQH 中,根据勾股定理得PH 2+QH 2=PQ 2,即(16-5y )2+62=102,(9分)解得y 1=1.6,y 2=4.8.(10分)∵16÷3=163,∴y 1=1.6和y 2=4.8均符合题意.(11分)故P ,Q 两点从开始出发1.6s 或4.8s 时,点P 与点Q 之间的距离是10cm.(12分)。
北师大新版-九年级(初三)数学上学期-第2章-一元二次方程-章节单元测试卷

北师大新版九年级上学期《第2章 一元二次方程》2019年单元测试卷一.选择题(共10小题)1.(2017秋•白云区期末)下列是一元二次方程的为( ) A .210x y -+=B .2230x x --=C .230x +=D .22100x y +-=2.(2015秋•游仙区校级期末)方程2(1)(1)246y y y y +-=--化为一般形式为( ) A .2450y y -+=B .2450y y --=C .2450y y +-=D .2450y y ++=3.(2018秋•江岸区校级月考)方程2410x -=的根是( ) A .12x =B .112x =,212x =- C .2x =D .12x =,22x =-4.(2016秋•鼎城区期末)把方程2650x x ++=化为2()x h k +=的形式( ) A .2(3)2x +=- B .2(3)2x +=C .2(3)4x +=D .2(3)4x +=-5.利用求根公式求21562x x +=的根时,其中5a =,则b 、c 的值分别是( ) A .1,62B .6,12C .6-,12 D .6-,12-6.(2019•红桥区二模)方程23180x x +-=的两个根为( ) A .16x =-,23x = B .13x =-,26x =C .12x =-,29x =D .19x =-,22x =7.若关于x 的一元二次方程2240bx bx ++=有两个相等的实数根,则b 的值为( ) A .0B .4C .0 或 4D .0 或4-8.若一元二次方程260x x --=的两根为1x ,2x ,则12x x +的值为( ) A .1B .1-C .0D .6-9.(2018秋•营口期末)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x ,可列方程为( ) A .2300(1)1500x += B .300(12)1500x +=C .2300(1)1500x +=D .30021500x +=10.(2009春•西湖区校级期中)一个跳水运动员从10m 高台上跳水,他每一时刻所在高度(单位:)m 与所用时间(单位:)s 的关系是:5(2)(1)h t t =--+,则运动员起跳到入水所用的时间是( ) A .5s -B .2sC .1s -D .1s二.填空题(共5小题)11.(2019秋•宝山区校级月考)方程:2320x x --=的根为 . 12.已知m 是方程210x x +-=的一个根,则2(1)(1)(1)m m m +++-= . 13.解方程222()4()120x x x x ----=,若设2y x x =-,则原方程可化为 . 14.(2017秋•吉州区期末)写一个没有实数根的一元二次方程 . 15.(2019•河东区一模)已知2(1)1x x x +=+,则x = . 三.解答题(共8小题)16.(2015秋•石林县校级月考)解方程.(1)2450x x +-=(用配方法) (2)22710x x -+=(用公式法)(3)2(2)250x +-= (4)(2)20x x x -+-=.17.(2010•佛山)教材或资料会出现这样的题目:把方程2122x x -=化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项. 现在把上面的题目改编为下面的两个小题,请解答.(1)下列式子中,有哪几个是方程2122x x -=所化的一元二次方程的一般形式?(答案只写序号) ①21202x x --=;②21202x x -++=;③224x x -=;④2240x x -++=;⑤20--=.(2)方程2122x x -=化为一元二次方程的一般形式,它的二次项系数,一次项系数,常数项之间具有什么关系?18.(2018秋•沙依巴克区期末)已知关于x 的方程2(3)(2)0x x p ---=. (1)求证:方程总有两个不相等的实数根; (2)当2p =时,求该方程的根.19.(2011秋•双峰县期末)已知:关于x 的方程222(1)30x m x m -++-=. (1)当m 为何值时,方程总有两个实数根?(2)设方程的两实根分别为1x 、2x ,当22121278x x x x +-=时,求m 的值.20.(2017秋•江都区期中)用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为230a …,所以231a +就有最小值1,即2311a +…,只有当0a =时,才能得到这个式子的最小值1.同样,因为230a -…,所以231a -+有最大值1,即2311a -+…,只有在0a =时,才能得到这个式子的最大值1.(1)当x = 时,代数式23(3)4x ++有最 (填写大或小)值为 . (2)当x = 时,代数式2243x x -++有最 (填写大或小)值为 . (3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m ,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?21.(2017秋•宝应县期中)“双11”即将到来,某网上微店准备销售一种服装,每件成本为50元.市场调查发现其日销售量y (件)是销售价x (元)的一次函数,经试销后发现,当销售价定为60元时,日销售量为800件;当销售价定为65元时,日销售量为700件. (1)试求出日销售量y (件)与销售价x (元)之间的函数关系式;(2)若该网上微店为减少库存积压利用“双11”促销这批服装,打算日获利达到12000元,问这种服装每件售价是多少元?22.(2018秋•高邮市期中)“鲜乐”水果店购进一优质水果,进价为10元/千克,售价不低于10元/千克,且不超过16元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系(1)某天这种水果的售价为14元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利100元,那么该天水果的售价为多少元?23.(2019春•西湖区校级月考)方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:①该厂一月份罐头加工量为a吨;②该厂三月份的加工量比一月份增长了44%;③该厂第一季度共加工罐头182吨;④该厂二月、三月加工量每月按相同的百分率增长;⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨.利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a的值;(3)该厂第二季度的总加工量.北师大新版九年级上学期《第2章 一元二次方程》2019年单元测试卷参考答案与试题解析一.选择题(共10小题)1.(2017秋•白云区期末)下列是一元二次方程的为( ) A .210x y -+=B .2230x x --=C .230x +=D .22100x y +-=【解答】解:A 、210x y -+=,是二元一次方程,故此选项错误;B 、2230x x --=,是一元二次方程,故此选项正确;C 、230x +=,是一元一次方程,故此选项错误;D 、22100x y +-=,是二元二次方程,故此选项错误;故选:B .2.(2015秋•游仙区校级期末)方程2(1)(1)246y y y y +-=--化为一般形式为( ) A .2450y y -+=B .2450y y --=C .2450y y +-=D .2450y y ++=【解答】解:方程整理得:2450y y --=, 故选:B .3.(2018秋•江岸区校级月考)方程2410x -=的根是( ) A .12x =B .112x =,212x =- C .2x =D .12x =,22x =-【解答】解:214x =, 12x =±.故选:B .4.(2016秋•鼎城区期末)把方程2650x x ++=化为2()x h k +=的形式( )A .2(3)2x +=- B .2(3)2x +=C .2(3)4x +=D .2(3)4x +=-【解答】解:2650x x ++=,265x x ∴+=-,26959x x ∴++=-+,即2(3)4x +=,故选:C .5.(2018春•仓山区期末)利用求根公式求21562x x +=的根时,其中5a =,则b 、c 的值分别是( ) A .1,62B .6,12C .6-,12 D .6-,12-【解答】解:215602x x -+=, 所以5a =,6b =-,12c =. 故选:C .6.(2019•红桥区二模)方程23180x x +-=的两个根为( ) A .16x =-,23x = B .13x =-,26x = C .12x =-,29x = D .19x =-,22x =【解答】解:方程分解得:(3)(6)0x x -+=, 可得30x -=或60x +=, 解得:16x =-,23x =, 故选:A .7.(2019春•庐阳区期末)若关于x 的一元二次方程2240bx bx ++=有两个相等的实数根,则b 的值为( ) A .0B .4C .0 或 4D .0 或4-【解答】解:根据题意得:△22(2)444160b b b b =-⨯⨯=-=, 解得4b =或0b =(舍去). 故选:B .8.若一元二次方程260x x --=的两根为1x ,2x ,则12x x +的值为( ) A .1B .1-C .0D .6-【解答】解:方程260x x --=的两根为1x ,2x , 121x x ∴+=,故选:A .9.(2018秋•营口期末)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x ,可列方程为( ) A .2300(1)1500x += B .300(12)1500x +=C .2300(1)1500x +=D .30021500x +=【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x ,可列方程为:2300(1)1500x +=. 故选:A .10.(2009春•西湖区校级期中)一个跳水运动员从10m 高台上跳水,他每一时刻所在高度(单位:)m 与所用时间(单位:)s 的关系是:5(2)(1)h t t =--+,则运动员起跳到入水所用的时间是( ) A .5s -B .2sC .1s -D .1s【解答】解:设运动员起跳到入水所用的时间是xs , 根据题意可知:5(2)(1)0x x --+=, 解得:11x =-(不合题意舍去),22x =, 那么运动员起跳到入水所用的时间是2s . 故选:B .二.填空题(共5小题)11.(2019秋•宝山区校级月考)方程:2320x x --=的根为 123x =-,21x = .【解答】解:2320x x --=, (32)(1)0x x +-=, 320x +=,10x -=, 123x =-,21x =,故答案为:123x =-,21x =.12.(2017秋•抚州期中)已知m 是方程210x x +-=的一个根,则2(1)(1)(1)m m m +++-= 2 . 【解答】解:m 是方程210x x +-=的一个根,21m m ∴+=,22222(1)(1)(1)211222()212m m m m m m m m m m ∴+++-=+++-=+=+=⨯=, 故答案为:2.13.解方程222()4()120x x x x ----=,若设2y x x =-,则原方程可化为24120y y --= .【解答】解:原方程可变形为:222()4()120x x x x ----=2y x x =-,∴原方程可化为:24120y y --=.14.(2017秋•吉州区期末)写一个没有实数根的一元二次方程 210y y ++= . 【解答】解:210y y ++=,只要满足240b ac -<即可. 故答案为:210y y ++=15.(2019•河东区一模)已知2(1)1x x x +=+,则x = 1-或12. 【解答】解:2(1)(1)0x x x +-+=, (1)(21)0x x +-=, 10x +=或210x -=,所以11x =-,212x =, 故答案为1-或12. 三.解答题(共8小题)16.(2015秋•石林县校级月考)解方程. (1)2450x x +-=(用配方法) (2)22710x x -+=(用公式法) (3)2(2)250x +-= (4)(2)20x x x -+-=. 【解答】解:(1)245x x +=, 2449x x ++=,2(2)9x +=, 23x +=±,所以11x =,25x =-; (2)△2(7)42141=--⨯⨯=,722x ±=⨯所以1x ,2x =; (3)(25)(25)0x x +-++=, 250x +-=或250x ++=,所以13x =,27x =-; (4)(2)(1)0x x -+=, 20x -=或10x +=,所以12x =,21x =-.17.(2010•佛山)教材或资料会出现这样的题目:把方程2122x x -=化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项. 现在把上面的题目改编为下面的两个小题,请解答.