北师大新版八年级数学上册期末试卷

合集下载

北师大版八年级上册数学期末考试试卷带答案

北师大版八年级上册数学期末考试试卷带答案

北师大版八年级上册数学期末考试试题一、单选题1.下列四组数中,是勾股数的是()A .5,12,13B .23,24,25C .1D .7,24,262.点()2021,2022A --在()A .第一象限B .第二象限C .第三象限D .第四象限3.下列计算正确的是()A 4=-B =C4=D 5=4.下列各数:0.456,32π,3.14,0.80108,0.1010010001…(邻两个1之间0的个数逐次加1))A .4个B .3个C .2个D .1个5.古代数学问题:甲袋中装有金币9枚(每枚金币重量相同),乙袋中装有银币11枚(每枚银币重量相同),称重两袋重量相等;两袋互相交换1枚,甲袋比乙袋轻了13两(袋子重量忽略不计).问:每枚金币、银币的重量各为多少?设一枚金币的重量为x 两,一枚银币的重量为y 两,则可列方程组为()A .91191113x y x y y x =⎧⎨-=-+⎩B .91191113x y x y y x =⎧⎨-=--⎩C .91181013x yx y y x =⎧⎨+=++⎩D .91181013x yx y y x =⎧⎨+=+-⎩6.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60708090100人数4812115则该办学生成绩的众数和中位数分别是()A .70分,80分B .80分,80分C .90分,80分D .80分,90分7.如图,不能判断1l //2l 的条件是()A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠38.已知函数y =ax ﹣3和y =kx 的图象交于点P (2,﹣1),则关于x ,y 的二元一次方程组3y ax y kx =-⎧⎨=⎩的解是()A .21x y =-⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .21x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩9.关于函数21y x =-+,下列结论正确的是()A .图象必经过点()2,1-B .图象经过第一、二、三象限C .当12x >时,0y <D .y 随x 的增大而增大10.一次函数y=mx+n 与y=mnx (mn≠0),在同一平面直角坐标系的图象是()A .B .C .D .二、填空题11.9的算术平方根是.12.已知2x ﹣3y =1,用含x 的代数式表示y ,则y =____.13.甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:测试项目测试成绩甲乙面试9095综合知识测试8580根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.14.若点P (m+3,m+1)在x 轴上,则点P 的坐标为________.15.一个零件的形状如图所示,按规定∠A 等于90°,∠B ,∠D 应分别是20°和30°,聪明的李叔叔通过量得∠BCD 的度数就断定这个零件是否合格,那么∠BCD =_______时这个零件合格.16.如图,在一次夏令营活动中,小明从营地A 出发,沿北偏东60︒方向走了到达B地,然后再沿北偏西30︒方向走了50m 到达目的地C ,则A 、C 两地之间的距离为_______m .17.已知点P (1,2)关于x 轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为_________________.18.我们经过探索知道22221131122++=,22221171236++=,2222111313412++=,L,若已知22111(1)n a n n =++++++= _______(用含n 的代数式表示,其中n 为正整数).三、解答题19-.20.解方程组:244523x y x y -=-⎧⎨-=-⎩21.如图,在Rt ABC 中,90B Ð=°,4AB =,3BC =,AD CD =,求CD 的长.22.已知21a -的算术平方根是3,2a b -+的立方根是2,求4a b -的平方根.23.为了让青少年学生走向操场,走进自然,走到阳光下,积极参加体育锻炼.我校启动了“学生阳光体育短跑运动”,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格:次数12345小明的成绩(秒)13.313.413.3______13.3小亮的成绩(秒)13.2______13.113.513.3(2)请写出小明的成绩的中位数和众数,小亮成绩的中位数;(3)分别计算他们成绩的平均数和方差,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?24.学校计划向某花卉供应商家定制一批花卉来装扮校园(花盆全部为同一型号),该商家委托某货运公司负责这批花卉的运输工作.该货运公司有甲、乙两种专门运输花卉的货车,已知1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;3辆甲型货车和1辆乙型货车满载一次可运输1900盆花卉.(1)求1辆甲型货车满载一次可运输多少盆花卉,1辆乙型货车满载一次可运输多少盆花卉?(2)学校计划定制6500盆花卉,该货运公司将同时派出甲型货车m 辆、乙型货n 辆来运输这批花卉(两种型号的车都要有),一次性运输完毕,并且每辆货车都满载,请问有哪几个运输方案?25.如图,一次函数y kx b =+的图象经过点()0,3A 和点()2,0B ,以线段AB 为边在第一象限内作等腰直角ABC ,且90BAC ∠=︒.(1)求一次函数的表达式;(2)求出点C 的坐标.26.阅读下列一段文字,然后回答问题.已知在平面内两点()111,P x y 、()222,P x y ,其两点间的距离12PP =且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -.(1)已知A 、B 两点在平行于y 轴的直线上,点A 的纵坐标为4,点B 的纵坐标为1-,试求A 、B 两点之间的距离;(2)已知一个三角形各顶点坐标为(1,6)D 、(2,2)E -、(4,2)F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标以及PD PF +的最短长度.27.如图,在平面直角坐标系中,有一个△ABC ,顶点(1,3)A -,(2,0)B ,(3,1)C --.(1)画出△ABC 关于y 轴的对称图形111A B C ∆(不写画法)点A 关于x 轴对称的点坐标为_____________;点B 关于y 轴对称的点坐标为_____________;点C 关于原点对称的点坐标为_____________;(2)若网格上的每个小正方形的边长为1,求△ABC 的面积.28.如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.参考答案1.A 2.C 3.D 4.B 5.D 6.B 7.D 8.B 9.C 10.C 11.312.2133x -【分析】先移项,再化y 的系数为1即可解题.【详解】解:231x y -= ,321y x ∴=-解得:2133 y x =-故答案为:21 33 x-.13.乙【详解】解:甲候选人的最终成绩为:32 9085883232⨯+⨯=++,乙候选人的最终成绩为:32 9580893232⨯+⨯=++,∵8889<,∴乙将被录取.故答案为:乙14.(2,0)【详解】解:∵点P(m+3,m+1)在x轴上,∴m+1=0,解得m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故答案为:(2,0).15.140°【分析】延长DC交AB于E,根据三角形的一个外角等于与它不相邻的两个内角的和,即可计算出∠BCD的度数.【详解】解:延长DC交AB于E,∵∠BCD=∠B+∠CEB,CEB A D∠=∠+∠∴∠BCD=∠B+∠D+∠A∵∠A等于90°,∠B,∠D应分别是20°和30°,∴∠BCD=20°+30°+90°=140°,故答案为:140°.16.100【分析】根据题意点C位于点B的西偏北60゜方向,再根据平行线的性质可得点A位于点B的西偏南30゜方向,从而可得AB⊥BC,由勾股定理即可求得AC的长.【详解】如图所示,∠CBH=30゜,∠DAB=60゜∴∠BAE=90゜-∠DAB=30゜,∠CBF=90゜-∠CBH=60゜∵FB∥AE∴∠FBA=∠BAE=30゜∴∠ABC=∠CBF+∠FBA=60゜+30゜=90゜BC=在Rt△ABC中,AB=,50mAC==由勾股定理得:100(m)故答案为:10017.y=﹣5x+5.【分析】由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为y=﹣5x+5.考点:一次函数图象与几何变换.18.221n n n ++【分析】先求出1a ,2a ,3a ,L ,n a 的值,代入原式利用算数平方根和公式()111n n 1n n 1=-++进行化简与计算,即可求解.