集成电路制造工艺-金属化与多层互连共42页
合集下载
集成电路制造工艺PPT课件

40
净化厂房
精选
41
芯片制造净化区域走廊
精选
42
投 影 式 光 刻 机
Here in the Fab Two Photolithography area we see one of
our 200mm 0.35 micron I-Line Steppers. this stepper can
image and align both 6 & 8精i选nch wafers.
精选
最快速度:2.4GHz
24
集成电路的分类
–器件结构类型 –集成度 –电路的功能 –应用领域
精选
25
按器件结构类型分类
• 双极集成电路:主要由双极型晶体管构成
–NPN型双极集成电路
–PNP型双极集成电路
• 金属-氧化物-半导体(MOS)集成电路:主要由 MOS晶体管(单极型晶体管)构成
–NMOS
and SemiTool in 1995. Again these are the world's first 300mm wet
process cassettes (that can be spin rin精s选e dried).
44
12 英 寸 氧 化 扩 散 炉
As we look in this window we see the World's First true 300mm production
精选
18
❖ 集成电路单片集成度和最小特征尺寸的发展曲线
精选
19
精选
20
发展 阶段
主要特征 元件数/芯片
特征线宽(um)
栅氧化层厚度 (nm)
金属化和多层互连

TiSi2 和 CoSi2的自对准工艺:
• 溅射剥离从衬底表面去除原生氧化层 • Ti 或 Co 沉积 • 退火形成金属硅化物 • Ti 或 Co 不与SiO2反应,金属硅化物在硅和Ti 或Co接
触处形成 • 去除Ti 或 Co • 选择性再次退火以增强电导率
多晶硅/硅化物复合栅结构
TiSi 2
多晶硅栅极
从中可以看出,采用低电阻率的互连材料和 低介电常数的介质材料可以有效降低互连系统的 延迟时间。
铜及低K介质
铜及低K介质的优势:
铜的电阻率低,可以极大降低互连引线电阻;
Cu
1.7 mWcm
Al
2.65 mWcm
铜的抗电迁移能力强,没有应力迁移,可靠性强; 低K介质,减少了分布电容;
所以,采用铜及低K介质可以进一步减小引线宽度和 厚度,提高集成电路的密度。
铜及低K介质
Cu互连工艺中的关键技术: Cu的沉积技术 低K介质材料的选择和沉积 势垒层材料的选择和沉积技术 Cu的CMP平整化技术 大马士革(镶嵌式)结构的互连工艺 可靠性问题
深亚微米技术的发展:
90nm、45nm线宽 300mm(12寸)晶圆
铜及低K介质
系统集成(SOC)
nn+
SiO2
nn+
退火产生金属硅化物
nn+
SiO2
nn+
湿法腐蚀Ti薄膜
自对准栅技术加离子注入可以大幅减小掺杂横向 效应引起的覆盖电容,提高工作频率。
多晶硅栅取代Al栅,由于栅与衬底Si的功函数差 减少,可以使PMOS的开启电压VT绝对值下降1.21.4V左右。
开启电压VTX降低后,器件充放电幅度降低,时间 缩短,从而也可提高工作频率。
• 溅射剥离从衬底表面去除原生氧化层 • Ti 或 Co 沉积 • 退火形成金属硅化物 • Ti 或 Co 不与SiO2反应,金属硅化物在硅和Ti 或Co接