(1)下列式子中,有哪几个是方程2122x x -=所化的一元二次方程的一般形式?(答案只写序号) ①21202x x --=;②21202x x -++=;③224x x -=;④2240x x -++=;⑤20--.(2)方程2122x x -=化为一元二次方程的一般形式,它的二次项系数,一次项系数,常数项之间具有什么关系?【解答】解:(1)一元二次方程的一般形式是:20(ax bx c a ++=,b ,c 是常数且0)a ≠,因此①,②,④,⑤是方程2122x x -=所化的一元二次方程的一般形式.(2)一元二次方程的一般形式是:20(ax bx c a ++=,b ,c 是常数且0)a ≠,在一般形式中2ax 叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.若设方程2122x x -=的二次项系数为(0)a a ≠,则一次项系数为2a -,常数项为4a -,因此二次项系数:一次项系数:常数项1:(2):(4)=--. 答:这个方程的二次项系数:一次项系数:常数项1:(2):(4)=--. 18.(2018秋•沙依巴克区期末)已知关于x 的方程2(3)(2)0x x p ---=. (1)求证:方程总有两个不相等的实数根; (2)当2p =时,求该方程的根.【解答】(1)证明:方程可变形为22560x x p -+-=, △222(5)41(6)14p p =--⨯⨯-=+.20p …,2410p ∴+>,即△0>,∴这个方程总有两个不相等的实数根.(2)解:当2p =时,原方程为2520x x -+=,∴△254217=-⨯=,x ∴,1x ∴,2x =. 19.(2011秋•双峰县期末)已知:关于x 的方程222(1)30x m x m -++-=. (1)当m 为何值时,方程总有两个实数根?(2)设方程的两实根分别为1x 、2x ,当22121278x x x x +-=时,求m 的值. 【解答】解:(1)△0…时,一元二次方程总有两个实数根,△22[2(1)]41(3)8160m m m =+-⨯⨯-=+…, 2m -…,所以2m -…时,方程总有两个实数根. (2)22121278x x x x +-=,21212()378x x x x ∴+-=,12b x x a +=-,12c x x a=, 22[2(1)]31(3)78m m ∴-+-⨯⨯-=,解得5m =或13-(舍去),故m 的值是5m =.20.(2017秋•江都区期中)用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为230a …,所以231a +就有最小值1,即2311a +…,只有当0a =时,才能得到这个式子的最小值1.同样,因为230a -…,所以231a -+有最大值1,即2311a -+…,只有在0a =时,才能得到这个式子的最大值1.(1)当x = 3- 时,代数式23(3)4x ++有最 (填写大或小)值为 .(2)当x = 时,代数式2243x x -++有最 (填写大或小)值为 .(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m ,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【解答】解:(1)2(3)0x +…, ∴当3x =-时,2(3)x +的最小值为0,则当3x =-时,代数式23(3)4x ++的最大值为4;(2)代数式222432(1)5x x x -++=--+,则当1x =时,代数式2243x x -++的最大值为5;(3)设垂直于墙的一边为xm ,则平行于墙的一边为(162)x m -,∴花园的面积为222(162)2162(816)322(4)32x x x x x x x -=-+=--++=--+,则当边长为4米时,花园面积最大为232m .故答案为:(1)3-,小,4;(2)1,大,5;21.(2017秋•宝应县期中)“双11”即将到来,某网上微店准备销售一种服装,每件成本为50元.市场调查发现其日销售量y (件)是销售价x (元)的一次函数,经试销后发现,当销售价定为60元时,日销售量为800件;当销售价定为65元时,日销售量为700件.(1)试求出日销售量y (件)与销售价x (元)之间的函数关系式;(2)若该网上微店为减少库存积压利用“双11”促销这批服装,打算日获利达到12000元,问这种服装每件售价是多少元?【解答】解:(1)设y 与x 之间的函数关系式为y kx b =+,将(60,800)、(65,700)代入y kx b =+,6080065700k b k b +=⎧⎨+=⎩,解得:202000k b =-⎧⎨=⎩, y ∴与x 之间的函数关系式为202000y x =-+.(2)根据题意得:(50)(202000)12000x x --+=,整理,得:215056000x x -+=,解得:170x =,280x =.减少库存积压,70x ∴=.答:这种服装每件售价是70元.22.(2018秋•高邮市期中)“鲜乐”水果店购进一优质水果,进价为10元/千克,售价不低于10元/千克,且不超过16元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系(1)某天这种水果的售价为14元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利100元,那么该天水果的售价为多少元?【解答】解:(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,将(11,28),(12,26)代入y kx b =+,得:11281226k b k b +=⎧⎨+=⎩,解得:250k b =-⎧⎨=⎩,y ∴与x 之间的函数关系式为250y x =-+.当14x =时,2145022y =-⨯+=,∴当天该水果的销售量为22千克.(2)根据题意得:(10)(250)100x x --+=,整理得:2353000x x -+=,解得:115x =,220x =.又1016x 剟,15x ∴=.答:该天水果的售价为15元/千克.23.(2019春•西湖区校级月考)方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:①该厂一月份罐头加工量为a 吨;②该厂三月份的加工量比一月份增长了44%;③该厂第一季度共加工罐头182吨;④该厂二月、三月加工量每月按相同的百分率增长;⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨. 利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a 的值;(3)该厂第二季度的总加工量.【解答】解:(1)设该厂第一季度加工量的月平均增长率为x ,由题意得:2(1)(144%)a x a +=+2(1) 1.44x ∴+=10.220%x ∴==,2 2.2x =-(舍)答:该厂第一季度加工量的月平均增长率为20%.(2)由题意得:2(1)(1)182a a x a x ++++=将20%x =代入得:2(120%)(120%)182a a a ++++=解得50a =答:该厂一月份的加工量a 的值为50.(3)由题意可知,三月份加工量为:250(120%)72+= 六月份加工量为:50 2.1105⨯=(吨)五月份加工量为:10546.6858.32-=(吨)设四、五两个月的加工量下降的百分率为y ,由题意得: 272(1)58.32y -=解得:10.110%y ==,2 1.9y =(舍)∴四、五两个月的加工量下降的百分率为10% 72(110%)58.32105228.12∴⨯-++=(吨)答:该厂第二季度的总加工量为228.12吨.。
北师大版九年级数学上册单元测试卷:第二章 《一元二次方程》(含答案)

单元测试卷:第二章《一元二次方程》时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,692.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是()A.k≥5 B.k≥5且k≠1 C.k≤5且k≠1 D.k≤53.下列方程中,是关于x的一元二次方程的是()A.+x=3 B.x2+2x﹣3=0C.4x+3=x D.x2+x+1=x2﹣2x4.已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3 B.﹣3 C.D.﹣5.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75006.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020 B.﹣2020 C.2019 D.﹣20197.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根8.若x 1x 2=2,+=,则以x 1,x 2为根的一元二次方程是( )A .x 2+3x ﹣2=0B .x 2﹣3x +2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=0 9.若关于x 的一元二次方程x 2+2x +c =0有实数根,则c 的取值可能为( )A .4B .3C .2D .110.设a 、b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2018B .2018C .2020D .2022二.填空题(每题4分,共20分)11.已知一元二次方程x 2+2x +m =0的一个根是﹣1,则m 的值为 .12.若关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,则一次函数y =mx +m 的图象不经过第 象限.13.已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 . 14.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜 场.15.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= .三.解答题(每题10分,共50分)16.解下列方程.(1)x 2+2x ﹣35=0(2)4x (2x ﹣1)=1﹣2x17.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?20.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.参考答案一.选择题1.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.2.解:①当该方程是关于x的一元一次方程时,k﹣1=0即k=1,此时x=﹣,符合题意;②当该方程是关于x的一元二次方程时,k﹣1≠0即k≠1,此时△=16﹣4(k﹣1)≥0.解得k≤5;综上所述,k的取值范围是k≤5.故选:D.3.解:A、因为方程是分式方程,不是整式方程,所以方程不是一元二次方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;D、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;故选:B.4.解:根据题意得m+n=3,mn=﹣1,所以=.故选:B.5.解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.6.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a 2﹣1=a ,﹣a 2+a =﹣1,∴﹣a 3+2a +2020=﹣a (a 2﹣1)+a +2020=﹣a 2+a +2020=2019.故选:C .7.解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =3,解出其中一个根是x =﹣1,∴(﹣1)2﹣3+c =0,解得:c =2,故原方程中c =4,则b 2﹣4ac =9﹣4×1×4=﹣7<0,则原方程的根的情况是不存在实数根.故选:A .8.解:∵+=,∴x 1+x 2=x 1x 2,∵x 1x 2=2,∴x 1+x 2=3,∴以x 1,x 2为根的一元二次方程是x 2﹣3x +2=0.故选:B .9.解:根据题意得△=22﹣4c ≥0,解得c ≤1.故选:D .10.解:∵a 、b 是方程x 2+x ﹣2020=0的两个实数根,∴a +b =﹣1,ab =﹣2020,则原式=ab ﹣a ﹣b +1=ab ﹣(a +b )+1=﹣2020+1+1=﹣2018.故选:A .二.填空题(共5小题)11.解:把x =﹣1代入方程得1﹣2+m =0,解得m =1,故答案为1.12.解:∵关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,∴m ≠0且△=(﹣2)2﹣4m (﹣1)<0,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.13.解:设2x2+3=t,且t≥3,∴原方程化为:t2+2t﹣15=0,∴t=3或t=﹣5(舍去),∴2x2+3=3,故答案为:314.解:设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,依题意,得:x(x+1)=66,整理,得:x2+x﹣132=0,解得:x1=11,x2=﹣12(不合题意,舍去).故答案为:11.15.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.三.解答题(共5小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,12(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100﹣2(x﹣50)]件,依题意,得:(x﹣40)[100﹣2(x﹣50)]=1350,整理,得:x2﹣140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.18.解:(1)设BC=xm,则AB=(33﹣3x)m,依题意,得:x(33﹣3x)=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.19.(1)证明:∵△=(2k+1)2﹣4×4(k﹣)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)x=∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=或2.20.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.。