【详解】解:∵221222113311222a ⎛⎫=++== ⎪⎝⎭,222222117712366a ⎛⎫=++== ⎪⎝⎭,2232221113131341212a ⎛⎫=++== ⎪⎝⎭,()()22211111(1)1n n n a n n n n ⎡⎤++=++=⎢⎥++⎢⎥⎣⎦,++ ()()11371326121n n n n ++=++++ ()1111111126121n n =+++++++++ ()1111126121n n n =⨯++++++ ()11111223341n n n =+++++⨯⨯⨯+ 11111111223341n n n =+-+-+-++-+ 111n n =+-+221n n n +=+故答案为:221n nn ++.19-【分析】先分别将二次根式全部化简为最减二次根式,然后相加减即可得出答案.【详解】解:原式=--=-【点睛】本题主要是考查了二次根式的加减,再进行二次根式的加减运算之前,一定要把二次根式化为最简二次根式,然后将同类二次根式相加减.20.125x y ⎧=⎪⎨⎪=⎩【分析】方程组利用加减消元法求出解即可;【详解】244523x y x y -=-⎧⎨-=-⎩解:①×2得428x y -=-③③-②得315y =,解得5y =将5y =代入①得254x -=-解得12x =∴原方程组的解为125x y ⎧=⎪⎨⎪=⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.258【分析】设CD=AD=x ,则BD=4-x ,在Rt △DBC 中由勾股定理建立方程可求得x 的值,从而求得CD 的长.【详解】设CD=AD=x ,则BD=AB -AD=4-x∵BC=3∴在Rt △DBC 中,由勾股定理得:222CD BD BC -=即222(4)3x x --=解方程得:258x =即258AD =22.3±【分析】根据21a -的算术平方根是3可列式221=3a -,进而求得a 的值;再根据2a b -+的立方根是2可列式32=2a b -+,进而求得b 的值,再进行4a b -的平方根计算即可.【详解】解∵221=3a -,∴=5a ,∵32=2a b -+,∴=-1b ,∴4a b -的平方根为:3===±.【点睛】此题考查算数平方根、立方根、平方根的定义和求法,熟练掌握定义是解此题的关键.23.(1)13.2,13.4;(2)小明:中位数13.3,众数13.3,小亮:中位数13.3;(3)小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩.【分析】(1)从统计图中可得到每次百米训练的成绩,从而填入表格即可;(2)根据中位数、众数的意义求出结果即可;(3)计算两人的平均数、方差,再比较得出结论.【详解】解:(1)从统计图可知,小明第4次的成绩为13.2,小亮第2次的成绩为13.4,故答案为:13.2,13.4;补全的表格如下:次数12345小明13.313.413.313.213.3小亮13.213.413.113.513.3(2)小明5次成绩的中位数是13.3,众数为13.3;小亮5次成绩的中位数是13.3;(3)x 小明13.213.3313.413.35+⨯+==x 小亮13.113.213.313.413.513.35++++==∴2S 小明()()()()()22222113.213.313.313.313.313.313.313.313.413.35⎡⎤=-+-+-+-+-⎣⎦0.004=2S 小亮()()()()()22222113.113.313.213.313.313.313.413.313.513.35⎡⎤=-+-+-+-+-⎣⎦0.02=∵x 小明x =小亮∴2S 小明2S <小亮∴小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩.【点睛】本题考查折线统计图、加权平均数、中位数、众数以及方差的意义和计算方法,明确各个统计量的意义是正确解答的前提.24.(1)甲型货车每辆可装载500盆花卉,乙型货车每辆可装载400盆花卉(2)共有三种运输方案:①1辆甲型货车,15辆乙型货车;②5辆甲型货车,10辆乙型货车;③9辆甲型货车,5辆乙型货车【分析】(1)设1辆甲型货车满载一次可运输x 盆花卉,1辆乙型货车满载一次可运输y 盆花卉,根据题目中已知的两种数量关系,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据(1)所求结果,可得5004006500m n +=,结合m ,n 为正整数,即可得出各运输方案.(1)解:设1辆甲型货车满载一次可运输x 盆花卉,1辆乙型货车满载一次可运输y 盆花卉,依题意得:3170031900x y x y +=⎧⎨+=⎩,解得500400x y =⎧⎨=⎩.答:甲型货车每辆可装载500盆花卉,乙型货车每辆可装载400盆花卉.(2)由题意得:5004006500m n +=,∴6545n m -=.∵m ,n 为正整数,∴115m n =⎧⎨=⎩或510m n =⎧⎨=⎩或95m n =⎧⎨=⎩.∴共有三种运输方案:①1辆甲型货车,15辆乙型货车;②5辆甲型货车,10辆乙型货车;③9辆甲型货车,5辆乙型货车.【点睛】本题考查了二元一次方程组以及二元一次方程的整数解应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出二元一次方程并求出整数解.25.(1)332y x =-+;(2)(3)5,【分析】(1)用待定系数法,将A B 、两点坐标代入解析式,解出k b 、的值,回代入解析式即可.(2)过点C 向y 轴做垂线,交点为D ;由题意可知Rt AOB Rt CDA ≌,从而得出CD 与AD 的值,进而求出点C 的坐标.【详解】解:(1)将A B 、两点坐标代入解析式有302b k b=⎧⎨=+⎩解得332b k =⎧⎪⎨=-⎪⎩332y x ∴=-+.(2)如图过点C 向y 轴做垂线,交点为D ,由题意知AC AB =,90ADC ∠=︒90CAB ∠=︒90DAC OAB OAB OBA∠+∠=︒=∠+∠DAC OBA∴∠=∠在Rt AOB 和Rt CDA 中ADC BOA DAC OBA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩Rt AOB Rt CDA ∴ ≌()AAS 23AD OB CD OA ∴====、∴点C 的横坐标为3,纵坐标为5∴点C 的坐标为(3)5,.【点睛】本题考查了一次函数解析式,三角形全等,点坐标.解题的关键在于构造直角三角形,求线段长度来表示点坐标.26.(1)5;(2)能,理由见解析;(3)13,04⎛⎫ ⎪⎝⎭【分析】(1)根据文字提供的计算公式计算即可;(2)根据文字中提供的两点间的距离公式分别求出DE 、DF 、EF 的长度,再根据三边的长度即可作出判断;(3)画好图,作点F 关于x 轴的对称点G ,连接DG ,则DG 与x 轴的交点P 即为使PD+PF 最短,然后有待定系数法求出直线DG 的解析式即可求得点P 的坐标,由两点间距离也可求得最小值.【详解】(1)∵A 、B 两点在平行于y 轴的直线上∴AB=4(1)5--=即A 、B 两点间的距离为5(2)能判定△DEF 的形状由两点间距离公式得:5DE ==,5DF ==,4(2)6EF =--=∵DE=DF∴△DEF 是等腰三角形(3)如图,作点F 关于x 轴的对称点G ,连接DG ,则DG 与x 轴的交点P 即为使PD+PF 最小由对称性知:点G 的坐标为(4,2)-,且PG=PF∴PD+PF=PD+PG≥DG即PD+PF 的最小值为线段DG 的长设直线DG 的解析式为(0)y kx b k =+≠,把D 、G 的坐标分别代入得:642k b k b +=⎧⎨+=-⎩解得:83263k b ⎧=-⎪⎪⎨⎪=⎪⎩即直线DG 的解析式为82633y x =-+上式中令y=0,即826033x -+=,解得134x =即点P 的坐标为13,04⎛⎫ ⎪⎝⎭由两点间距离得:DG=22(41)(26)96473DG =-+--=+=所以PD+PF 的最小值为73【点睛】本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.27.(1)见解析;(-1,-3)、(-2,0)(3,1)(2)9.【分析】(1)根据关于y 轴对称的对应点的坐标特征,即横坐标相反,纵坐标相同,即可得出对应点的111A B C 、、的坐标,然后连接三点即可画出△ABC 关于y 轴的对称图形.根据关于x 轴、y 轴、原点对称的对应点的坐标特征即可解决.(2)将三角形ABC 面积转化为CDA CBF ABE CDEF △△△矩形S -S -S -S 求解即可.【详解】解:(1)∵三角形各点坐标为:(1,3)A -,(2,0)B ,(3,1)C --.∴关于y 轴对称的对应点的坐标为()()()1111,3-2,03-1A B C 、、,,依次连接个点.由关于x 轴对称的点的坐标特征可知,A 点关于x 轴对称的对应点的坐标为(-1,-3),由关于y 轴对称的点的坐标特征可知,B 点关于y 轴对称的对应点的坐标为(-2,0),由关于原点对称的点的坐标特征可知,C 点关于原点对称的对应点的坐标为(3,1).(2)分别找到点D (-3,3)、E (2,3)、F (2,-1),由图可知,四边形CDEF 为矩形,且CDEF 矩形S =20,ABC CDA CBF ABE CDEF △△△△矩形S =S -S -S -S =20-4-52-92=9.所以△ABC 的面积为9.28.AED ACB ∠=∠,理由见解析【分析】首先判断∠AED 与∠ACB 是一对同位角,然后根据已知条件推出DE ∥BC ,得出两角相等.【详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠4.∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).。