触处形成 • 去除Ti 或 Co • 选择性再次退火以增强电导率
多晶硅/硅化物复合栅结构
TiSi 2
多晶硅栅极
从中可以看出,采用低电阻率的互连材料和 低介电常数的介质材料可以有效降低互连系统的 延迟时间。
铜及低K介质
铜及低K介质的优势:
铜的电阻率低,可以极大降低互连引线电阻;
Cu
1.7 mWcm
Al
2.65 mWcm
铜的抗电迁移能力强,没有应力迁移,可靠性强; 低K介质,减少了分布电容;
所以,采用铜及低K介质可以进一步减小引线宽度和 厚度,提高集成电路的密度。
铜及低K介质
Cu互连工艺中的关键技术: Cu的沉积技术 低K介质材料的选择和沉积 势垒层材料的选择和沉积技术 Cu的CMP平整化技术 大马士革(镶嵌式)结构的互连工艺 可靠性问题
深亚微米技术的发展:
90nm、45nm线宽 300mm(12寸)晶圆
铜及低K介质
系统集成(SOC)
nn+
SiO2
nn+
退火产生金属硅化物
nn+
SiO2
nn+
湿法腐蚀Ti薄膜
自对准栅技术加离子注入可以大幅减小掺杂横向 效应引起的覆盖电容,提高工作频率。
多晶硅栅取代Al栅,由于栅与衬底Si的功函数差 减少,可以使PMOS的开启电压VT绝对值下降1.21.4V左右。
开启电压VTX降低后,器件充放电幅度降低,时间 缩短,从而也可提高工作频率。
《金属化与多层互连》课件

金属化与多层互连的应用领域
半导体制造:用于制造集成电路和芯片
医疗设备制造:用于制造医疗设备,如CT、 MRI等
电子设备制造:用于制造电子设备,如手 机、电脑等
汽车制造:用于制造汽车电子设备,如车 载导航、车载娱乐系统等
航空航天:用于制造航天器和卫星等
通信设备制造:用于制造通信设备,如基 站、路由器等
金属化与多层互连的材料性能要求
导电性:良好 的导电性能, 保证信号传输 的稳定性和速
度
热稳定性:在 机械强度:足 高温环境下保 够的机械强度, 持良好的性能, 保证电路的稳 防止电路损坏 定性和可靠性
化学稳定性: 良好的化学稳 定性,防止电 路受到腐蚀和
氧化
成本:合理的 成本,保证产 品的市场竞争
金属化与多层互连的解决方案
采用先进的金属化工艺,如电镀、溅射等,提高金属化层的质量 优化多层互连的设计,如减小层间距、增加层数等,提高互连的密度和可靠性 采用先进的封装技术,如晶圆级封装、系统级封装等,提高封装的集成度和可靠性 采用先进的测试技术,如X射线、光学显微镜等,提高测试的准确性和效率
金属化与多层互连的发展历程
1960年代:金属化技术开始应用于集成 电路制造
1990年代:金属化技术进一步发展,多 层互连技术成为集成电路制造的主流技术
1970年代:多层互连技术开始出现,提 高了集成电路的密度和性能
2000年代:金属化技术不断创新,多层 互连技术逐渐向高密度、高性能方向发展
1980年代:金属化技术逐渐成熟,多层 互连技术得到广泛应用
沉积:在硅片上沉积金属或 绝缘材料
电镀:在硅片上沉积金属层
热处理:提高金属层的导电 性和稳定性
金属化与多层互连的工艺流程细节
金属化和多层互连

当金属与半导体之间的载流子输运以隧道 穿透为主时,Rc与半导体的掺杂浓度N及 金-半接触的势垒高度qVb 有下面的关系
qVb Rc exp N
qVb在数值上等于金属费米能级上的电子 进入半导体所需的能量。 结论:要获得低接触电阻的金-半接触, 必须减小金-半接触的势垒高度及提高半 导体的掺杂浓度