第2章 一元二次方程 北师大版九年级数学上册单元测试(基础过关)及答案

第二章一元二次方程单元测试(基础过关)一、单选题1.下列方程中属于一元二次方程的是()A.B.C.D.【答案】A【分析】根据一元二次方程的定义可判断A,根据分母中有未知数,不是整式方程,可判断B根据二次项系数为a是否为0可判断C,根据二次项系数是0,不是一元二次方程,可判断D【解析】解:A、∵,∴,根据一元二次方程的定义A满足条件,故A正确;B、分母中有未知数,不是整式方程,是分式方程,不选B;C、二次项系数为a是否为0,不确定,当=0,b≠0时,一元一次方程,当时是一元二次方程,不选C;D、没有二次项,不是一元二次方程,不选D.故选择:A.【点睛】本题考查一元二次方程问题,关键掌握一元二次方程定义满足的条件.2.下列配方正确的是()A.B.C.D.【答案】C【分析】根据完全平方公式,对各个选项逐一分析,即可.【解析】解:A. ,故该选项错误;B. ,故该选项错误;C. ,故该选项正确;D. ,故该选项错误.故选C.【点睛】本题主要考查多项式的配方,掌握完全平方公式,是解题的关键.3.以为根的一元二次方程可能是( ) A.B.C.D.【答案】D【解析】【分析】对照求根公式确定二次项系数、一次项系数和常数项.【解析】解:根据求根公式知,-b是一次项系数,二次项系数是1,常数项是-c.所以,符合题意的只有D选项.故选:D.【点睛】本题考查了解一元二次方程--公式法.利用求根公式x=解方程时,一定要弄清楚该公式中的字母a、b、c所表示的意义.4.方程的根是()A.-1,3B.1,-3C.0,-1,3D.0,-1,-3【答案】D【分析】根据因式分解法求解即可.【解析】由题可得,或或,解得:或或.故选:D.【点睛】本题考查了因式分解法解方程,熟练掌握因式分解法是解题的关键.5.解方程①9(x -3)2 = 25,②6x2 -x = 1,③x2 +4x -3596 = 0,④x(x -1) = 1.较简便的方法依次是();A.开平方法、因式分解法、公式法、配方法B.因式分解法、公式法、公式法、配方法C.配方法、因式分解法、配方法、公式法D.开平方法、因式分解法、配方法、公式法【答案】D【解析】【分析】对于第①个方程,由于左右两边是某个数或式子的平方,据此选择开平方法解方程;对于方程②可结合因式分解中的基本方法分析即可得解; 对于方程③二次项系数为1可考虑配方法; 对于方程④利用公式法求解比较简便.【解析】解:方程①符合直接开方法的形式,因此选择开平方法比较简便;方程②等号左边含有公因式x,则可利用因式分解法比较简便;方程③等号左边二次项系数为1,则可利用配方法比较简便;方程④等号左边展开,移项,然后利用公式法求解比较简便.故选D.【点睛】本题是解一元二次方程的题目,关键是知道如何合理的选择解一元二次方程的方法.6.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000【答案】D【分析】根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.【解析】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选D.【点睛】此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.7.一元二次方程的两个根为,则的值是()A.10B.9C.8D.7【答案】D【分析】利用方程根的定义可求得,再利用根与系数的关系即可求解.为一元二次方程的根,,.根据题意得,,.故选:D.【点睛】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系,是解题的关键.8.方程x2+3x+b2-16=0和x2+3x-3b+12=0有相同实根,则b的值是().A.4;B.-7;C.4或-7;D.所有实数.【答案】A【分析】根据方程解相同,得到常数项相等即可求出b的值.【解析】解:根据题意得:b2-16=-3b+12,即b2+3b-28=0,分解因式得:(b-4)(b+7)=0,解得:b=4或-7,当b=-7时,两方程为x2+3x+33=0无解,舍去,故选A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.一个矩形内放入两个边长分别为3cm和4cm的小正方形纸片,按照图①放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm2;按照图②放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm2,若把两张正方形纸片按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为()A.6cm2B.7 cm2C.12cm2D.19 cm2【答案】B【分析】设矩形的长为x cm,宽为y cm,根据矩形的面积公式结合按图①②两种放置时未覆盖部分的面积,即可得出关于x、y的方程组,利用(②-①)÷3可得出x=y+1③,将③代入②中可得出关于y的一元二次方程,解之取其正值,即可得到y值,进而得出x的值,再利用矩形面积公式得出图③摆放位置时未覆盖的面积即可得出答案.【解析】解:设矩形的长为xcm,宽为ycm,依题意,得:,(②-①)÷3,得:y-x+1=0,∴x=y+1③.将③代入②,得:y(y+1)=16+3(y-4)+11,整理,得:y2-2y-15=0,解得:y1=5,y2=-3(舍去),∴x=6.∴按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为:(x-4)(y-3)+(x-3)(y-4)=2×2+3×1=7.故选:B.【点睛】本题考查了二元一次方程组及一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.已知为实数,且,则之间的大小关系是()A.B.C.D.【答案】A【分析】先根据已知等式求出,再利用完全平方公式判断出的符号,由此即可得出答案.【解析】,,,,,,又,,,故选:A.【点睛】本题考查了完全平方公式的应用,熟练掌握完全平方公式是解题关键.11.对于一元二次方程,下列说法:①若,则;②若方程有两个不相等的实根,则方程必有两个不相等的实根;③若是方程的一个根,则一定有成立;④若是一元二次方程的根,则其中正确的是()A.只有①②B.只有①②④C.只有①③④D.只有①②③【答案】B【分析】根据一元二次方程根的判别式及根的定义逐个判断排除.【解析】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知:△=b2-4a≥0,故①正确;②方程ax2+c=0有两个不相等的实根,∴△=0-4ac>0,∴-4ac>0则方程ax2+bx+c=0的判别式△=b2-4a>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0,若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=,∴2ax0+b=±,∴b2-4ac=(2ax0+b)2,故④正确.故正确的有①②④,故选:B.【点睛】本题考查一元二次方程根的判断,根据方程形式,判断根的情况是求解本题的关键.12.若,,,,为互不相等的正奇数,满足,则的末位数字是()A.1B.3C.5D.7【答案】A【分析】因为,,,,为互不相等的正奇数,所以,,,,为互不相等的非零偶数(有偶数个负数),又因为,所以这5个偶数只能是2,-2,4,6,-6(否则就会有相同的偶数),所以,,,,分别等于2007,2003,2001,1999,2011,所以的末位数字是1【解析】解:∵,,,,为互不相等的正奇数∴,,,,为互不相等的偶数,且负数个数为偶数个而将分解为5个互不相等的偶数之积,只有唯一的形式:∴,,,,分别等于2、、4、6、∴,,,,分别等于2007,2003,2001,1999,2011又∵20072尾数是9,20032尾数是9,20012尾数是1,19992尾数是1,20112尾数是1∴的末位数字是1.故选A.【点睛】本题主要考查了数字变化类的一些简单的问题,能够掌握七内在规律并熟练求解是解题关键.二、填空题13.一元二次方程x2﹣3x+1=0的根的判别式的值是______.【答案】5【解析】解:x2﹣3x+1=0△==(-3)2-4×1×1=9-4=5.故答案为5.14.若关于的一元二次方程的一个解是,则的值是__________.【答案】2022【分析】根据一元二次方程解的意义可得a+b的值,然后代入所求的算式即可得到解答.【解析】解:由题意可得:a+b+1=0,∴2021-a-b=2021-(a+b)=2021+1=2022,故答案为2022.【点睛】本题考查代数式的求值,根据一元二次方程解的意义求得a+b的值是解题关键.15.关于的一元二次方程有两个实数根,则的取值范围是_______________ .【答案】且【分析】根据一元二次方程的定义和判别式的意义得到且,然后求写出两不等式的公共部分即可.【解析】∵,,,根据题意得且,解得且.故答案为:且.【点睛】本题考查了根的判别式:一元二次方程()的根与有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.注意二次项系数不为0的隐含条件.16.方程的解为________.【答案】或首先把方程转化为一般形式,再利用公式法求解.【解析】(x-1)(x+3)=12x2+3x-x-3-12=0x2+2x-15=0x=,∴x1=3,x2=-5故答案是:3或-5.【点睛】考查了学生解一元二次方程的能力,解决本题的关键是正确理解运用求根公式.17.若三角形的两边长分别是3和5,第三边的长是方程的根,则此三角形是______三角形.【答案】直角【分析】利用因式分解法求出方程的解得到第三边的长,根据勾股定理逆定理即可判断三角形形状.【解析】解:方程=0,分解因式得:(3x+2)(x−4)=0,解得:x=(舍去)或x=4,∴三角形三边分别为3,4,5,∵32+42=52,∴此三角形是直角三角形,故答案为直角.【点睛】此题主要考查了解一元二次方程−因式分解法,熟练掌握因式分解的方法是解本题的关键.18.若一人患了流感,经过两轮传染后共有121人感染了流感.按照这样的传染速度,若2人患了流感,第一轮传染后患流感的人数共有_____人.【答案】22【分析】设每轮传染中1人传染给x人,则第一轮传染后共(1+x)人患流感,第二轮传染后共[1+x+x(x+1)]人患流感,列出方程进行计算即可.【解析】解:设每轮传染中1人传染给x人,则第一轮传染后共(1+x)人患流感,第二轮传染后共[1+x+x(x+1)]人患流感,根据题意得:1+x+x(x+1)=121,解得:x1=10,x2=﹣12(舍去),∴2(1+x)=22.故答案为22.【点睛】考查一元二次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.19.当x满足时,方程x2﹣2x﹣5=0的根是__.【答案】1先求出不等式组的解集,然后解一元二次方程,结合不等式的解集即可得到答案.【解析】解:解不等式组,得:2<x<4,∵x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,∴x1=1,x2=1.而2<x<4,∴x=1.故答案为:1.【点睛】本题考查了解一元二次方程,解不等式组,解题的关键是熟练掌握运算法则进行解题.20.已知,则_________.【答案】4【分析】利用完全平方公式将原等式左边适当变形,再根据非负数的性质可求得a、b、c的值,代入计算即可.解:因为,所以,即,即,,,所以,∴.【点睛】本题考查完全平方公式,乘方的符号法则.能利用完全平方公式对等式适当变形是解题关键.21.已知为一元二次方程的一个根,且,为有理数,则______,______.【答案】;;【分析】将因式分解求得,则可化简得,根据,为有理数,可得,也为有理数,故当时候,只有,,据此求解即可.【解析】解:∵∴∴∴∴∴∵,为有理数,∴,也为有理数,故当时候,只有,,∴,,故答案是:,;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.22.