北师大版八年级(上)期末数学试卷(含答案) (共四套)

北师大版八年级(上)期末数学试卷(含答案) (共四套)

北师大版八年级上期末测试卷(1)一、选择题:(每小题3分,共18分。

) 1、下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。

C ;81的算术平方根是9 D:x=2 y=1是方程2x-y=3的解。

2、414 ,226 15三个数的大小关系是( ) A: 414<`15<`226 B:226<`15<`414C: 414<`226<15 D:15< 226 <4143、以方程组{12+=+-=x y x y 的解为坐标的点在( )A 第一象限B 第二象限C 第三象限D 第四象限 4、如图,AD ⊥ BC,三角形ABD 和三角形CDE都是等腰三角形 , 且BC=17,DE=5 那么线段AC=( )A:5, B:7, C:12, D:135、在平面直角坐标系中,O 为原点,直线y=kx+b 交 X 轴于A (-2,0),交y 轴于B ,且三角形AOB 的面积为8,则k=( ) A:1 B: 2 C: -2或4, D:-4或46、某班七个合作学习小组人数如下,4, 5, 5, x , 6, 7, 8, 已知这组数据的平均数为6,则这组数据的中位数和众数是( )A :5, 5B :6, 5C :6, 5和6,D :6, 5和7二填空题(每小题3分,共24分。

)7、在△ABC 中,如果BC :AC :AB=1:3:2,则∠A :∠B :∠C=……………… 8、直线y=ax-2与直线y=bx+1的交点在x 轴上,则a:b=……………9、已知实数x y 满足y=xx 221616---+2,则x-y=…………----------10、已知A (m,-2) B (3, m-1)且AB ∥x 轴,则线段AB= ---------11、函数y=-3x+2的图象上有一点P,且P 点到x 轴的距离为3,则P 点坐标为… 12、等边△ABC 的两个顶点为A (2,0) B(-4,0)则顶点C 坐标为………13、已知直线y=mx-1上有一点P (1,n)到原点的距离为10,则直线与两轴所围成的三角形面积为………………14、在y=kx+b 中,当x=5时y=6,当x=-1时y=-2,当x=2时y=……… 三、简答题15(10分)解方程组(1) ⎩⎨⎧=-=+②①7211y x y x (2)⎩⎨⎧=+=.13y 2x 11,3y -4x .16.化简:(10分) (1)31318)62(-⨯-.(2)计算: 34827++)32)(32(-+17(6分)如图,将一副直角三角尺如图放置,已知AE ∥BC ,试求∠AFD 的度数。

(完整版)北师大版八年级上册数学期末测试卷及含答案(高分练习)

(完整版)北师大版八年级上册数学期末测试卷及含答案(高分练习)

北师大版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A. B. C.D.2、在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°3、以下列各组数为边的三角形中,是直角三角形的有()( 1 )3,4,5;(2),,;(3),,;(4)0.03,0.04,0.05.A.1个B.2个C.3个D.4个4、若一个正方形的面积是12,则它的边长是()A. B.3 C. D.45、为了筹备班级元旦联欢晚会,班长对全班同学爱吃什么水果进行民意调查,再决定买哪种水果.下面的调查数据中,他最应该关注的是()A.众数B.平均数C.中位数D.加权平均数6、下列说法:①无理数都是无限小数;②的算术平方根是3;③数轴上的点与实数一一对应;④平方根与立方根等于它本身的数是0和1;⑤若点A(-2,3)与点B关于x轴对称,则点B的坐标是(-2,-3).其中正确的个数是()A.1个B.2个C.3个D.4个7、我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题,意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完,试问大、小和尚各几人?若设大、小和尚各有x,y人,下列方程组正确的是( )A. B. C. D.8、12的负的平方根介于()A.﹣5与﹣4之间B.﹣4与﹣3之间C.﹣3与﹣2之间D.﹣2与﹣1之间9、要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是()A.甲B.乙C.丙D.无法确定10、如图,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是()A.8米B.12米C.5米D.5或7米11、如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l 于点B1,过点B1作直线l的垂线交y轴于点A2;;按此作法继续下去,则点A4的坐标为()A.(0,64)B.(0,128)C.(0,256)D.(0,512)12、如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是()A.20°B.35°C.40°D. 70°13、下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定14、如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8B.4C.10D.515、若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.3二、填空题(共10题,共计30分)16、如图,在周长为16,面积为6的矩形纸片中,是的中点. 是上一动点,将沿直线折叠,点落在点处.在上任取一点,连接,,则的最小值为________.17、如图,在⊿中,, 点在边上,;,则等于 ________ .18、如图,已知点A(x1, y1)、B(x2, y2)在一次函数y=kx+b(k<0)的图像上,则y1________y2。

