天气雷达工作原理共53页文档

合集下载

气象雷达原理及故障维护

气象雷达原理及故障维护

气象雷达原理及故障维护气象雷达是一种用来探测大气中降水和颗粒物的仪器,它可以通过发送和接收雷达波来获取目标物体的位置和速度等信息。

气象雷达不仅对气象预报和天气监测有着重要的作用,同时也为灾害预警和空中交通提供了重要的支持。

气象雷达的运行状态对于保障社会生活和生产的稳定具有重要意义。

本文就将介绍气象雷达的工作原理以及常见的故障维护方法。

一、气象雷达的工作原理气象雷达的工作原理主要是利用雷达波与目标物件的相互作用来实现探测和测距。

具体来说,气象雷达会产生一束高频雷达波,然后通过天线发送到大气中。

当这些雷达波碰到降水或者颗粒物时,部分的波会被散射回来,然后由天线接收并转换成信号。

通过分析接收到的信号,可以确定目标物体的位置、数量、速度等信息。

在大气雷达的干涉探测领域中,对大气风场的定量观测以及重要的降水要素的诊断都离不开气象雷达的工作原理。

气象雷达通过测量回波的强度和时延,可以得到不同粒子的径向分布、速度和大小,从而实现对降水的定量观测。

气象雷达的工作原理还可以帮助人们了解天气状况,从而为预警和预报工作提供准确的数据支持。

二、气象雷达的故障维护虽然气象雷达在天气预报和监测中具有重要作用,但是在长时间使用过程中也会出现一些故障,如信号衰减、天线损坏、设备老化等。

对气象雷达进行定期的维护和检查就显得尤为重要。

以下是常见的气象雷达故障及相应的维护方法:1. 信号衰减信号衰减是指雷达信号在传输过程中逐渐减弱的现象,这会导致探测精度下降。

信号衰减的原因可能是天线驻波比过高、接收机增益不足、传输线路不良等。

为了减少信号衰减,可以定期对天线、接收机和传输线路进行检查和维护,确保其正常工作和良好的状态。

2. 天线损坏天线是气象雷达的核心部件之一,如果天线出现了损坏会直接影响到雷达的正常工作。

天线损坏的表现可能是天线方向偏离、发射功率下降等。

在发现天线损坏时,需要及时更换或修复天线,以保障雷达的正常运行。

3. 设备老化设备老化是指由于长时间使用或者环境因素导致雷达设备出现老化现象,如部件磨损、连接松动等。

气象雷达原理及故障维护

气象雷达原理及故障维护

气象雷达原理及故障维护
气象雷达是一种观测天气的仪器,通过天上反射回来的微波信号获取天气信息。

基本构造和工作原理
气象雷达的基本构造分为两部分:
1.雷达的上部由大型发射天线和反射镜组成;
2.雷达的下部由控制系统、调制器及接受机等组成。

工作原理:在大气中,雷达向上发出脉冲信号。

当脉冲信号碰到了云体的水滴、冰晶等物质,就会有一部分反射回来,被雷达接收机接收并处理。

由于物体反射回来的信号强度取决于其大小、形状和位置等因素,雷达可以通过接收到的信号来了解云体的形状、位置及强度等信息。

应用
气象雷达被广泛应用于天气预报和防灾减灾工作中,可以对较大面积的天气系统进行监测和分析,为公众提供及时准确的天气预报信息。

1.发射机故障
故障表现:雷达无法进行任何发射或只能发射一部分脉冲。

维护方法:首先检查发射机是否有损坏或连接是否良好。

如果没有损坏,则需要检查高压电源、电容和继电器等电路元件。

如果检修以上所有部分仍然无法解决问题,则可能需要更换故障元件。

2.接收机故障
故障表现:雷达无法接收到反射回来的信号。

3.数据传输故障
故障表现:雷达无法传输数据。

总之,气象雷达需要进行定期维护和保养,以确保其正常工作。

对于长时间闲置的雷达,需要在每季度进行开机测验,以确保其正常工作并保持其精度。

第二章多普勒天气雷达原理