CoSi2
Ta 或 TaN Cu
W
W
PSG STI n+
+ + n+ p p USG P型井區 N型井區 P型磊晶層 P型晶圓
铜及低K介质
低K介质材料的沉积与刻蚀: 沉积工艺: (1)旋涂工艺:工艺简单,缺陷密度较低,产率高,易于 平整化,不使用危险气体 (2)CVD工艺:与IC工艺兼容性好 刻蚀要求: (1)工艺兼容性好 (2)对刻蚀停止层材料选择性高 (3)能形成垂直图形 (4)对Cu无刻蚀和腐蚀 (5)刻蚀的残留物易于清除
鋁
p+ N型矽
SiO2
鋁
p+
鋁
Al/Si接触的改善
合 金 化 : 采 用 含 少 量 Si 的 Al-Si 合 金 ( 一 般 为 1% ) , 由于合金中已存在足量的 Si ,可以抑制底 层Si的扩散,防止“尖锲”现象。 在 300oC 以上,硅就以一定比例熔于铝中, 在此温度,恒温足够时间,就可在Al-Si界面形成 一层很薄的 Al-Si 合金。 Al 通过 Al-Si 合金和接触 孔下的重掺杂半导体接触,形成欧姆接触
铜及低K介质
势垒层材料: 包括介质势垒层和导电势垒层 介质势垒层材料:SiN、SiC等新材料 主要功能:和介质层形成多层结构,防止介质 在工艺过程或环境中吸潮而影响性能。 导电势垒层:WN、TiN、Ta、TaN等 主要功能:防止Cu扩散、改善Cu的附着性、 作为CMP和刻蚀停止层、作为保护层。
集成电路工艺基础金属化及多层互连

❖ 低介电系数介质材料 ▪ 多孔电介质材料极脆,给集成工艺带来很大挑战。
后部工序
❖ 主要流程 ▪ 划片;装片;焊引线;封装;成品测试;打印 包装
❖1. 划片用激光束、金刚刀、金刚砂轮
❖2. 装(粘)片
装片就是把芯片装配到管壳底座或框架上去。 常用的方法有树脂粘结,共晶焊接,铅锡合金焊接等。
银浆
芯片
❖ 互连系统已经成为限制集成电路技术进一步发展 的重要因素,单层金属互连无法满足需求,必须 使用多层金属互连技术。
多层金属互连技术对VLSI的意义
❖ 可以使VLSI的集成密度大大增加,从而进一步提 高集成度。 ▪ 互连是器件之间的互连
❖ 可以降低互连线导致的延迟时间
RC l 2
t m tox
❖ 可以在更小的芯片面积上实现相同的电路功能 ❖ 互连线每增加一层,需要增加两块掩膜版
❖寻找新的互连金属材料-第4种方法
铜及低K介质
❖互连引线的延迟时间常数
RCl wll2
wt t tt
m
ox
m ox
▪ 低电阻率材料(Cu) Cu2.0cm
▪ 低K介质材料
以Cu作为互连材料的工艺流程
❖ 0.18um以下的工艺所需 ❖ 双大马士革(Dual-Damascence)工艺
▪ 工艺流程 ▪ 互连+通孔同时淀积,CMP时仅需对互连材料
求有一个扩散阻挡层。
集成电路对金属化材料特性的要求
❖ 晶格结构与外延生长的影响 ▪ 薄膜的晶格结构决定其特性
❖ 电学特性 ▪ 电阻率、TCR、功函数、肖特基势垒高度等
❖ 机械特性、热力学特性以及化学特性
铝在集成电路中的应用
❖ Al的优点:
▪ 电阻率低 Al2.7cm
后部工序
❖ 主要流程 ▪ 划片;装片;焊引线;封装;成品测试;打印 包装
❖1. 划片用激光束、金刚刀、金刚砂轮
❖2. 装(粘)片
装片就是把芯片装配到管壳底座或框架上去。 常用的方法有树脂粘结,共晶焊接,铅锡合金焊接等。
银浆