最新北师大版数学八年级上册期末试卷(含答案)

最新北师大版数学八年级上册期末试卷(含答案)

最新北师大版数学八年级上册期末试卷(含答案)最新北师大版数学八年级上册期末试卷(含答案)说明:本卷共七大题,全卷共24题,满分120分,考试时间为100分钟。

一、选择题(本大题共6小题;每小题3分;共18分)1.16的平方根是A。

2B。

4C。

±2D。

±42.P1 (x1.y1);P2 (x2.y2)是正比例函数y=-x图象上的两点;下列判断中,正确的是A。

y1.y2B。

y1 < y2C。

当x1 < x2时,y1 < y2D。

当x1.y23.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71;1.85;1.85;1.95;2.10;2.31;则这组数据的众数是A。

1.71B。

1.85C。

1.90D。

2.314.下列长度的各组线段能组成一个直角三角形的是A。

4cm;6cm;11cmB。

4cm;5cm;1cmC。

3cm;4cm;5cmD。

2cm;3cm;6cm5.如图AB=AC,则数轴上点C所表示的数为A。

5+1B。

5-1C。

-5+1D。

-5-16.XXX去距县城28千米的旅游点游玩,先乘车,后步行。

全程共用了1小时。

已知汽车速度为每小时36千米,步行的速度每小时4千米,则XXX乘车路程和步行路程分别是A。

26千米,2千米B。

27千米,1千米C。

25千米,3千米D。

24千米,4千米二、填空题(本大题共8小题;每小题3分;共24分)7.计算:8-2=6.8.已知点A(l,-2),若A、B两点关于x轴对称,则B点的坐标为(l,2)。

9.若a<1,则(a-1)-1=1-a。

10.某校八年级(1)班共有男生30名,女生20名,若测得全班平均身高为1.56米,其中男生平均身高为1.6米,则女生平均身高为1.48米。

11.若一次函数y=2x+6与y=kx图象的交点到x轴的距离为2,则k的值为4.12.若关于x,y的方程组2x-y=mx+my=n的解是(x。

2023-2024学年北师大版数学八年级上册期末测试卷(含答案)

2023-2024学年北师大版数学八年级上册期末测试卷(含答案)

期末测试卷(满分120分,时间90分钟)题号一二三总分得分一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的)1.4 的算术平方根是( )A.2B.-2C.±2 D .±22.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为( )A.4 B.8 C.16 D.643.在实数 ―15,3―27,π2,16,8,中,无理数的个数为( )A.1B.2C.3D.44.将直角坐标系中的点(-1,-3)向上平移4个单位,再向右平移2个单位后的点的坐标为( )A.(3,-1) B.(-5,-1) C.(-3,1) D.(1,1)5.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A. y=2x+4 B. y=3x--1 C. y=-3x+1 D. y=-2x+46.估算 24+3的值是( )A.在5与6之间B.在6与7 之间C.在7 与8之间D.在8 与9之间7.如图,将直尺与含 30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )A.30° B.40° C.50° D.60°8.小明家1至 6月份的用水量统计图如图所示,关于这组数据,下列说法错误的是( ) A.众数是6 B.中位数是5 C.平均数是5 D.方差是 439.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x 的取值范围在数轴上可表示为( )10.下列命题中,是真命题的是( )A.算术平方根等于自身的数只有1B.斜边和一条直角边分别相等的两个直角三角形全等C.只有一个角等于60°的三角形是等边三角形 D .12是最简二次根式11.关于x,y 的方程组 {x +my =0,x +y =3的解是 {x =1y =,其中y 的值被盖住了.不过仍能求出m ,则m 的值是( )A .―12 B. 12 C .―14 D .1412.如图,正方形网格中的△ABC,若每个小方格边长都为1,则 △ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上答案都不对二、填空题(本大题共6小题,每小题4分,共24分.本题要求把正确结果填在规定的横线上,不需要解答过程)13.若点 M(a,-1)与点 N(2,b)关于y 轴对称,则a+b 的值是 .14.若关于x ,y 的二元一次方程组 {x +y =3k ,x ―y =k 的解也是二元一次方程 x +2y =8的解,则 k 的值为15.已知一组数据1,2,3,5,x ,它的平均数是3,则这组数据的方差是 .16.写出“全等三角形的面积相等”的逆命题 .17.如图,Rt△OA ₀A ₁ 在平面直角坐标系内, ∠OA₀A₁=90°,∠A₀OA₁=30°,以 OA₁为直角边向外作Rt△OA ₁A ₂,使 ∠OA₁A₂=90°,∠A₁OA₂=30°,,以OA ₂为直角边向外作 Rt △OA₂A₃,使 ∠OA₂A₃=90°, ∠A₂OA₃=30°,,按此方法进行下去,得到 RtOA 3A 4,RtOA 4A 5,⋯,RtOA 2017A 2018,若点 A₀(1,0),则 点 A ₂₀₁₈的横坐标为 .18.如图,在 △ABC 中, AB =AC ,D 、E 两点分别在AC 、BC 上,BD 是 ∠ABC 的平分线, DE‖AB ,若 BE = 5cm ,CE=3c m,则 △CDE 的周长是 .三、解答题(本大题共8小题,满分60分.解答应写出文字说明、证明过程或演算步骤)19.(6分)计算: (1)48―27+13; (2)8+182―(32―1)220.(6分)若a,b为实数,且b=a2―1+1―a2+aa+1,求―a+b―3的值.21.(8分)阅读理解,补全证明过程及推理依据.已知:如图,点 E 在直线DF 上,点 B 在直线AC 上,∠1=∠2,∠3=∠4.求证:∠A=∠F.证明:∵∠1=∠2(已知),∠2=∠DGF( ),∴∠1=∠DGF(等量代换),∴∥ ( ),∴∠3+∠=180°(),又∵∠3=∠4(已知),∴∠4+∠C=180°(等量代换),∴∥ ( ),∴∠A=∠F( ).22.(8分)解方程组:(1){2x+5y=30,2x―5y=―10;(2){3x―y=5, x+2y=11.23.(8分)如图,一条直线分别与直线 BE、直线CE、直线 CF、直线 BF 相交于点A,G,D,H且∠1=∠2,∠B=∠C.(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.24.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.25.(8分))某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费 1 510 元.普通间/(元/人/天)豪华间/(元/人/天)贵宾间/(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各租了多少间?(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?26.(8分)如图,在平面直角坐标系中,过点 B(6,0)的直线AB 与直线OA 相交于点A(4,2),动点 M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点 M的坐标.期末测试卷1. A2. B3. B4. D5. D6. C7. C8. B9. C 10. B11. A 12. B 13.-3 14.2 15.2 16.面积相等的三角形全等 17.―220173102918.13 cm 19.解(1)原式 =433;(2).原式 =62―14.20.解因为a,b 为实数,且 a ²―1≥0,1―a ²≥0,所以 a ²―1= 1―a ²=0.所以a=±1.又因为a+1≠0,所以a=1.代入原式,得 b =12,所以 ―a +b ―3=―3.21.解∵∠1=∠2(已知),∠2=∠DGF(对顶角相等),∴∠1=∠DGF(等量代换),∴BD ∥C E(同位角相等,两直线平行),∴∠3+∠C=180°(两直线平行,同旁内角互补).又∵∠3=∠4(已知),∴∠4+∠C =180°(等量代换),∴DF ∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).22.解(1){x=5,4,(2,y ₁=3,23.解 (1)CE‖BF ,AB‖CD .理由:∵∠1=∠2, ∴CE‖FB , ∴∠C =∠BFD . ∵∠B =∠C , ∴∠B =∠BFD ,∴AB∥CD;(2)由(1)可得AB∥CD,∴∠A=∠D.24.解 (1)x g =(83+79+90)÷3=84, x 2=(85+80+75)÷3=80,x y 3=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)由该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,则甲淘汰.乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3.故乙将被录取.25.解(1)设三人间普通客房租了x 间,双人间普通客房租了y 间.根据题意得{3x +2y =50,50×50%×3x +70×50%×2y =1510,解得 {x =8,y =13.因此,三人间普通客房租了8间,双人间普通客房租了13间.(2)(50-x)根据题意得:y=25x+35(50-x),即y=-10x+1750.(3)不是,由上述一次函数可知,y 随x 的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元.26.解(1)设直线AB 的解析式是y=kx+b,根据题意得: {4k +b =2,6k +b =0,解得: {k =―1,b =6.则直线的解析式是:y=-x+6.(2)在y=-x+6 中,令x=0,解得:y=6,S AAC =12×6×4=12.(3)设OA 的解析式是y=mx,则4m=2,解得: m =12,则直线的解析式是: y =12x ,∵当△OMC 的面积是△OAC 的面积的 14时,∴M 的横坐标是 14×4=1,在 y =12x 中,当x=1时, y =12,则M 的坐标是 (1,12);在y=-x+6中,x=1则y=5,则M 的坐标是(1,5).则M 的坐标是: M 1(1,12)或M ₂(1,5).。