如果关于x的一元二次方程有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于“倍根方程”的说法,正确的有_____(填序号).①方程是“倍根方程”;②若是“倍根方程”,则;③若满足,则关于x的方程是“倍根方程”;④若方程是“倍根方程”,则必有.【答案】②③④【分析】①求出方程的根,再判断是否为“倍根方程”;②根据“倍根方程”和其中一个根,可求出另一个根,进而得到m,n之间的关系;③当满足时,有,求出两个根,再根据代入可得两个根之间的关系,讲而判断是否为“倍根方程”;④用求根公式求出两个根,当或时,进一步化简,得出关系式,进行判断即可.【解析】①解方程,得,,方程不是“倍根方程”.故①不正确;②是“倍根方程”,且,因此或.当时,,当时,,,故②正确;③,,,,因此是“倍根方程”,故③正确;④方程的根为,若,则,即,,,,,,若,则,,,,,.故④正确,故答案为:②③④.【点睛】本题考查了解一元二次方程以及一元二次方程的求根公式,新定义的倍根方程的意义,理解倍根方程的意义和正确求出方程的解是解决问题的关键.三、解答题23.解方程:(1).(2).(3)(4)【答案】(1)x1=5,x2=;(2)x1=,x2=;(3)x1=,x2=;(4)x1=-1,x2=2【分析】(1)方程整理后,利用因式分解法可求出解;(2)方程整理后,求出b2-4ac的值,再代入公式求出解即可;(3)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(4)设,代入方程求出t值,再分别求解.【解析】解:(1),3(x-5)2=2(5-x),3(x-5)2-2(5-x)=0,分解因式得:(x-5)[3(x-5)+2]=0,∴x-5=0或3(x-5)+2=0,解得:x1=5,x2=;(2),方程整理得:3x2+10x+5=0,∵a=3,b=10,c=5,b2-4ac=100-60=40>0,∴x=,∴x1=,x2=;(3),∴,即,∴,∴x1=,x2=;(4),设,∴,∴,∴,∴t=2或t=-5,当t=2时,,即,∴,解得:x1=-1,x2=2;当t=-5时,,∵,∴方程无解,综上:x1=-1,x2=2.【点睛】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键24.已知关于x的一元二次方程(a+1)x2+2x+1﹣a2=0有一个根为﹣1,求a的值.【答案】a=0或a=1【分析】将x=﹣1代入原方程可求出a的值.【解析】解:将x=﹣1代入原方程,得(a+1)﹣2+1﹣a2=0,整理得:a2﹣a=0,即:a(a﹣1)=0解得:a=0或a=1.【点睛】本题考查了一元二次方程的解,将x=-1代入原方程求出a值是解题的关键.25.已知关于的一元二次方程.()求证:方程总有两个实数根;()记该方程的两个实数根为和若以,,为三边长的三角形是直角三角形,求的值.【答案】(1)见解析;(2)或.【分析】()先计算,再利用配方法证明是个非负数即可得到结论;(2)先解方程,求解方程的根为:再分类讨论即可得到答案.【解析】()证明:,无论取何值,方程总有两个实数根.()解:,.,.以,,为三边长的三角形是直角三角形,.当为斜边时,则,解得.当为斜边时,则,解得.综上所述,的值为或.【点睛】本题考查的是一元二次方程的根的判别式,一元二次方程的解法,勾股定理的应用,掌握利用根的判别式解决问题是解题的关键.26.已知关于x的一元二次方程.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为,,若,求方程的两个根.【答案】(1)见解析;(2)6或0【分析】(1)根据一元二次方程的根的判别式△>0来证明即可;(2)解方程即可得到结论.【解析】解:(1)∵△=(4m)2-4×1×(4m2-9)=16m2-16m2+36=36>0,∴已知关于x的一元二次方程x2-4mx+4m2-9=0一定有两个不相等的实数根;(2)∵x=2m±3,∵x1=3−x2,∴x1+x2=6,∵x1+x2=4m,∴4m=6,∴m=,∴x=2×±3,∴x1=6,x2=0.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4a c.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.27.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12米的住房墙,另外三边用25米长的建筑材料围成的,为了方便进出,在垂直于住房墙的一边留一扇1米宽的门.当所围矩形与墙垂直的一边长为多少时,猪舍面积为80平方米?【答案】当所围矩形与墙垂直的一边长为8米时,猪舍面积为80平方米.【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25-2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解析】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25-2x+1)m,由题意得x(25-2x+1)=80,化简,得x2-13x+40=0,解得:x1=5,x2=8,当x=5时,26-2x=16>12(舍去),当x=8时,26-2x=10<12,答:当所围矩形与墙垂直的一边长为8米时,猪舍面积为80平方米.【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.28.受今年疫情的影响,原材料价格上涨,为提高公司经济效益,某公司决定对近期研发出的一种新型电子产品进行提价销售,根据市场调查:这种电子产品销售单价定为60元时,每天可售出100个;若销售单价每提高10元,每天就少售出20个.已知每个电子产品的固定成本为50元.(1)若销售单价提高20元,则平均每天可售出多少个?(2)既要考虑公司的利润,保证公司每天可获利1600元,又要让利于消费者,这种电子产品的销售单价定为多少元合适?【答案】(1)平均每天可售出60个;(2)这种电子产品的销售单价定为70元合适.【分析】(1)根据题意可直接进行列式求解;(2)设这种电子产品的销售单价定为x元,由题意易得,然后进行求解即可.【解析】解:(1)由题意得:(个);答:平均每天可售出60个.(2)设这种电子产品的销售单价定为x元,由题意得:,解得:,∵要让利于消费者,∴;答:这种电子产品的销售单价定为70元合适.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.29.数学课上,老师展示了这样一段内容.问题求式子的最小值.解:原式:∵,∴,即原式的最小值是2.小丽和小明想,二次多项式都能用类似的方法求出最值(最小值或最大值)吗?(1)小丽写出了一些二次三项式:①; ②; ③;④; ⑤; ⑥.经探索可知,有最值的是__________(只填序号),任选其中一个求出其最值;(2)小明写出了如下 3 个二次多项式:①;②;③.请选择其中一个,探索它是否有最值,并说明理由.说明:①②③的满分分值分别为 3 分、4 分、5 分;若选多个作答,则以较低分计分.【答案】(1)①②③⑥;(2)①无最值,见解析;②最小值为1,见解析;③最小值为,见解析【分析】(1)可以选择①,运用上面类似的方法——配方法,可得到:,再根据平方具有非负性可得到最小值,其它的也用类似的方法解答即可;(2)①进行探究,配方后得到,无法确定最值,②进行研究,配方后得到即可,③进行研究,配方后得到即可,选择一个作答即可.【解析】(1)①②③⑥①最小值为0②,∵,∴,即原式最小值5;③,∵,∴,∴,即原式有最大值为4;④,无法确定最值;⑤,无法确定最值;⑥,∵,∴,∴,即原式有最大值为;(2)①无最值②∵,∴,即原式有最小值为1③,∵,,,∴,即原式有最小值为.【点睛】本题主要考查了类比的方法,解题的关键是需要学生认真审题,总结出配方的方法,然后再用类比的方法进行解答即可.30.如图1,一次函数的图象与轴、轴分别交于点、点,与正比例函数的图象交于点,将点向右平移1个单位,再向下平移6个单位得到点.(1)求的周长和点的坐标;(2)如图2,点是轴上一动点,当最小时,求点的坐标;(3)若点是轴上一动点,当为等腰三角形时,直接写出点的坐标.【答案】(1)△OAB的周长,(,);(2)(,);(3)点(,),或(,),或(,),或(,)【分析】(1)先求出点A、B坐标,可求得△OAB的周长,再联立方程组求得点C坐标,根据坐标平移规律可求得点D坐标;(2)作点关于轴的对称点,则,连接交轴于点,连接,此时最小,利用待定系数法求得直线的解析式,令x=0,可求得点P坐标;(3)设点Q(x,0),分OD=OQ、OD=DQ、OQ=DQ三种情况分别求解即可.【解析】解:(1)在中,当x=0时,y=4,当y=0时,由得:x=8,∴A(8,0)、B(0,4).∴,.∴.∴△OAB的周长.联立与,解得:.∴点(2,3).由题意得:点(3,﹣3);(2)作点关于轴的对称点,则.连接交轴于点.连接,此时最小.设直线的解析式为,把点(2,3),代入得:.解得:,.∴直线的解析式为.当时,.∴点(0,),即当最小时,点的坐标为(0,);(3)设点Q(x,0),∵D(3,﹣3),O(0,0),∴OD2=(3﹣0)2+(﹣3﹣0)2=18,OQ2=(x﹣0)2+(0﹣0)2=x2,DQ2=(x﹣3)2+(0+3)2=x2﹣6x+18,当为等腰三角形时,可分三种情况:当OD=OQ时,由18=x2得:x=±,∴(,0),或(,0),当OD=DQ时,由18= x2﹣6x+18得:x=6或x=0(与O重合,舍去),∴(6,0),当OQ=DQ时,由x2=x2﹣6x+18得:x=3,∴(3,0),综上,为等腰三角形时,点Q坐标为(,0),或(,0),或(3,0),或(6,0).【点睛】本题考查一次函数图象与坐标轴的交点问题、待定系数法求函数解析式、坐标变换、两直线的交点问题、最短路径问题、等腰三角形的性质、两点间距离公式、解一元二次方程等知识,解答的关键是读懂题意,寻找相关知识的关联点,利用数形结合及分类讨论思想进行推理、探究和计算.31.阅读理解:材料1:对于一个关于x的二次三项式(),除了可以利用配方法求该多项式的取值范围外,还可以用其他的方法:比如先令(),然后移项可得:,再利用一元二次方程根的判别式来确定y的取值范围,请仔细阅读下面的例子:例:求的取值范围:解:令,,即;材料2:在学习完一元二次方程的解法后,爱思考的小明同学又想到类比一元二次方程的解法来解决一元二次不等式的解集问题,他的具体做法如下:若关于x的一元二次方程()有两个不相等的实数根、(),则关于x的一元二次不等式()的解集为:或,则关于x的一元二次不等式()的解集为:;请根据上述材料,解答下列问题:(1)若关于x的二次三项式(a为常数)的最小值为-6,则_____.(2)求出代数式的取值范围.类比应用:(3)猜想:若中,,斜边(a为常数,),则_____时,最大,请证明你的猜想.【答案】(1)或;(2)或;(3)当时,最大.【分析】(1)根据材料1:设,化为关于x的一元二次方程用根的判别式,得出y的取值范围,在列出关于a的方程解出即可;(2)设,化为,再用,然后根据材料2结论,即可求出;(3)设,,根据一元二次方程,利用根的判别式解答问题即可.【解析】解:(1)设,∴,∴,即,根据题意可知,∴,解得:或;(2)设,可化为,即,∴,即,令,解得,,∴或;(3)猜想:当时,最大.理由:设,,则,在中,斜边(a为常数,),∴,∴,∴,即,∴,即,∵,,∴,当时,有,∴,即当时,最大.【点睛】本题考查了一元二次方程的根的判别式、根与系数的关系及解不等式,读懂阅读材料中的方法并明确一元二次方程的根的情况与判别式的关系,运用类比的思想是解题的关键.。
北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案

北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.方程3x2−5=4x中,关于a、b、c的说法正确的是()A.a=3,b=4,c=−5B.a=3,b=−5,c=4C.a=−3,b=−4,c=−5D.a=3,b=−4,c=−52.已知关于x的方程x2+bx−a=0有且只有一个根x=a(a≠0),则b的值为()A.2B.−2C.±2D.以上都不是3.用配方法解方程x2+4x+3=0,变形后的结果正确的是()A.(x+2)2=−1B.(x+2)2=1C.(x+2)2=3D.(x+2)2=74.若α,β是一元二次方程3x2+x−1=0的两个实数根,则3α2+4α+3β+1的值是()A.−1B.1C.2D.−25.方程(m−2)x2−√3−mx+14=0有两个实数根,则m的取值范围()A.m≤52B.m≤52且m≠2C.m≥3D.m≤3且m≠26.关于x的方程a(x+m)2+b=0的解是x1=−2,x2=1(a,m,b均为常数a≠0),则方程a(x+3+m)2+ b=0的解是()A.−1或−4B.−2或1C.1或3D.−5或−27.已知关于x的一元二次方程x2−kx+2k−1=0的两个实数根分别为x1、x2,且x12+x22=7,那么(x1−x2)2的值为()A.13或−11B.13C.−11D.118.如果△ABC有两边的长是方程x2−7x+12=0的根,第三边的长是方程x2−12x+35=0的根,那么△ABC的周长为()A.14B.12C.12或14D.以上都不对二、填空题9.已知关于x的一元二次方程2x2−4x+3=0的两个实数根分别是α,β;则(α+1)(β+1)=.10.某等腰三角形的一边长为3,另外两边长是关于x的方程x2−12x+k=0的两根,则k=;11.若a是一元二次方程x2−2023x+1=0的一个根,则代数式a2−2022a+2023a2+1的值为。