芯片
❖ 互连系统已经成为限制集成电路技术进一步发展 的重要因素,单层金属互连无法满足需求,必须 使用多层金属互连技术。
多层金属互连技术对VLSI的意义
❖ 可以使VLSI的集成密度大大增加,从而进一步提 高集成度。 ▪ 互连是器件之间的互连
❖ 可以降低互连线导致的延迟时间
RC l 2
t m tox
❖ 可以在更小的芯片面积上实现相同的电路功能 ❖ 互连线每增加一层,需要增加两块掩膜版
❖寻找新的互连金属材料-第4种方法
铜及低K介质
❖互连引线的延迟时间常数
RCl wll2
wt t tt
m
ox
m ox
▪ 低电阻率材料(Cu) Cu2.0cm
▪ 低K介质材料
以Cu作为互连材料的工艺流程
❖ 0.18um以下的工艺所需 ❖ 双大马士革(Dual-Damascence)工艺
▪ 工艺流程 ▪ 互连+通孔同时淀积,CMP时仅需对互连材料
求有一个扩散阻挡层。
集成电路对金属化材料特性的要求
❖ 晶格结构与外延生长的影响 ▪ 薄膜的晶格结构决定其特性
❖ 电学特性 ▪ 电阻率、TCR、功函数、肖特基势垒高度等
❖ 机械特性、热力学特性以及化学特性
铝在集成电路中的应用
❖ Al的优点:
▪ 电阻率低 Al2.7cm
集成电路工艺基础——09_金属化及多层互连

▪ 薄氧(尖楔较浅) ▪ 厚氧(尖楔较深)
❖ 衬底晶向
▪ 〈111〉:横向扩展 、双极集成电路 ▪ 〈100〉:垂直扩展 、pn结短路 、MOS集成电路
(尖楔现象严重)
Al/Si接触的改进
❖Al/Si接触的改进方法: ▪ 铝-硅合金金属化引线 ▪ 铝-掺杂多晶硅双层金属化结构 ▪ 铝-阻挡层结构
铝-硅合金金属化引线-第1种解决方案
铝硅互溶
❖Si在Al中的扩散系数
▪ 在一定的退火温度下,退火时间为ta时,Si原 子的扩散距离为
LSi Dta
其中D为扩散系数
Al与SiO2的反应
❖Al与SiO2的反应 4Al+ 3SiO2 → 3Si+2Al2O3
▪ 吃掉Si表面的SiO2 ,降低接触电阻 ▪ 改善Al引线与下面SiO2 的黏附性
改进电迁移的方法-第2种方法
❖ 铝-铜合金和铝-硅-铜合金 ▪ Al- Si( 1%~2%)-Cu(4%) • 杂质在铝晶粒晶界分凝,可以降低铝原子在 铝晶界的扩散系数,从而使MTF提高一个数 量级。 ▪ 缺点:
• 增大了电阻率 • 不易刻蚀、易受Cl2腐蚀
改进电迁移的方法-第3种方法
❖ 三层夹心结构 ▪ 可以在两次铝之间增加大约500A厚的过渡金属 层。这三层金属通过400℃退火1小时后,在两 层铝之间形成金属间化合物,可以防止空洞穿 越整个金属引线,也可以降低铝在晶粒间界的 扩散系数,使MTF提高2~3个数量级。
❖ 铝硅互溶 ❖ Al与SiO2的反应
铝硅互溶
❖铝硅相图
▪ 相图表示两种组分与温度的关系
• Al-Si系具有低共熔特性 • Al-Si系的共熔温度为577℃,相应的组分配比为Si占
11.3%,Al占88.7% • 淀积Al时Si衬底的温度不得高于577 ℃
❖ 衬底晶向
▪ 〈111〉:横向扩展 、双极集成电路 ▪ 〈100〉:垂直扩展 、pn结短路 、MOS集成电路
(尖楔现象严重)
Al/Si接触的改进
❖Al/Si接触的改进方法: ▪ 铝-硅合金金属化引线 ▪ 铝-掺杂多晶硅双层金属化结构 ▪ 铝-阻挡层结构
铝-硅合金金属化引线-第1种解决方案
铝硅互溶