第二章多普勒天气雷达原理

§ 在雷达波束中,与天线等距离的粒子同时被探 测脉冲所照射,同时开始产生回波,并同时回 到雷达天线。与天线距离不相等的回波信号, 也有可能同时回到雷达天线。这是因为探测脉 冲具有一定的宽度τ,因而在它通过粒子时产 生的回波信号也有宽度τ。这样,距离较近的 两个粒子虽然它们开始产生回波的时间并不相 同,但是,它们的回波信号仍然有一部分能够 同时回到雷达天线。
§ 可以证明,在径向方向上,粒子的回 波信号能同时返回雷达天线的空间长度
为 h/2,称为雷达的有效照射深度。
有效照射深度
§ 天线开始收到A粒子的回波信号的时间为
t1
2r1 c
§ 开始收到B粒子的回波信号的时间为
t2
2r2 c
§ 最后收到A粒子回波信号的时间为
t3
2r1 c
§ 若天线开始收到B粒子回波的时间恰好是 最后收到A粒子回波的时间
波束截面半径
§r100km=0.87km §r200km=1.745km §r300km=2.618km
与接收机有关的参数
§ 雷达天线所收到的回波信号是非常微弱的。所以, 雷达接收机必须具有接收微弱信号的能力。这种能 力常称为灵敏度,它用接收机的最小可辨功率Pmin来 表示。所谓最小可辨功率,就是回波信号刚刚能从 噪声信号中分辨出来时的回波功率。我国新一代天 气雷达(S波段)接收机的最小可测灵敏度对于短脉 冲(1.57μs)是-107dbm,对于长脉冲(4.71μs)是113dbm。
与发射机有关的参数
§ 发射机触发信号产生器周期性地产生一个触发 脉冲,输送到发射机,使发射机开始工作。
§ 在一个脉冲内信号的高频振荡频率叫工作频率 。
§ 每秒产生的触发脉冲的数目,称为脉冲重复频 率,用PRF表示。

天气雷达的基本工作原理和参数-168页文档资料

天气雷达的基本工作原理和参数-168页文档资料
多普勒天气雷达除常规天气雷达功能 之外,还可利用降水回波频率与发射频率 之间变化的信息来测定降水粒子的径向速 度,并通过此推断风速分布,垂直气流速 度,大气湍流,降水粒子谱分布,降水中 特别是强对流降水中风场结构特征。
常规天气雷达仅能提供反射率 因子资料。多普勒天气雷达将提供 两种附加的基本资料,径向速度和 速度谱宽,它们将增强对强风暴的 探测能力,也能改进对中尺度和天 气尺度系统的预报。
体扫模式 (VCP:Volume Cover Pattern) 扫描方式确定一次体积扫中使用多少个仰角,
而具体是哪些仰角则由体扫模式来规定。WSR-88D 可有20个不同的VCP,目前只定义了其中的4个: VCP11 -- VCP11(scan strategy #1,version 1) 规定5分钟内对14个具体仰角的扫描方式。 VCP21 -- VCP21(scan strategy #2,version 1) 规定6分钟内对9个具体仰角的扫描方式。 VCP31 --- VCP31 (scan strategy #3,version 1)规定10分钟内对5个具体仰角的扫描方式。 VCP32 --- VCP32(scan strategy #3,version 2)确定的10分钟完成的5个具体仰角与VCP31相同。 不同之处在于VCP31使用长雷达脉冲而VCP32使用 短脉冲。 WSR-98D未定义VCP32。
自相干多普勒天气雷达结构框图
全相干多普勒天气雷达结构框图
fo 发射脉冲的载频 fd 多普勒频率
发射频率 Vs 多普勒频移
发射频率 多普勒频移
中国新一代天气雷达系统简介
• 1、雷达数据采集系统(RDA) • 2、雷达产品生成子系统(RPG) • 3、主用户处理器子系统(PUP)