北师大版九年级上册 第2章《一元二次方程》 单元测试题

第2章《一元二次方程》单元测试题一.选择题1.下列方程是一元二次方程的是()A.x2=2x+3 B.x2+1=2xy C.x2+=3 D.2x+y=12.一元二次方程x2+2x=0的根的判别式的值是()A.4 B.2 C.0 D.﹣43.一元二次方程4x2﹣3x+=0根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.若方程x2+3x+c=0有实数根,则c的取值范围是()A.c≤B.c≤C.c≥D.c≥5.二位同学在研究函数y=a(x+3)(x﹣)(a为实数,且a≠0)时,甲发现当0<a <1时,函数图象的顶点在第四象限;乙发现方程a(x+3)(x﹣)+5=0必有两个不相等的实数根.则()A.甲、乙的结论都错误B.甲的结论正确,乙的结论错误C.甲、乙的结论都正确D.甲的结论错误,乙的结论正确6.如图所示,在一幅矩形风景画的四周镶一条相同宽度的边框,制成一幅长为80cm,宽为50cm的挂图,设边框的宽为xcm,如果风景画的面积是2800cm2,下列方程符合题意的是()A.(50+x)(80+x)=2800 B.(50+2x)(80+2 x)=2800C.(50﹣x)(80﹣x)=2800 D.(50﹣2x)(80﹣2x)=28007.某商店今年10月份的销售额是2万元,12月份的销售额是2.88万元,从10月份到12月份,该商店销售额平均每月的增长率为()A.44% B.22% C.20% D.10%8.一元二次方程x2﹣kx+2=0的一个根为2,则k的值是()A.1 B.﹣1 C.3 D.﹣39.关于x的一元二次方程(m﹣2)x2﹣2x﹣1=0有两个不相等的实数根,则实数m的取值范围是()A.m≥1且m≠2 B.m>1 C.m>1且m≠2 D.m≠210.设一元二次方程x2﹣2x﹣3=0的两个实数根为x1,x2,则x1+x1x2+x2等于()A.1 B.﹣1 C.0 D.3二.填空题11.已知关于x的一元二次方程2x2﹣kx﹣24=0的一个根为x=﹣3,则k的值是.12.已知实数x满足(x2﹣x)2﹣2(x2﹣x)﹣3=0,则代数式x2﹣x+2020的值为.13.已知关于x的一元二次方程(a﹣3)x2﹣2x+a2﹣9=0的常数项是0,则a=.14.若关于x的一元二次方程ax2﹣x+1=0有实数根,则a的最大整数值是.15.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.三.解答题16.用适当方法解下列方程.(1)3x2﹣1=4x(2)2x(2x+5)=(x﹣1)(2x+5)17.阅读探究:“任意给定一个矩形A ,是否存在另一个矩形B ,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x 和y ,由题意得方程组,消去y 化简得:2x 2﹣7x +6=0,∵b 2﹣4ac =49﹣48>0,∴x 1= ,x 2= ,∴满足要求的矩形B 存在.(2)如果已知矩形A 的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B .(3)如果矩形A 的边长为m 和n ,请你研究满足什么条件时,矩形B 存在?18.已知关于x 的方程x 2﹣(k +1)x ++1=0有两个实数根 (1)求k 的取值范围;(2)若方程的两实数根分别为x 1,x 2,且x 12+x 22=6x 1x 2﹣15,求k 的值.19.今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在零售价基础上每箱降价3m %,这样每天可多销售m %;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m 元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m 的值.20.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C 以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C 以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?参考答案一.选择题1.解:A、x2=2x+3是一元二次方程,符合题意;B、x2+1=2xy是二元二次方程,不符合题意;C、x2+=3不是整式方程,不符合题意;D、2x+y=1是二元一次方程,不符合题意,故选:A.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.解:x2+2x=0,△=b2﹣4ac=22﹣4×1×0=4,故选:A.【点评】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.3.解:4x2﹣3x+=0,这里a=4,b=﹣3,c=,b2﹣4ac=(﹣3)2﹣4×=5>0,所以方程有两个不相等的实数根,故选:D.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.4.解:∵方程x2+3x+c=0有实数根,∴△=b2﹣4ac=32﹣4×1×c≥0,解得:c≤,故选:A.【点评】本题考查了根的判别式,能根据题意得出△≥0是解此题的关键.5.解:由函数y=a(x+3)(x﹣)可知,函数与x轴的两个交点的横坐标分别是﹣3和,∴函数顶点的横坐标为,∵0<a<1,∴>﹣,∴函数的顶点不一定在第四象限,故甲的结论错误;∵a(x+3)(x﹣)+5=0可以化为ax2+(3a﹣2)x﹣1=0,△=(3a﹣2)2+4a=9a2﹣8a+4=9(a﹣)2+>0,∴a(x+3)(x﹣)+5=0必有两个不相等的实数根,故乙的结论正确;故选:D.【点评】本题考查根的判别式;熟练掌握一元二次函数对称性,一元二次方程判别式与根的关系是解题的关键.6.解:依题意,设边框的宽为xcm,(80﹣2x)(50﹣2x)=2800,故选:D.【点评】此题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.7.解:设该商店销售额平均每月的增长率为x,依题意,得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8.解:把x=2代入x2﹣kx+2=0得4﹣2k+2=0,解得k=3.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.解:∵关于x 的一元二次方程(m ﹣2)x 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=22﹣4(m ﹣2)(﹣1)=4m ﹣4>0且m ﹣2≠0,解得:m >1,即m 的取值范围是m >1且m ≠2;故选:C .【点评】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.解:∵一元二次方程x 2﹣2x ﹣3=0的两个实数根为x 1,x 2,∴x 1+x 2=2,x 1•x 2=﹣3,则x 1+x 1x 2+x 2=2﹣3=﹣1.故选:B .【点评】考查了根与系数的关系,解答此题要熟知一元二次方程根与系数的关系:x 1+x 2=﹣,x 1•x 2=.二.填空题(共5小题)11.解:把x =﹣3代入方程2x 2﹣kx ﹣24=0,可得2×9+3k ﹣24=0,即k =2, 故答案为:2.【点评】本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.12.解:令x 2﹣x =t ,∴t =x 2﹣x =(x)2﹣≥,∴t 2﹣2t ﹣3=0,解得:t =3或t =﹣1(舍去),∴t =3,即x 2﹣x =3,∴原式=3+2020=2023,故答案为:2023.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.13.解:∵关于x的一元二次方程(a﹣3)x2﹣2x+a2﹣9=0的常数项是0,∴a2﹣9=0,即a=3或a=﹣3,当a=3时,方程为﹣2x=0,不符合题意,则a=﹣3.故答案为:﹣3.【点评】此题考查了一元二次方程的一般形式,以及一元二次方程的定义,熟练掌握各自的性质是解本题的关键.14.解:∵关于x的一元二次方程ax2﹣x+1=0有实数根,∴△=(﹣1)2﹣4×a×1≥0,且a≠0,则a≤且a≠0,则a的最大整数值为﹣1,故答案为:﹣1.【点评】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.15.解:设这个公司有员工x人,则每人需发送(x﹣1)条祝贺元旦的短信,依题意,得:x(x﹣1)=2450,解得:x1=50,x2=﹣49(不合题意,舍去).故答案为:50.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.三.解答题(共5小题)16.解:(1)3x2﹣4x﹣1=0,△=(﹣4)2﹣4×3×(﹣1)=28,x==,所以x 1=,x 2=;(2)2x (2x +5)﹣(x ﹣l )(2x +5)=0,(2x ﹣x +1)(2x +5)=0(x +1)(2x +5)=0x +1=0或2x +5=0,所以x 1=﹣1,x 2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.17.解:(1)利用求根公式可知:x 1==,x 2==2. 故答案为:;2.(2)设所求矩形的两边分别是x 和y , 根据题意得:, 消去y 化简得:2x 2﹣3x +2=0.∵b 2﹣4ac =(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B .(3)设所求矩形的两边分别是x 和y , 根据题意得:,消去y 化简得:2x 2﹣(m +n )x +mn =0.∵矩形B 存在,∴b 2﹣4ac =[﹣(m +n )]2﹣4×2mn ≥0,∴(m ﹣n )2≥4mn .故当m 、n 满足(m ﹣n )2≥4mn 时,矩形B 存在.【点评】本题考查了一元二次方程的应用以及根的判别式,解题的关键是:(1)套用求根公式求出方程的解;(2)牢记“当△<0时,方程无实数根”;(3)牢记“当△≥0时,方程有实数根”.18.解:(1)∵关于x 的方程x 2﹣(k +1)x +k 2+1=0有两个实数根,∴△=[﹣(k +1)]2﹣4(k 2+1)=2k ﹣3≥0,解得k ≥;(2)∵方程的两实数根分别为x 1,x 2,∴x 1+x 2=k +1,x 1•x 2=k 2+1,∵x 12+x 22=6x 1x 2﹣15,∴(x 1+x 2)2﹣8x 1x 2+15=0,∴k 2﹣2k ﹣8=0,解得:k 1=4,k 2=﹣2,又∵k ≥,∴k =4.【点评】本题主要考查根与系数的关系及根的判别式,掌握两根之和等于﹣、两根之积等于是解题的关键.19.解:(1)设打x 折销售,才能保证每箱脐橙的利润率不低于10%, 由题意得:≥10%,x ≥8.8,答:最多打8.8折销售,才能保证每箱脐橙的利润率不低于10%;(2)由题意得:5000(1+m %)[50(1﹣3m %)+m ﹣40]=49000, 5(1+)(50﹣m +m ﹣40)=49,m 2﹣5m ﹣6=0,m 1=6,m 2=﹣1(舍).【点评】本题考查了一元二次方程及一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系和不等关系,列出方程与不等式,再求解.20.解:(1)设经过x 秒,使△PBQ 的面积等于8cm 2,依题意有(6﹣x )•2x =8,解得x 1=2,x 2=4,经检验,x 1,x 2均符合题意.故经过2秒或4秒,△PBQ 的面积等于8cm 2;(2)设经过y 秒,线段PQ 能否将△ABC 分成面积相等的两部分,依题意有 △ABC 的面积=×6×8=24,(6﹣y )•2y =12,y 2﹣6y +12=0,∵△=b 2﹣4ac =36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ 不能否将△ABC 分成面积相等的两部分;(3)①点P 在线段AB 上,点Q 在线段CB 上(0<x ≤4),设经过m 秒,依题意有(6﹣m )(8﹣2m )=1,m 2﹣10m +23=0,解得m 1=5+,m 2=5﹣,经检验,m 1=5+不符合题意,舍去,∴m =5﹣; ②点P 在线段AB 上,点Q 在射线CB 上(4<x ≤6),设经过n 秒,依题意有(6﹣n )(2n ﹣8)=1,n 2﹣10n +25=0,解得n 1=n 2=5,经检验,n =5符合题意.③点P 在射线AB 上,点Q 在射线CB 上(x >6),设经过k 秒,依题意有(k ﹣6)(2k ﹣8)=1,k 2﹣10k +23=0,解得k 1=5+,k 2=5﹣,经检验,k 1=5﹣不符合题意,舍去,∴k =5+; 综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ 的面积为1cm 2.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意分类思想的运用.。
北师大版九年级数学上册单元测试卷:第二章 一元二次方程含答案