❖Si在Al中的扩散系数
▪ 在一定的退火温度下,退火时间为ta时,Si原 子的扩散距离为
LSi Dta
其中D为扩散系数
Al与SiO2的反应
❖Al与SiO2的反应 4Al+ 3SiO2 → 3Si+2Al2O3
▪ 吃掉Si表面的SiO2 ,降低接触电阻 ▪ 改善Al引线与下面SiO2 的黏附性
改进电迁移的方法-第2种方法
❖ 铝-铜合金和铝-硅-铜合金 ▪ Al- Si( 1%~2%)-Cu(4%) • 杂质在铝晶粒晶界分凝,可以降低铝原子在 铝晶界的扩散系数,从而使MTF提高一个数 量级。 ▪ 缺点:
• 增大了电阻率 • 不易刻蚀、易受Cl2腐蚀
改进电迁移的方法-第3种方法
❖ 三层夹心结构 ▪ 可以在两次铝之间增加大约500A厚的过渡金属 层。这三层金属通过400℃退火1小时后,在两 层铝之间形成金属间化合物,可以防止空洞穿 越整个金属引线,也可以降低铝在晶粒间界的 扩散系数,使MTF提高2~3个数量级。
❖ 铝硅互溶 ❖ Al与SiO2的反应
铝硅互溶
❖铝硅相图
▪ 相图表示两种组分与温度的关系
• Al-Si系具有低共熔特性 • Al-Si系的共熔温度为577℃,相应的组分配比为Si占
11.3%,Al占88.7% • 淀积Al时Si衬底的温度不得高于577 ℃
硅集成电路工艺——金属化与多层互连

预清洗 刻蚀沟槽或通孔 PVD淀积阻挡层(Ta或者 淀积阻挡层( 或者 或者TaN) 淀积阻挡层 ) PVD或者 或者CVD淀积铜籽晶层 或者 淀积铜籽晶层 电化学镀制备铜体相层, 电化学镀制备铜体相层,填满通孔或沟槽 热退火提高电导率 CMP去除沟槽或通孔之外的铜 去除沟槽或通孔之外的铜
天津工业大学
天津工业大学
多层互连工艺流程
多层互连的基本结构 多层互连的基本结构: 基本结构 金属层 PMD IMD 接触孔(contacts) 接触孔 通孔(Via) 通备
介质淀积
平坦化 否 是否最后一层
接触及通孔形成
是 生长钝化层
金属化
结束
天津工业大学
多层互连工艺流程
天津工业大学
电迁移现象及其改进方法
电迁移现象的物理机制: 电迁移现象的物理机制: 物理机制 大电流密度通过导体时, 大电流密度通过导体时,导体原子将收到导电电子的 碰撞,从而导致导体原子沿电子流的方向迁移。 碰撞,从而导致导体原子沿电子流的方向迁移。结果在 一个方向上形成空洞, 一个方向上形成空洞,而在另一个方向则由于铝原子的 堆积而形成小丘,从而会造成断路和短路失效现象。 堆积而形成小丘,从而会造成断路和短路失效现象。
铝作为互连金属材料的缺点: 作为互连金属材料的缺点: 缺点
Al/Si接触的尖楔现象 接触的尖楔现象 在较大的电流密度下的电迁移 现象
天津工业大学
Al/Si接触中的几个物理现象
Al-Si相图: 相图: 相图 Al在 Si中的溶解度非常低,而Si在Al中的溶解度却比较 在 中的溶解度非常低 中的溶解度非常低, 在 中的溶解度却比较 高,因而硅会向铝中迁移 Si在Al中的扩散系数: 在 中的扩散系数 中的扩散系数: Si在Al膜内的扩散系数远大于在晶体铝内的扩散系数, 在 膜内的扩散系数远大于在晶体铝内的扩散系数 膜内的扩散系数远大于在晶体铝内的扩散系数, 扩散距离远, 扩散距离远,单位面积消耗大 Al与SiO2的反应: 与 的反应: 3SiO2+4Al 3Si+2Al2O3 消耗掉表面氧化膜,增加黏附性 消耗掉表面氧化膜,