(完整版)新北师大版八年级上册数学期末测试卷含答案

(完整版)新北师大版八年级上册数学期末测试卷含答案

万佳超市八年级数学上学期期末考试一、选择题(本大题共6小题,每小3分,共18分)1.下列四组数据中,不能..作为直角三角形的三边长是( ) A .6,8,1 B .7,24,25 C .2,5,7 D .9,12,152.在算式((的中填上运算符号,使结果最大的运算符号是( )A .加号B .减号C .乘号D .除号3.下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是( )A .164和163B .163和164C .105和163D .105和164 4.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .1)1(33-=- D .2)2(2-=-5.右图中点P 的坐标可能是( )A .(-5,3)B .(4,3)C .(5,-3)D .(-5,-3) 6.一次函数1y kx b =+与2y x a =+的图象如图,则下 列结论①0k <;②0a >;③当3x <时,12y y <中, 正确的个数是( ) A .0 B .1 C .2 D .3b第6题第11题1EDCB A二、填空题(本大题共8小题,每小3分,共24分)7. 9的平方根是 .8. 函数y=x -1中,自变量x 的取值范围是 .9.万安县某单位组织34人分别到井冈山和兴国进行革命传统教育,到井冈山的人数是 到兴国的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到 兴国的人数为y 人,请列出满足题意的方程组 .10.一个一次函数的图象交y 轴于负半轴,且y 随x 的增大而减小,请写出满足条件的 一个函数表达式: . 11.如图,△ABC 中,∠A=90°,点D 在AC 边上,DE ∥BC ,若∠1=155°,则∠B 的度数为 .12.如图,已知函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组,y ax b y kx =+⎧⎨=⎩的解是 .13.甲、乙两人分别从A 、B 两地相向而行,y 与x 的函数关系如图所示,其中x 表示 乙行走的时间(时),y 表示两人与A 地的距离(千米),甲的速度比乙每小时 快 千米.14.某学习小组五名同学在期末模拟考试(满分为120)的成绩如下:100、100、x 、x 、 80.已知这组数据的中位数和平均数相等,那么整数x 的值可以是 .(时)y=kxy=ax+bP-4O -2第12题ED CBA 三、(本大题共2小题,每小5分,共10分)15.解方程组:⎩⎨⎧-==-+16)1(2y x y x 16.计算:2163)1526(-⨯-四、(本大题共2小题,每小6分,共12分)17.如图,点B 是△ADC 的边AD 的延长线上一点,若︒=∠50C ,︒=∠60BDE ,︒=∠70ADC .求证:DE ∥AC18.如图所示,一段街道的两边缘所在直线分别为AB ,PQ ,并且AB ∥PQ .建筑物的 一端DE 所在的直线MN ⊥AB 于点M ,交PQ 于点N ,步行街宽MN 为13.4米,建筑 物宽DE 为6米,光明巷宽EN 为2.4米.小亮在胜利街的A 处,测得此时AM 为12米, 求此时小明距建筑物拐角D 处有多远?五、(本大题共2小题,每小8分,共16分)19.我县为加快美丽乡村建设,建设秀美幸福万安,对A 、B 两类村庄进行了全面改建. 根据预算,建设一个A 类美丽村庄和一个B 类美丽村庄共需资金300万元;甲镇建设 了2个A 类村庄和5个B 类村庄共投入资金1140万元.NPQ(1)建设一个A 类美丽村庄和一个B 类美丽村庄所需的资金分别是多少万元? (2)乙镇3个A 类美丽村庄和6个B 类村庄改建共需资金多少万元?20.如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点 A (4,2),动点M 沿路线O →A →C 运动.(1)求直线AB 的解析式. (2)求△OAC 的面积.(3)当△OMC 的面积是△OAC 的面积的41时, 求出这时点M 的坐标.六、(本大题共2小题,每小9分,共18分)21.如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作: (1)在网格中建立平面直角坐标系, 使A 点坐标为(-2,4),B 点坐标为(-4,2);(2)在第二象限内的格点上..........画一点C, 使点C 与线段AB 组成一个以AB 为底的等腰三角形, 且腰长是无理数, 则C 点坐标是 ;(3)△ABC 的周长= (结果保留根号); (4)画出△ABC 关于关于y 轴对称的的△A′B′C′.22.万安县开发区某电子电路板厂到井冈山大学从2014年应届毕业生中招聘公司职员, 对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试或成果认定, 三项的得分满分都为100分,三项的分数分别按5∶3∶2的比例记入每人的最后总分, 有4位应聘者的得分如下表所示.xyCBAO(页)(1)分别算出4位应聘者的总分;(2)表中四人“专业知识”的平均分为85分,方差为12.5,四人“英语水平” 的平均分为87.5分,方差为6.25,请你求出四人“参加社会实践与社团活动等” 的平均分及方差;(3)分析(1)和(2)中的有关数据,你对大学生应聘者有何建议?七、(本大题共2小题,第23小题10分,第24小题12分,共22分)23.为了减轻学生课业负担,提高课堂效果,我县教体局积极推进 “高效课堂”建设. 某学校的《课堂检测》印刷任务原来由甲复印店承接,其每月收费y (元)与复印页 数x (页)的函数关系如图所示: ⑴从图象中可看出:每月复印超过 500页部分每页收费 元;⑵现在乙复印店表示:若学校先按 每月付给200元的月承包费,则可按 每页0.15元收费.乙复印店每月收费y (元)与复印页数x (页)的函数关系为 ;⑶在给出的坐标系内画出(2)中的函数图象,并结合函数图象回答每月复印在3000页左右应选择哪个复印店?24.平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB ∥CD ,点P 在AB 、CD 内部,∠B =50,∠D=30°,求∠BPD.(2)如图2,将点P 移到AB 、CD 外部,则∠BPD 、∠B 、∠D 之间有何数量关系?请证明你的结论.(2)如图3,写出∠BPD ﹑∠B ﹑∠D ﹑∠BQD 之间的数量关系?(不需证明). (3)如图4,求出∠A+∠B+∠C+∠D+∠E+∠F 的度数.图2PDCBA 图1PDCBA图3QCAPDB 图4BCDEFA八年级数学参考答案一、选择题(本大题共6小题,每小3分,共18分) 1.C 2.D 3.A 4.C 5.D 6.B二、填空题(本大题共8小题,每小3分,共24分)7.±3 8.x ≤1 9. ⎩⎨⎧+==+1234y x y x 10. k ﹤0、b ﹤0 均可11.65° 12. ⎩⎨⎧-=-=24y x 13. 0.4 14.110,60三、(本大题共2小题,每小5分,共10分)15.∴原方程组的解为⎩⎨⎧==65y x 16. 原式 = -65四、(本大题共2小题,每小6分,共12分)17. 求得 ∠A=60°或∠ CDE=50 ° 证得 DE ∥AC 18. 求得MD=5(米)利用勾股定理求出AD=13米五、(本大题共2小题,每小8分,共16分)19.(1)解设:建设一个A 类美丽村庄和一个B 类美丽村庄所需的资金分别是x 、y 万元⎩⎨⎧=+=+114052300y x y x 解得⎩⎨⎧==180120y x (2)1440万元20.(1)y=-x+6(2)12 (3)M 1(1,0.5)或M 2(1,5)六、(本大题共2小题,每小9分,共18分)21. (1)建立平面直角坐标系 ……2分(2)(-1,1) ……4分 (3)22+210 ……7分2222231[(9070)(7070)(7070)(5070)]2004S =-+-+-+-=22. 解:(1)应聘者甲总分为86分;应聘者乙总分为82分;应聘者丙总分为81分;应聘者丁总分为82分. …2分(2) 4人参加社会实践与社团活动等的平均分数:70=x…4分方差:2S …7分 (3)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升.七、(本大题共2小题,第23小题10分,第24小题12分,共22分)23.解:⑴0.2 ⑵()020015.0≥+=x x y ⑶画图象 由图像可知,当每月复印3000页左右,选择乙店更合算 ……10分24.解: (1)80° (2)∠BPD=∠B-∠D 证明方法多样,方法正确即可给分(3)结论:∠BPD=∠BQD+∠B+∠D. (4)360° 连结AD 利用三角形内角和或四边形的内角和计算(页)。