多普勒天气雷达

多普勒天气雷达

工作原理
多普勒雷达是世界上最先进的天气监测设备,并且已经在很多国家得到深入应用,因此,下面我们就多普勒 雷达的工作原理进行深入分析和研究,以便能够使人们对其工作原理有着更为清楚的认识。
1.1通过气象目标对雷达电磁波的散射和吸收
粒子能够对电磁波进行吸收和散射,这也是粒子对电磁波的两大基本形式。雷达探测大气的基础是由气象目 标对雷达电磁波的吸收和散射所得。如果电磁波的波束在大气传播途中遇到包括云滴、雨滴以及其他悬浮粒子和 空气分子,作为入射的电磁波波束中的有一部分会因为上述的粒子反射到不同地方,这类现象称之为散射。一部 分散射的电磁波波束会被粒子吸收,最终按照雷达的方向返回被雷达天线接收,多普勒天气雷达能够通过接收到 的电磁波束中自带的振幅和位相等数据,得出气象目标的平均速度以及发射率因子和速度谱宽等基本数据,进而 推断并计算出相对应的气象情况和其他内部结构特征。
重要意义
多普勒雷达是世界上最先进的雷达系统,有“超级千里眼”之称。相较于传统天气雷达,多普勒雷达能够监 测到位于垂直地面8-12公里的高空中的对流云层的生成和变化,判断云的移动速度,其产品信息达72种,天气预 报的精确度比以前将会有较大提高。1991至1997年,美国在全国及海外布的165台NEXRDA被称为天气雷达系统的 典范,是世界上最先进的和最精确的天气雷达系统。它所采用的多普勒信号处理技术和自动产生灾害性天气警报 的能力无与伦比。NEXRAD可以自动形成和显示丰富多彩的天气产品,极大地提高了对超级单体、湖泊效应雪、成 层雪、雷暴、降水、风切变、下击暴流、龙卷、锋面、湍流、冰雹等重大灾害性天气的监测和预报能力。对强雷 暴的侦察率是96%,对龙卷的发现率是83%,对龙卷警告的平均预警时间是18分钟,而在未建NEXRDA络之前,美国 国家上述参数的平均值分别是60%,40%和2分钟。从中可以预料CINRDA将从根本上增强探测强雷暴的能力,能较 早地探测到晴空下威胁航行的大气湍流和发生灾害性洪水的可能,并为水资源的管理决策提供极有价值的信息。 新一代天气雷达系统建设是我国20世纪末21世纪初的一项气象现代化工程,计划在全国建成S频段和C频段雷达 156部,该系统建成后,我国的气象现代化水平会上一个新的台阶。

雷达气象学之第三章(多普勒天气雷达探测原理和方法)

雷达气象学之第三章(多普勒天气雷达探测原理和方法)

2、脉冲对处理法(PPP)
在一定假设条件下对每一个距离库内的连 续两个取样值作成对处理.从而获得平均 多普勒频率和频谱宽度。此法优点在于能 实时处理.并且有一定精度,但它不能得 到频率谱。
3、相干记忆滤波器(CMF)处理法
此法只需要一个线路,在不设置距离库的 情况下同时对雷达探测范围内各个距离上 作粗略的谱分析,并能用如PSI(平面切变 线是其)等直接显示出来。但它精度不高;
垂 直 风 廓 线
补充风符号
1.风向杆 表示风的 来向。 2.风羽每 条代表风 速4米/秒, 半条代表2 米/秒,三 角旗代表 20米/秒。
谱 宽
反 射 率
三、影响速度谱宽的气象因子
• 多普勒速度谱宽表征着有效照射体内不同 大小的多普勒速度偏离其平均值的程度, 实际上它是由散射粒子具有不同的径向速 度所引起的。对气象目标物而言,影响速 度谱宽的主要因子有四个:
• 显然,雷达有效照射体中粒子直径的差别 越大,由此造成的多普勒速度谱越宽。
• 因此速度的谱宽实际上也取决于降水粒子 的谱分布。
• 当雷达水平探测时,粒子的下落末速度在 雷达波轴上的径向分量为零,所以它对多 普勒速度谱宽没有任何影响。
• 而当雷达垂直指向探测时,粒子下落末速 度即为径向速度,故由此造成的谱曾宽作 用最大。
• 在实际工作中需要了解的是有效照射体内
平均的多普勒速度和速度谱宽度,根据以
上关系式,并注意到 f 2v 关系式,则平均
多普勒速度
v
,和速度谱方差
2 v
分别为:
v 1 v v dv
Pr
2 v
1 Pr
vv
2
v dv
径向速度谱密度、平均径向速度、径向速度 谱宽三者的关系示意图