天津工业大学
天津工业大学
多层互连工艺流程
多层互连的基本结构 多层互连的基本结构: 基本结构 金属层 PMD IMD 接触孔(contacts) 接触孔 通孔(Via) 通备
介质淀积
平坦化 否 是否最后一层
接触及通孔形成
是 生长钝化层
金属化
结束
天津工业大学
多层互连工艺流程
天津工业大学
电迁移现象及其改进方法
电迁移现象的物理机制: 电迁移现象的物理机制: 物理机制 大电流密度通过导体时, 大电流密度通过导体时,导体原子将收到导电电子的 碰撞,从而导致导体原子沿电子流的方向迁移。 碰撞,从而导致导体原子沿电子流的方向迁移。结果在 一个方向上形成空洞, 一个方向上形成空洞,而在另一个方向则由于铝原子的 堆积而形成小丘,从而会造成断路和短路失效现象。 堆积而形成小丘,从而会造成断路和短路失效现象。
铝作为互连金属材料的缺点: 作为互连金属材料的缺点: 缺点
Al/Si接触的尖楔现象 接触的尖楔现象 在较大的电流密度下的电迁移 现象
天津工业大学
Al/Si接触中的几个物理现象
Al-Si相图: 相图: 相图 Al在 Si中的溶解度非常低,而Si在Al中的溶解度却比较 在 中的溶解度非常低 中的溶解度非常低, 在 中的溶解度却比较 高,因而硅会向铝中迁移 Si在Al中的扩散系数: 在 中的扩散系数 中的扩散系数: Si在Al膜内的扩散系数远大于在晶体铝内的扩散系数, 在 膜内的扩散系数远大于在晶体铝内的扩散系数 膜内的扩散系数远大于在晶体铝内的扩散系数, 扩散距离远, 扩散距离远,单位面积消耗大 Al与SiO2的反应: 与 的反应: 3SiO2+4Al 3Si+2Al2O3 消耗掉表面氧化膜,增加黏附性 消耗掉表面氧化膜,
金属化与多层互连

②Si在Al中扩散:Si在Al薄膜中的扩散比 在晶体Al中大40倍。
③Al与SiO2反应:3SiO2+4Al→3Si+2Al2O3
好处:降低Al/Si欧姆接触电阻;
改善Al与SiO2的粘附性。
9.2.3 Al/Si接触的尖楔现象
图9.3 Al-Si接触引线工艺
T=500℃,t=30min., A=16μm2,W=5μm, d=1μm,消耗Si层厚度
①在低K介质层上刻蚀出Cu互连线用的沟槽; ②CVD淀积一层薄的金属势垒层:防止Cu的扩散; ③溅射淀积Cu的籽晶层:电镀或化学镀Cu需要; ④沟槽和通孔淀积Cu:电镀或化学镀; ⑤400℃下退火; ⑥Cu的CMP。
铜金属化(Copper Metallization)
9.4 多晶硅及硅化物
多晶硅:CMOS多晶硅 栅、局域互连线;
RC常数:表征互连线延迟,即 RC l 。
t m t ox ρ-互连线电阻率,l-互连线长度,ε-介质层介电常数
①低ρ的互连线:Cu,ρ=1.72μΩcm; (Al,ρ=2.82μΩcm)
②低K (ε)的介质材料: ε<3.5
Cu互连工艺的关键
①Cu的淀积:不能采用传统的Al互连布线工艺。 (没有适合Cu的传统刻蚀工艺)
Z=0.35μm。 (相当于VLSI的结深) ∵Si非均匀消耗, ∴实际上,A*<<A,即
Z*>>Z,故 Al形成尖楔
尖楔现象
机理:Si在Al中的溶解度及快速 扩散,使Al像尖钉一样楔进Si衬 底;
深度:超过1μm; 特点: <111>衬底:横向扩展 <100> 衬底:纵向扩展 MOS器件突出。 改善:Al中加1wt%-4wt%的过