新北师大版八年级数学上册期末试卷及答案【完美版】

新北师大版八年级数学上册期末试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为( )A .-6B .6C .16-D .162.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.把38a 化为最简二次根式,得 ( )A .22a aB .342aC .322aD .24a a5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠110.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.如果不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,那么m 的取值范围是________. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、B6、A7、D8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、72、30°或150°.3、3m≤.4、(-4,2)或(-4,3)5、50°6、13 2三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、22mm-+1.3、±34、略5、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或或9﹣或6时,△APQ为等腰三角形.6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。

北师大版初二级上册期末考试数学试卷含答案(共3套)

O DC AB D CBA北师大版八年级上学期期末考试数学试卷含答案一、选择题:1.下列各式中,运算正确的是( ) A .632a a a ÷=B .325()a a =C.= D=2.点(35)p ,-关于y 轴对称的点的坐标为( )A . (3,5)--B . (5,3)C .(3,5)-D . (3,5) 3.若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-C .32x y +>+D .33x y> 4.一个多边形的内角和是720︒,则这个多边形的边数为()A .4B .5C .6D .75.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形B .矩形C .正三角形D .平行四边形6. 如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的边长BC 的长是( ) A .2B .4C.D. (6题图) 7.如果点P (m ,1+2m )在第二象限,那么m 的取值范围是 ( )A .210<<m B .021<<-m C .0<m D .21>m 8.如图,下列条件不能使四边形ABCD 一定是平行四边形的是( )A .//AB CD AB =CD B .//AD BC //AB CD C .//AD BC B D ∠=∠ D. //AD BC AB =CD(图1)9.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处10.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G ,下列结论:①EC=2DG ; ②GDH GHD ∠=∠; ③CDGDHGE SS =四边形; ④图中只有8个等腰三角形。

北师大版初二数学上册期末试卷7套

北师大版初二数学上册期末试卷7套篇一:北师大版初二数学上册期末试卷7套1、下列运算中,计算结果正确的是()A. a2?a3?a6B. (a2)3?a5C. (a2b)2?a2b2D. a3?a3?2a32、在平面直角坐标系中。

点P(-2,3)关于x轴的对称点在().A. 第四象限B. 第三象限C.第二象限D. 第一象限3、化简:a+b-2(a-b)的结果是()A.3b-aB.-a-bC.a+3bD.-a+b4、如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC?的周长为9cm,则△ABC的周长是()A.10cmB.12cmC.15cm D.17cm5、下列多项式中,不能进行因式分解的是()A. –a2+b2B. –a2-b2C. a3-3a2+2aD. a2-2ab+b2-16、如图所示的扇形图是对某班学生知道父母生日情况的调查,A?表示只知道父亲生日,B表示只知道母亲生日,C表示知道父母两人的生日,D表示都不知道.?若该班有40名学生,则知道母亲生日的人数有() A.25% B.10C.22D.127、下列函数中,自变量的取值范围选取错误的是()..A.y=2x2中,x取全体实数 B.y=C.y=x取x≥2的实数 D.1中,x取x≠-1的实数 x?1中,x取x≥-3的实数 8、观察下列中国传统工艺品的花纹,其中轴对称图形是()9、等腰三角形的一个内角是50°,则这个三角形的底角的大小是() A.65°或50° B.80°或40°C.65°或80° D.50°或80°10、如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y 与x之间函数关系的图象可能是( )AB C D5.下列分式的运算中,其中结果正确的是()a3112 A .?? B.aaba?b??2a2?b2?a?b ?aC.a?b3D.a?31? 2a?3a?6a?9 aba?b 11、若,则的值为;23b12、写出命题“平行四边形对角线互相平分.”的逆命题: _。

北师大版八年级(上)期末数学试卷(含解析) (4套)