雷达气象学原理多普勒天气雷达

雷达气象学原理多普勒天气雷达
雷达气象学原理 多普勒天气雷达
多普勒天气雷达除此之外,还可利用 降水回波频率与发射频率之间变化的信 息来测定降水粒子的径向速度,并通过 此推断风速分布,垂直气流速度,大气 湍流,降水粒子谱分布,降水中特别是 强对流降水中风场结构特征。
以前,用常规天气雷达进行的天气预报 仅仅使用反射率因子资料。多普勒天气雷达 将提供两种附加的基本资料,径向速度和速 度谱宽,它们将增强对强风暴的探测能力, 也能改进对中尺度和天气尺度系统的预报。
多普勒频率与径向速度的关系
假设多普勒雷达发射脉冲的工作频率为f0,目标与雷达的距
离为r,则雷达波发往目标到返回天线所经过的距离为2r。这 个距离用波长来度量,相当 个波长;用弧度来衡量相当于 个弧度。若所发射的电磁波在天线处的位相为 ,那么电磁波 被散射回到天线时的相位应是
位相的时间变化率
由于目标物的径向运动引起 的雷达回波信号的频率变化,它 就是多普频移或多普勒频率。
多普勒雷达是通过直接测量多普勒 频率来得到径向速度的吗?
4.2 多普勒雷达径向速度探测方法
Pulse-Pair Method 脉冲对方法
取两个连续的脉冲然 后测量接收脉冲的相位, 这种脉冲对位相变化可以 比较容易并且比较准确地 测量
DΦ/dt 实际上就是角 速度 = w = 2πfd
假定当第一个脉冲遇到目标物时,该目标物距雷达的距离为r,则该目标物 产生的回波到达雷达时的位相为:
2、平均多普勒频移及频谱宽度
3、平均多普勒速度和速度谱宽度
注意:脉冲对方法并没有从回波信号中提取频谱或功率谱,从而 不能按以上公式计算和,而是直接对回波信号作简便计算求得。
(8.43)
影响速度谱宽的气象因子
谱宽表征着有效照射体内不同大小的多普勒速度偏离其平 均值的程度。谱宽可以用做速度估计质量控制的工具:当谱宽 增加,速度估计的可靠性就减小。对气象目标物而言,影响谱 宽的主要因子有四个:

气象雷达

气象雷达

顺风耳----气象雷达3.1 探测原理气象雷达的基本工作原理与一般的雷达相同,可以概括地描述为:它间歇性地向空中发射电磁波列(称为探测脉冲),然后接收被气象目标散射回来的电磁波列(称为回波信号),并在荧光屏上显示出来,从而确定气象目标的空间位置和特性。

在雷达探测中,目标的空间位置是用离雷达站的直线距离r 、相对于雷达站的仰角α和方位角β来表示的,见图3.1。

图3.1 目标空间位置的确定3.1.1 目标距离的测定目标离雷达的距离r 是根据电磁波的传播速度和探测脉冲与回波信号之间的时间间隔Δt 来确定的。

电磁波在大气中的传播速度与在真空中稍有不同,但对测距精度的影响很小,故仍可取c=3×108m/s 。

因此: t c r ∆=21 (3.1)通常,时间间隔以μs 为单位,故上式可写成:r=0.15Δt (km) (3.2)或 r=150Δt (m) (3.3)3.1.2 目标方位角和仰角的测定目标的方位角和仰角的测定是依靠天线的方向性来实现的。

天气雷达的天线具有很强的方向性,它能将探测脉冲的能量集中地向某一方向发射。

同样,它也只能接收沿同一方向来的回波信号。

所以,只有当天线对准目标时,才能接收到目标的回波信号。

根据这一原理,当发现目标时,天线所在的方位角和仰角就是目标相对于雷达的方位角和仰角。

3.1.3 目标特性的测定气象目标对雷达电磁波的散射是雷达探测大气的基础。

大气中引起雷达波散射的主要物质是大气介质,云、降水粒子等。

其中大气介质的散射与反射包括大气气体分子的散射,以及大气介质折射指数分布不均匀引起的散射与反射。

云、降水粒子的散射情况随相态、几何形状不同而异,表示气象目标散射特性的物理量有雷达截面,即后向散射截面,雷达反射率以及雷达反射率因子。

雷达回波功率是由有效照射体积内所有气象目标产生的。

有的雷达在大气中的无云区,或在由不可能被探测到的很小粒子所组成的云区内能探测到回波,说明这种雷达的灵敏度很高,探测到的回波称为晴空回波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档