北师大版九年级数学上册单元测试卷:第二章 一元二次方程一、填空题(每小题4分,共24分)1.一元二次方程x 2-8x -1=0配方后可变形为(x -4)2=17.2.若一元二次方程(m +2)x 2+2x +m 2-4=0的常数项为0,则m =2.3.已知关于x 的一元二次方程m(x -h)2-k =0(m ,h ,k 均为常数且m ≠0)的解是x 1=2,x 2=5,则关于x 的一元二次方程m(x -h +3)2=k 的解是x 1=-1,x 2=2.4.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,则增加了3行3列.5.已知关于x 的方程x 2-(a +b)x +ab -1=0,x 1,x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③x +x <a 2+b 2.则正确结论的序号是①②.(填上你认为正确的所有序号)2126.已知x 1,x 2为方程x 2-x -2 017=0的两实根,则x +2 018x 2-2 017=2018.31二、选择题(每小题4分,共32分)7.若关于x 的方程(a +1)x 2+2x -1=0是一元二次方程,则a 的取值范围是(A)A .a ≠-1B .a>-1C .a<-1D .a ≠08.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为(A)A .2B .0C .0或2D .0或-29.若关于x 的一元二次方程x 2-4x +2m =0有一个根为-1,则另一个根为(A)A .5B .-3C .-5D .410.下面是某同学在一次测验中解答的填空题,其中答对的是(D)A .若x 2=4,则x =2B .方程x(2x -1)=2x -1的解为x =1C .方程x(x -3)=0的解为x 1=1,x 2=3D .若分式值为0,则x =2x2-3x +2x -111.如图,有一张矩形纸片,长10 cm ,宽6 cm ,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32 cm 2,求剪去的小正方形的边长.设剪去的小正方形边长是x cm ,根据题意可列方程为(B)A.10×6-4×6x=32B.(10-2x)(6-2x)=32C.(10-x)(6-x)=32D.10×6-4x2=3212.若关于x的一元二次方程kx2+2x-1=0有实数根,则实数k的取值范围是(C)A.k≥-1 B.k>-1C.k≥-1且k≠0 D.k>-1且k≠013.若(a2+b2)(a2+b2-4)=12,则a2+b2=(B)A.-2 B.6C.6或-2 D.-6或214.如图,将边长为2 cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′.若两个三角形重叠部分的面积为1 cm2,则它移动的距离AA′等于(B)A.0.5 cmB.1 cmC.1.5 cmD.2 cm三、解答题(共44分)15.(10分)已知关于x的一元二次方程x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.解:(1)证明:∵Δ=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0.∴对于任意实数t,方程都有实数根.(2)设方程的两根分别为m,n,则m+n=t-1.∵方程的两个根互为相反数,∴m+n=t-1=0.解得t =1.∴当t =1时,方程的两个根互为相反数.16.(10分)某商场将原来每件进价80元的某种商品按每件100元出售,一天可出售100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加20件.(1)商场经营该商品原来一天可获利2__000元;(2)若商场经营该商品一天要获得利润2 160元,则每件商品应降价多少元?解:设每件商品应降价x 元.根据题意,得(20-x)(100+20×)=2 160,x 2解得x 1=2,x 2=8.答:每件商品应降价2元或8元.17.(10分)子曰:“吾十有五而志于学,三十而立,四十而不惑,五十而知天命,六十而耳顺,七十而从心所欲,不逾矩.”——《论语·第二章·为政篇》读诗词解题:大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解:设周瑜逝世的年龄的个位数字为x ,则十位数字为x -3,根据题意,得10(x -3)+x =x 2,解得x 1=5,x 2=6.当x 1=5时,周瑜的年龄是25岁,∵25非而立之年,∴不符合题意,舍去;当x 2=6时,周瑜的年龄是36岁,符合题意.答:36年华属周瑜.18.(14分)如图,A ,B ,C ,D 为矩形的4个顶点,AB =16 cm ,BC =6 cm ,动点P ,Q 分别以3 cm/s ,2 cm/s 的速度从点A ,C 同时出发,点P 从点A 向点B 移动,点Q 从点C 向点D 移动.(1)若点P 从点A 移动到点B 停止,点P ,Q 分别从点A ,C 同时出发,问经过2 s 时,P ,Q 两点之间的距离是多少?(2)若点P 从点A 移动到点B 停止,点Q 随点P 的停止而停止移动,点P ,Q 分别从点A ,C 同时出发,问经过多长时间P ,Q 两点之间的距离是10 cm?(3)若点P 沿着AB →BC →CD 移动,点P ,Q 分别从点A ,C 同时出发,点Q 从点C 移动到点D 停止时,点P 随点Q 的停止而停止移动,试求经过多长时间△PBQ 的面积为12 cm 2?解:(1)过点P 作PE ⊥CD 于点E.根据题意,得EQ =16-2×3-2×2=6(cm),PE =AD =6 cm.在Rt △PEQ 中,根据勾股定理,得PE 2+EQ 2=PQ 2,即36+36=PQ 2,∴PQ =6 cm ;2故经过2 s 时,P ,Q 两点之间的距离是6 cm.2(2)设经过x s 时,点P 和点Q 之间的距离是10 cm.由题意,得(16-2x -3x)2+62=102,即(16-5x)2=64,解得x 1=,x 2=,85245∴经过 s 或 s 时,P ,Q 两点之间的距离是10 cm.85245(3)连接BQ.设经过y s 时,△PBQ 的面积为12 cm 2.①当0≤y ≤时,则PB =(16-3y)cm ,163∴PB·BC =12,12即(16-3y)×6=12,解得y =4;12②当<y ≤时,BP =3y -AB =(3y -16)cm ,163223CQ =2y cm ,则BP·CQ =(3y -16)×2y =12,解得y 1=6,y 2=-(舍去);121223③当<y ≤8时,QP =CQ -CP =2y -(3y -22)=(22-y)cm ,223则QP·BC =(22-y)×6=12,1212解得y =18(不符合题意,舍去).综上所述,经过4 s 或6 s 时△PBQ 的面积为12 cm 2.。
北师大版九年级上册数学第2章《一元二次方程》单元测试卷(含答案)
北师大版九年级上册数学第2章《一元二次方程》单元测试卷时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.在4(x﹣1)(x+2)=5,x2+y2=1,5x2﹣10=0,2x2+8x=0,=x2+3中,是一元二次方程的个数为()A.2个B.3个C.4个D.5个2.一元二次方程x2=2x的解是()A.x=0 B.x=2 C.x1=0,x2=2 D.无实数解3.等腰三角形三边长分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+k+2=0的两根,则k的值为()A.30 B.34或30 C.36或30 D.344.已知2+是关于x的方程x2﹣4x+c=0的一个根,则方程的另一个根与c的值是()A.2﹣,1 B.﹣6﹣,15﹣8C.﹣2,﹣1 D.2+,7+45.某商品的价格为100元,连续两次降x%后的价格是81元,则x为()A.9 B.10 C.19 D.86.若一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是b、2,则b﹣a=()A.﹣1 B.1 C.3 D.﹣47.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.7000(1+x2)=23170B.7000+7000(1+x)+7000(1+x)2=23170C.7000(1+x)2=23170D.7000+7000(1+x)+7000(1+x)2=23178.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,设每个枝干长出x小分支,列方程为()A.(1+x)2=91 B.1+x+x2=91 C.(1+x)x=91 D.1+x+2x=91 9.已知关于x的一元二次方程ax2+bx+c=0(ac≠0)的两实根分别是x1=,x2=(P ≠3),若关于x的一元二次方程cy2+by+a=0的两实根分别为y1和y2,则y1+y2的值()A.+p B.3+p C.3+D.10.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2×i=(﹣1)×i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可以得到i4n+1=i4n×i=(i4)n×i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013+…+i2019的值为()A.0 B.1 C.﹣1 D.i二.填空题(每题4分,共20分)11.方程(x﹣3)2=4的解是.12.若实数a、b满足a2+ab+b2=1,且t=ab﹣a2﹣b2,则t的取值范围是.13.若关于x的方程(1﹣m2)x2+2mx﹣1=0的所有根都是比1小的正实数,则实数m 的取值范围是.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有个飞机场.15.已知t是实数,若a,b是关于x的一元二次方程x2﹣2x+t﹣1=0的两个非负实根,则(a2﹣1)(b2﹣1)的最小值是.。
最新北师大版九年级数学上册《一元二次方程》单元测试题及答案(精品试题).docx
《第2章一元二次方程》一.选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,22.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=43.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠04.用换元法解方程﹣=3时,设=y,则原方程可化为()A.y﹣﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=05.等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11 B.10 C.11或10 D.不能确定6.若分式的值为零,则x的值为()A.3 B.3或﹣3 C.0 D.﹣37.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根8.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=109.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=18210.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣C.4 D.﹣111.定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关12.使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程()A.x(13﹣x)=20 B.x•=20 C.x(13﹣x)=20 D.x•=20二.填空题13.方程x2﹣3=0的根是.14.当k= 时,方程x2+(k+1)x+k=0有一根是0.15.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n= .16.写出以4,﹣5为根且二次项的系数为1的一元二次方程是.三.解答题(本题有7小题,共52分)17.解方程(1)x2﹣4x﹣5=0(2)3x(x﹣1)=2﹣2x.18.试证明关于x的方程(a2﹣8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.19.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?20.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?21.阅读下面的例题,范例:解方程x2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1(不合题意,舍去).∴原方程的根是x1=2,x2=﹣2请参照例题解方程x2﹣|x﹣1|﹣1=0.22.龙华天虹商场以120元/件的价格购进一批上衣,以200元/件的价格出售,每周可售出100件.为了促销,该商场决定降价销售,尽快减少库存.经调查发现,这种上衣每降价5元/件,每周可多售出20件.另外,每周的房租等固定成本共3000元.该商场要想每周盈利8000元,应将每件上衣的售价降低多少元?23.如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿A边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从B点开始沿BC边向点C以2厘米/秒的速度移动(到达点C即停止运动).