八年级(上)期末数学试卷一.选择题(本大题10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上)1.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(x2y3)2=x4y5C.(xy)2÷=(xy)3D.2xy﹣3yx=xy3.(3分)若x2+mx﹣15=(x+3)(x+n),则m的值是()A.﹣5 B.5 C.﹣2 D.24.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°5.(3分)下列图形是全等图形的是()A.B.C.D.6.(3分)如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:57.(3分)如果=成立,那么下列各式一定成立的是()A.=B.=C.=D.=8.(3分)已知,则的值为()A.B.C.D.9.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.10.(3分)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.12二.填空题(本大题6小题,每小题4分,共24分.)11.(4分)三角形的三个内角度数比为1:2:3,则三个外角的度数比为.12.(4分)已知a+b=﹣3,ab=1,求a2+b2=.13.(4分)分解因式:a2﹣9=.14.(4分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥B C.若AB=6cm,AC=8cm,则△ADE的周长为.15.(4分)已知,△ABC中,AB=AC,AB的垂直平分线交AB于E,交AC所在直线于P,若∠APE=54°,则∠B=.16.(4分)把边长为a的正三角形和正方形组合镶嵌,若用2个正方形,则还需个正三角形才可以镶嵌.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为.18.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣.19.(6分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.四.解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:,其中.21.(7分)因式分解:3x﹣12x3和﹣2m+4m2﹣2m3.22.(7分)先化简,再求值:a(a﹣4)﹣(a+6)(a﹣2),其中a=﹣.五、解答题(共3小题,满分27分)23.(9分)+=.24.(9分)如图,CD是△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB 的中点E处.(1)求∠A的度数;(2)若AC=,求△AEC的面积.25.(9分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.2017-2018学年辽宁省丹东市八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上)1.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选:C.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(x2y3)2=x4y5C.(xy)2÷=(xy)3D.2xy﹣3yx=xy【解答】解:A、2x+2y无法计算,故此选项错误;B、(x2y3)2=x4y6,故此选项错误;C、此选项正确;D、2xy﹣3yx=﹣xy,故此选项错误;故选:C.3.(3分)若x2+mx﹣15=(x+3)(x+n),则m的值是()A.﹣5 B.5 C.﹣2 D.2【解答】解:∵x2+mx﹣15=(x+3)(x+n),∴x2+mx﹣15=x2+nx+3x+3n,∴3n=﹣15,m=n+3,解得n=﹣5,m=﹣5+3=﹣2.故选:C.4.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.5.(3分)下列图形是全等图形的是()A.B.C.D.【解答】解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.6.(3分)如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5【解答】解:∵O是△ABC三条角平分线的交点,AB、BC、AC的长分别12,18,24,∴S△OAB:S△OBC:S△OAC=AB:OB:AC=12:18:24=2:3:4.故选:C.7.(3分)如果=成立,那么下列各式一定成立的是()A.=B.=C.=D.=【解答】解:A、错误.应该是=;B、错误.≠;C、错误.≠;D、正确.设==k,则a=bk,c=dk,左边==k+2,右边==k+2,∴左边=右边.故选:D.8.(3分)已知,则的值为()A.B.C.D.【解答】解:,则==,故选:D.9.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选:A.10.(3分)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.12【解答】解:设正多边形的每个外角的度数为x,与它相邻的内角的度数为4x,依题意有x+4x=180°,解得x=36°,这个多边形的边数=360°÷36°=10.故选:C.二.填空题(本大题6小题,每小题4分,共24分.)11.(4分)三角形的三个内角度数比为1:2:3,则三个外角的度数比为5:4:3.【解答】解:设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为:5:4:3.12.(4分)已知a+b=﹣3,ab=1,求a2+b2=7.【解答】解:∵a+b=﹣3,∴(a+b)2=9,即a2+2ab+b2=9,又ab=1,∴a2+b2=9﹣2ab=9﹣2=7.故答案为7.13.(4分)分解因式:a2﹣9=(a+3)(a﹣3).【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).14.(4分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥B C.若AB=6cm,AC=8cm,则△ADE的周长为14cm.【解答】解:∵DE∥BC∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC,∴△ADE的周长=AD+OD+OE+AE=AD+BD+AE+EC=AB+AC=14cm.故答案是:14cm.15.(4分)已知,△ABC中,AB=AC,AB的垂直平分线交AB于E,交AC所在直线于P,若∠APE=54°,则∠B=72°或18°.【解答】解:分为两种情况:①如图1,∵PE是AB的垂直平分线,∴AP=BP,∴∠A=∠ABP,∠APE=∠BPE=54°,∴∠A=∠ABP=36°,∵∠A=36°,AB=AC,∴∠C=∠ABC=(180°﹣∠A)=72°;②如图2,∵PE是AB的垂直平分线,∴AP=BP,∴∠P AB=∠ABP,∠APE=∠BPE=54°,∴∠P AB=∠ABP=36°,∴∠BAC=144°,∵AB=AC,∴∠C=∠ABC=(180°﹣∠A)=18°,故答案为:72°或18°.16.(4分)把边长为a的正三角形和正方形组合镶嵌,若用2个正方形,则还需3个正三角形才可以镶嵌.【解答】解:∵正三角形的每个内角是60°,正方形的每个内角是90°,又∵3×60°+2×90°=360°,∴用2个正方形,则还需3个正三角形才可以镶嵌.故答案为:3.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为4.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,CD、CE即为所求;(3)△BCD的面积为×4×4﹣×1×3﹣×1×3﹣1=4,故答案为:418.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣.【解答】解:原式=(4x2+12xy+9y2)﹣(4x2﹣y2),=4x2+12xy+9y2﹣4x2+y2,=12xy+10y2,当x=,y=﹣时,原式=12×()×(﹣)+10×(﹣)2,=﹣2+2.5=.19.(6分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.【解答】解:(1)∵△ABC是等边三角形,∴∠BAC=60°,AB=A C.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=A D.∴∠BAD+∠EAB=∠BAD+∠DA C.∴∠EAB=∠DA C.在△EAB和△DAC中,∵,∴△EAB≌△DA C.∴∠AEB=∠AD C.(2)如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,又∵∠AEB=∠ADC=105°.∴∠BED=45°.四.解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:,其中.【解答】解:原式=•=•=,当a=﹣1时,原式=.21.(7分)因式分解:3x﹣12x3和﹣2m+4m2﹣2m3.【解答】解:3x﹣12x3=﹣3x(1﹣4x2)=3x(1+2x)(1﹣2x);﹣2m+4m2﹣2m3=﹣2m(m2﹣2m+1)=﹣2m(m﹣1)2.22.