(1)如果P、Q分别从A、C两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?(2)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动(到达点B 即停止运动),动点Q从B出发,沿BC移动(到达点C即停止运动),几秒钟后,P、Q相距6厘米?(3)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动(到达点B 即停止运动),动点Q从C出发,沿CB移动(到达点B即停止运动),是否存在一个时刻,PQ 同时平分△ABC的周长与面积?若存在求出这个时刻的t 值,若不存在说明理由.《第2章一元二次方程》参考答案与试题解析一.选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,2【考点】一元二次方程的一般形式.【专题】压轴题;推理填空题.【分析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.【解答】解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值分别是1、﹣3、10;故选A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4【考点】解一元二次方程-配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.3.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠0【考点】根的判别式.【专题】压轴题.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.【解答】解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意方程若为一元二次方程,则k≠0.4.用换元法解方程﹣=3时,设=y,则原方程可化为()A.y﹣﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=0【考点】换元法解分式方程.【分析】把y=代入原方程,移项即可得到答案.【解答】解:设=y,则原方程可化为:y﹣=3,即y﹣﹣3=0,故选:A.【点评】本题主要考查换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.5.等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11 B.10 C.11或10 D.不能确定【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【专题】计算题;一次方程(组)及应用.【分析】利用因式分解法求出方程的解得到x的值,确定出底与腰,即可求出周长.【解答】解:方程分解得:(x﹣3)(x﹣4)=0,解得:x1=3,x2=4,若3为底,4为腰,三角形三边为3,4,4,周长为3+4+4=11;若3为腰,4为底,三角形三边为3,3,4,周长为3+3+4=10.故选C.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.6.若分式的值为零,则x的值为()A.3 B.3或﹣3 C.0 D.﹣3【考点】分式的值为零的条件;解一元二次方程-直接开平方法;解一元一次不等式.【专题】计算题.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意,可得x2﹣9=0且2x﹣6≠0,解得x=﹣3.故选D.【点评】本题主要考查分式的值为0的条件.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.7.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.8.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=10【考点】由实际问题抽象出一元二次方程.【专题】其他问题;压轴题.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为:=10;故选B.【点评】理清题意,找对等量关系是解答此类题目的关键;需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.9.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.10.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣C.4 D.﹣1【考点】根与系数的关系.【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故选:A.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关【考点】根与系数的关系.【专题】新定义.【分析】由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.【解答】解:∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1,ab=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.12.使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程()A.x(13﹣x)=20 B.x•=20 C.x(13﹣x)=20 D.x•=20【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】根据铁丝网的总长度为13m,长方形的面积为20m2,来列出关于x的方程,由题意可知,墙的对边为xm,则长方形的另一对边为m,则可利用面积公式求出即可.【解答】解:设墙的对边长为x m,可得方程:x×=20.故选:B.【点评】本题主要考查长方形的周长和长方形的面积公式,得出矩形两边长是解题关键.二.填空题13.方程x2﹣3=0的根是x=±.【考点】解一元二次方程-直接开平方法.【专题】计算题;一次方程(组)及应用.【分析】方程变形后,利用平方根定义开方即可求出x的值.【解答】解:方程整理得:x2=3,开方得:x=±,故答案为:x=±【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根定义是解本题的关键.14.当k= 0 时,方程x2+(k+1)x+k=0有一根是0.【考点】一元二次方程的解.【专题】计算题.【分析】将x=0代入已知的方程中,得到关于k的方程,求出方程的解即可得到满足题意k的值.【解答】解:将x=0代入方程x2+(k+1)x+k=0得:k=0,则k=0时,方程x2+(k+1)x+k=0有一根是0.故答案为:0【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n= 2016 .【考点】根与系数的关系.【专题】计算题.【分析】先利用一元二次方程根的定义得到m2=﹣2m+2018,则m2+3m+n可化简为2018+m+n,再根据根与系数的关系得到m+n=﹣2,然后利用整体代入的方法计算.【解答】解:∵m为一元二次方程x2+2x﹣2018=0的实数根,∴m2+2m﹣2018=0,即m2=﹣2m+2018,∴m2+3m+n=﹣2m+2018+3m+n=2018+m+n,∵m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,∴m+n=﹣2,∴m2+3m+n=2018﹣2=2016.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的定义.16.写出以4,﹣5为根且二次项的系数为1的一元二次方程是x2+x﹣20=0 .【考点】根与系数的关系.【专题】计算题.【分析】先简单4与﹣5的和与积,然后根据根与系数的关系写出满足条件的方程.【解答】解:∵4+(﹣5)=﹣1,4×(﹣5)=﹣20,∴以4,﹣5为根且二次项的系数为1的一元二次方程为x2+x﹣20=0.故答案为x2+x﹣20=0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.三.解答题(本题有7小题,共52分)17.解方程(1)x2﹣4x﹣5=0(2)3x(x﹣1)=2﹣2x.【考点】解一元二次方程-因式分解法.【分析】(1)根据因式分解法可以解答本题;(2)先移项,然后提公因式可以解答此方程.【解答】解:(1)x2﹣4x﹣5=0(x﹣5)(x+1)=0∴x﹣5=0或x+1=0,解得,x1=5,x2=﹣1;(2)3x(x﹣1)=2﹣2x3x(x﹣1)+2(x﹣1)=0(3x+2)(x﹣1)=0∴3x+2=0或x﹣1=0,解得,.【点评】本题考查解一元二次方程﹣因式分解法,解题的关键是根据方程的特点,选取合适的因式分解法解答方程.18.试证明关于x的方程(a2﹣8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.【考点】一元二次方程的定义.【专题】证明题.【分析】根据一元二次方程的定义,只需证明此方程的二次项系数a2﹣8a+20不等于0即可.【解答】证明:∵a2﹣8a+20=(a﹣4)2+4≥4,∴无论a取何值,a2﹣8a+20≥4,即无论a取何值,原方程的二次项系数都不会等于0,∴关于x的方程(a2﹣8a+20)x2+2ax+1=0,无论a取何值,该方程都是一元二次方程.【点评】一元二次方程有四个特点:(1)只含有一个未知数;(2)含未知数的项的最高次数是2;(3)是整式方程;(4)将方程化为一般形式ax2+bx+c=0时,应满足a≠0.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a ≠0)的形式,则这个方程就为一元二次方程.19.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题有多种解法.设的对象不同则列的一元二次方程不同.设矩形温室的宽为xm,则长为2xm,根据矩形的面积计算公式即可列出方程求解.【解答】解:解法一:设矩形温室的宽为xm,则长为2xm,根据题意,得(x﹣2)•(2x﹣4)=288,∴2(x﹣2)2=288,∴(x﹣2)2=144,∴x﹣2=±12,解得:x1=﹣10(不合题意,舍去),x2=14,所以x=14,2x=2×14=28.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.解法二:设矩形温室的长为xm,则宽为xm.根据题意,得(x﹣2)•(x﹣4)=288.解这个方程,得x1=﹣20(不合题意,舍去),x2=28.所以x=28,x=×28=14.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.【点评】解答此题,要运用含x的代数式表示蔬菜种植矩形长与宽,再由面积关系列方程.20.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”,即可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量关系得出关于x的一元二次方程;(2)根据数量关系得出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.21.阅读下面的例题,范例:解方程x2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1(不合题意,舍去).∴原方程的根是x1=2,x2=﹣2请参照例题解方程x2﹣|x﹣1|﹣1=0.【考点】解一元二次方程-因式分解法.【专题】阅读型.【分析】分为两种情况:(1)当x≥1时,原方程化为x2﹣x=0,(2)当x<1时,原方程化为x2+x﹣2=0,求出方程的解即可.【解答】解:x2﹣|x﹣1|﹣1=0,(1)当x≥1时,原方程化为x2﹣x=0,解得:x1=1,x2=0(不合题意,舍去).(2)当x<1时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1(不合题意,舍去).故原方程的根是x1=1,x2=﹣2.【点评】本题考查了解一元二次方程的应用,解此题的关键是能正确去掉绝对值符号.22.龙华天虹商场以120元/件的价格购进一批上衣,以200元/件的价格出售,每周可售出100件.为了促销,该商场决定降价销售,尽快减少库存.经调查发现,这种上衣每降价5元/件,每周可多售出20件.另外,每周的房租等固定成本共3000元.该商场要想每周盈利8000元,应将每件上衣的售价降低多少元?【考点】一元二次方程的应用.【分析】设每件上衣应降价x元,则每件利润为(80﹣x)元,本题的等量关系为:每件上衣的利润×每天售出数量﹣固定成本=8000.【解答】解:设每件上衣应降价x元,则每件利润为(80﹣x)元,列方程得:(80﹣x)(100+x)﹣3000=8000,解得:x1=30,x2=25答:应将每件上衣的售价降低30或25元.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿A边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从B点开始沿BC边向点C以2厘米/秒的速度移动(到达点C即停止运动).(1)如果P、Q分别从A、C两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?(2)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动(到达点B 即停止运动),动点Q从B出发,沿BC移动(到达点C即停止运动),几秒钟后,P、Q相距6厘米?(3)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动(到达点B 即停止运动),动点Q从C出发,沿CB移动(到达点B即停止运动),是否存在一个时刻,PQ 同时平分△ABC的周长与面积?若存在求出这个时刻的t 值,若不存在说明理由.【考点】三角形综合题.【分析】(1)设经过t秒钟,△PBQ的面积等于是△ABC的三分之一,根据题意得:AP=t,BP=6﹣t,BQ=2t,由,△PBQ的面积等于是△ABC的三分之一列式可得求出t的值;(2)在Rt△PQB中,根据勾股定理列方程即可;(3)分两种情况:①当PQ平分△ABC面积时,计算出这时的t=5﹣,同时计算这时PQ所截△ABC的周长是否平分;②当PQ平分△ABC周长时,计算出这时的t=,此时△PBQ的面积是否为,计算即可.【解答】解:(1)设经过t秒钟,△PBQ的面积等于是△ABC的三分之一,由题意得:AP=t,BP=6﹣t,BQ=2t,×2t×(6﹣t)=××6×8,解得:t=2或4,∵0≤t≤4,∴t=2或4符合题意,答:经过2或4秒钟,△PBQ的面积等于是△ABC的三分之一;(2)在Rt△PQB中,PQ2=BQ2+PB2,∴62=(2t)2+(6﹣t)2,解得:t1=0(舍),t2=,答:秒钟后,P、Q相距6厘米;(3)由题意得:PB=6﹣t,BQ=8﹣2t,分两种情况:①当PQ平分△ABC面积时,S△PBQ=S△ABC,(6﹣t)(8﹣2t)=××8×6,解得:t1=5+,t2=5﹣,∵Q从C到B,一共需要8÷2=4秒,5+>4,∴t1=5+不符合题意,舍去,当t2=5﹣时,AP=5﹣,BP=6﹣(5﹣)=1+,BQ=8﹣2(5﹣)=2﹣2,CQ=2(5﹣)=10﹣2,PQ将△ABC的周长分为两部分:一部分为:AC+AP+CQ=10+5﹣+10﹣2=25﹣3,另一部分:PB+BQ=1++2﹣2=3﹣1,25﹣3≠3﹣1,②当PQ平分△ABC周长时,AP+AC+CQ=PB+BQ,10+2t+t=6﹣t+8﹣2t,t=,当t=时,PB=6﹣=,BQ=8﹣2×=,∴S△PBQ=××=≠12,综上所述,不存在这样一个时刻,PQ同时平分△ABC的周长与面积.【点评】本题是动点运动问题,在三角形中的动点问题,首先要确定两个动点的:路线、路程、速度、时间,表示出时间为t时的路程是哪一条线段的长,根据已知条件列等式或方程,解出即可.。
北师大版九年级数学上册《第二章一元二次方程》单元测试卷-带答案
北师大版九年级数学上册《第二章一元二次方程》单元测试卷-带答案一、单项选择题1.若x=-1是方程x2+x+m=0的一个根,则此方程的另一个根是( ) A.-1 B.0 C.1 D.22.一元二次方程(x+1)(x-1)=2x+3的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.已知一元二次方程x2-10x+24=0的两个根是菱形的两条对角线长,则这个菱形的面积为( )A.6 B.10 C.12 D.244.若x=-2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m的值分别是( )A.0,-2 B.0,0 C.-2,-2 D.-2,05.若m,n是一元二次方程x2+3x-9=0的两个根,则m2+4m+n的值是( ) A.4 B.5 C.6 D.126.若关于x的一元二次方程x2+2(m-1)x+m2-m=0的两个实数根α,β满足α2+β2=12,则m的值为( )A. 0 B.1 C.-1 D.-27.根据下列表格中列出来的数值,可判断方程x2-bx-c=0有一个根大约是( )x 0 0.5 1 1.5 2x2-bx-c -15 -8.75 -2 5.25 13A .0.25B .0.75C .1.25D .1.758.若关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根,则a 的取值范围是( )A .a ≠0B .a >-1且a ≠0C .a ≥-1且a ≠0D .a >-1 9.一个大正方形的边长是小正方形边长的3倍多1,若两个正方形的面积和为53,则大正方形的边长为( ) A .7 B .8 C .9 D .1010.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A .3(x -1)x =6210B .3(x -1)=6210C .(3x -1)x =6210D .3x =3210二、填空题11.若x =1是方程x 2-2x +a =0的根,则a =______.12.已知m 是一元二次方程x 2+x -6=0的一个根,则代数式m 2+m 的值等于______.13.若一元二次方程x 2-(m 2-7)x +m =0两根之和为2,则m =__________. 14.若α,β是关于x 的一元二次方程(m -1)x 2-x +1=0的两个实根,且满足(α+1)(β+1)=m +1,则m 的值为__________.15.设x 1与x 2为一元二次方程12x 2+3x +2=0的两根,则(x 1-x 2)2的值为 ______.16.关于x的一元二次方程2x2+4mx+m=0有两个不同的实数根x1,x2,且x12+x22=316,则m=______.17.一元二次方程x(x+1)=0的两根分别为__________________.18.若关于x的一元二次方程(m+1)x2+4x+m2+m=0有一个根为x=0,则m=____.19.用配方法解方程2x2-px+3=0时,方程可变形为2(x-32)2=q,则p=________,q=________.20.一个三角形的两边长分别为3和5,第三边长是方程x2-6x+8=0的根,则这个三角形的周长为________.21.一个两位数等于它十位上的数与个位上的数的积的3倍,已知十位上的数比个位上的数小2,则这个两位数是________.三、解答题22.用适当的方法解下列方程:(1)x2-4x+1=0;(2)3x(x-2)=6(2-x);(3)x2-6x+9=(5-2x)2;(4)12 x 2+3 x =x 2+5.23.关于x 的一元二次方程x 2-3x +k =0有实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m -1)x 2+x +m -3=0与方程x 2-3x +k =0有一个相同的根,求此时m 的值.24.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m ,宽(AB)9m 的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB 平行,另一条与AD 平行,其余部分种草.要使草坪部分的总面积为112m 2,则小路的宽应为多少?25.夏季高温期间居民为了减少外出,更愿意选择线上购物,某购物平台今年二月份注册用户50万人,四月份达到了72万人,假设二月份至四月份的月平均增长率为x. (1)求x 的值;(2)若保持这个增长率不变,五月份注册用户能否达到85万人?为什么? 参考答案一、1-10 BACBC CCBAA 二、11.1 12.6 13.-3 14.-1 15.20 16.-8117.x 1=0,x 2=-1 18.0 19.6 3220.12 21.24三、22.解:(1) x 1=2+ 3 ,x 2=2- 3 (2) x 1=2,x 2=-2(3) x 1=2,x 2=83(4) 无解23.解:(1)根据题意得Δ=(-3)2-4k ≥0,解得k ≤94(2)k 的最大整数为2,方程x 2-3x +k =0可变形为x 2-3x +2=0,解得x 1=1,x 2=2,∵一元二次方程(m -1)x 2+x +m -3=0与方程x 2-3x +k =0有一个相同的根,∴当相同的根为x =1时,m -1+1+m -3=0,解得m =32;当相同的根为x =2时,4(m -1)+2+m -3=0,解得m =1,由题意可知m -1≠0, 即m ≠1,∴m 的值为3224.解:设小路的宽应为xm ,根据题意,得(16-2x)(9-x)=112, 解得x 1=1,x 2=16.∵16>9,∴x =16不符合题意,应舍去,∴x =1. 答:小路的宽应为1m25.解:(1)依题意,得50(1+x)2=72,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:x 的值为20%(2)72×(1+20%)=86.4(万人),86.4>85,∴五月份注册用户能达到85万人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程
一、选择题
1.下列关于的方程:①;②;③; ④()
-1,其中一元二次方程的个数是( )
A .1
B .2
C .3
D .4
2.用配方法解一元二次方程x 2-4x =5时,此方程可变形为( )
A.(x +2)2=1
B.(x -2)2=1
C.(x +2)2=9
D.(x -2)2=9
3.若为方程的解,则的值为( )
A.12
B.6
C.9
D.16
4.
若2690,x x ++=则x y -的值为( ) A.0 B.-6 C.6 D.以上都不对
5. 目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( ) A.438=389 B.389=438 C.389(1+2x )=438
D.438(1+2x )=389
6.
判断关于x 0(0)ax bx c a ++=≠A.x <3.24 B.3.24<x <3.25
C.3.25<x <3.26
D.3.25<x <3.28
7.已知分别是三角形的三边长,则一元二次方程
的根的情况是( )
A .没有实数根
B .可能有且只有一个实数根
C .有两个相等的实数根
D .有两个不相等的实数根
8.已知12x x ,是一元二次方程122+=x x 的两个根,则
2111x x +的值为( ) A.21- B.2 C.2
1 D. 9. 关于x 的方程2210x kx k ++-=的根的情况描述正确的是( )
A . k 为任何实数,方程都没有实数根
B . k 为任何实数,方程都有两个不相等的实数根
C . k 为任何实数,方程都有两个相等的实数根
D. 根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种
10. 某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )
A.19%
B.20%
C.21%
D.22%
二、填空题
11.对于实数a ,b ,定义运算“*”:
例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2= .
12.若x 1=-1是关于x 的方程x 2+mx -5=0的一个根,则此方程的另一个根x 2= .
13.若(是关于的一元二次方程,则的值是________. 14.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m 的值是 .
15.如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实数根,那么c 的取值范围是 .
16.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = .
17.若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一个符合题意的一元二次方程 .
18. 一个两位数等于它的个位数的平方,且个位数字比十位数字大3,•则这个两位数为 .
三、解答题
19.已知关于的方程22(1)(1)0m x m x m --++=.
(1)为何值时,此方程是一元一次方程?
(2)为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.
20.选择适当方法解下列方程:
(1)0152=+-x x (用配方法); (2)()()2232-=-x x x ;
(3)052222=--x x ; (4)()()22132-=+y y .
21.在长为,宽为的矩形的四个角上分别截去四个全等的小正方
形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所
截去小正方形的边长.
22.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价格销售仍可售出200个,
但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低
1元,可多售出50个,但售价不得低于进价),单价降低x 元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1 250元,问:第二周每个旅游纪念品的销售价格为多少元?
23.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?
第21题图。