(7分)先化简,再求值:a(a﹣4)﹣(a+6)(a﹣2),其中a=﹣.【解答】解:原式=a2﹣4a﹣a2+2a﹣6a+12=﹣8a+12,当a=﹣时,原式=4+12=16.五、解答题(共3小题,满分27分)23.(9分)+=.【解答】解:去分母得:2(x﹣3)+6=x+3,解得:x=3检验:把x=3代入(x﹣3)(x+3)=0,则x=3是分式方程的增根,∴原方程无解.24.(9分)如图,CD是△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB 的中点E处.(1)求∠A的度数;(2)若AC=,求△AEC的面积.【解答】解:(1)∵E是AB中点,∴CE为Rt△ACB斜边AB上的中线.AE=BE=CE=AB,∵CE=CB,∴△CEB为等边三角形,∴∠CEB=60°,∵CE=AE,∴∠A=∠ACE=30°.故∠A的度数为30°;(2)∵Rt△ACB中,∠A=30°,∴tanA==,∴AC=,BC=1,∴△CEB是等边三角形,CD⊥BE,∴CD=,∵AB=2BC=2,∴AE=AB=1,∴S△ACE==,即△AEC面积为.25.(9分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【解答】解:(1)设每个乙种零件进价为x元,则每个甲种零件进价为(x﹣2)元.由题意得:.解得:x=10.检验:当x=10时,x(x﹣2)≠0∴x=10是原分式方程的解.每个甲种零件进价为:x﹣2=10﹣2=8答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y个,则购进甲种零件(3y﹣5)个.由题意得:解得:23<y≤25∵y为整数∴y=24或25.∴共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.期末数学试卷一、填空题(每空1分,共20分)1.82=64,则8叫做64的__________.2.一个负数的平方等于121,这个负数是__________.3.当k<0时,随着k的增大,它的立方根随着__________.4.(a≥0,b__________).5.一个两位数的十位数字和个位数字之和为7,如果把这个两位数加上45,那么恰好成为十位数字和个位数字对调后的两位数,则这个两位数为__________.6.在平面直角坐标系中,每个象限内的点,不包括__________上的点.7.命题“任意两个直角都相等”的条件是__________,结论是__________,它是__________(真或假)命题.8.函数y=4x﹣3,y随x的增大而__________,它的图象与y轴的交点坐标是__________.9.如果x2=64,那么=__________.10.若是方程2x+3y=0的一个解,则8a+12b+15的值是__________.11.如图,在△ABC中,∠1=∠2,∠3=∠4,∠A=65°,则∠F=__________.12.林书豪是我国优秀篮球运动员,现在在NBA打球,在某次常规赛中,每场个人得分分别是17,8,33,14,25,32,9,27,25,10,这组数据的平均数是__________,众数是__________,中位数是__________.13.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,则点C到AB的距离CD=__________.14.如图,在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,则△ACD是__________三角形.15.坐标平面内的点与__________是一一对应的.二、选择题把每题唯一正确的答案的序号填在括号内16.下列运算不正确的是( )A.当a≥0时,=a B.=aC.当a<0时,=﹣a D.=﹣917.下列说法不正确的是( )A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数18.下列二次根式是最简二次根式的是( )A.B.C.D.19.若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是( )A.B.C.D.20.为了考察甲、乙两种小麦,分别从中抽取5株苗测得苗高(单位:cm)甲:2,4,6,8,10;乙:1,3,5,7,9.用S甲2和S乙2分别表示两个样本的方差,则( )A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定三、解答题(每小题4分,共20分)21..22.计算:﹣﹣(﹣1)0﹣.23.对于任意数a,一定等于a吗?请举例说明.24.a+3和2a﹣15是某数的两个平方根,求a.25.设△ABC三边长为a=5,b=6,c=7,p=(a+b+c).求S△ABC=.四、解答题(每小题7分,共14分)26.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨__________;②用水量大于3000吨__________.(2)某月该单位用水3200吨,水费是__________元;若用水2800吨,水费__________元.(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?27.某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?五、方程应用题28.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?六、证明题(16分)29.在下列推理过程中的括号里填上推理的依据.已知:如图,CDE是直线,∠1=105°,∠A=75°.求证:AB∥C D.证明:∵CDE为一条直线(__________)∴∠1+∠2=180°∵∠1=105°(已知)∴∠2=75°又∵∠A=75°(已知)∴∠2=∠A(__________)∴AB∥CD(__________)30.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC,说明AD∥B C.31.如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥C D.七、解答题32.如图,平面直角坐标系中,点A的坐标是(﹣4,4),点B的坐标是(2,5).(1)写出点A关于x轴对称的对称点A′的坐标;(2)求出过A′,B两点直线的一次函数的解析式;(3)在x轴上有一动点P,要使P A+PB最小,求点P的坐标.2015-2016学年辽宁省辽阳市灯塔市八年级(上)期末数学试卷一、填空题(每空1分,共20分)1.82=64,则8叫做64的算术平方根.【考点】有理数的乘方.【分析】根据有理数的乘方,算术平方根,即可解答.【解答】解:∵82=64,∴8叫做64的算术平方根.故答案为:算术平方根.【点评】本题考查了有理数的乘方、算术平方根,解决本题的关键是熟记有理数的乘方、算术平方根.2.一个负数的平方等于121,这个负数是﹣11.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:∵(﹣11)2=121,∴这个负数是﹣11,故答案为:﹣11.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.3.当k<0时,随着k的增大,它的立方根随着增大.【考点】立方根.【分析】根据立方根,即可解答.【解答】解:例如:当k=﹣8时,﹣8的立方根为﹣2,当k=﹣1时,﹣1的立方根为﹣1,﹣1>﹣2,所以当k<0时,随着k的增大,它的立方根随着增大.故答案为:增大.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.4.(a≥0,b>0).【考点】二次根式的乘除法.【分析】根据二次根式的除法法则得出=中a≥0,b>0,填上即可.【解答】解:=中a≥0,b>0.故答案为:>0.【点评】本题考查了二次根式性质和二次根式的除法法则的应用,注意:=中a≥0,b >0.5.一个两位数的十位数字和个位数字之和为7,如果把这个两位数加上45,那么恰好成为十位数字和个位数字对调后的两位数,则这个两位数为16.【考点】一元一次方程的应用.【分析】先设这个两位数的十位数字和个位数字分别为x,7﹣x,根据题意列出方程,求出这个两位数.【解答】解:设这个两位数的十位数字为x,则个位数字为7﹣x,由题意列方程得,10x+7﹣x+45=10(7﹣x)+x,解得x=1,∴7﹣x=7﹣1=6,∴这个两位数为16.故答案是:16.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.在平面直角坐标系中,每个象限内的点,不包括坐标轴上的点.【考点】点的坐标.【分析】根据坐标轴上的点不属于任何一个象限即可作答.【解答】解:在平面直角坐标系中,每个象限内的点,不包括坐标轴上的点.故答案为坐标轴.【点评】本题考查了点的坐标,建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.坐标平面内的点与有序实数对是一一对应的关系.7.命题“任意两个直角都相等”的条件是两个角都是直角,结论是相等,它是真(真或假)命题.【考点】命题与定理.【分析】任何一个命题都是由条件和结论组成.【解答】解:“任意两个直角都相等”的条件是:两个角是直角,结论是:相等.它是真命题.【点评】本题考查了命题的条件和结论的叙述.8.函数y=4x﹣3,y随x的增大而增大,它的图象与y轴的交点坐标是(0,﹣3).【考点】一次函数的性质;一次函数图象上点的坐标特征.【分析】根据一次函数的性质和y轴上点的坐标特征填空即可.【解答】解:A∵一次函数y=4x﹣3中,k=4>0,∴函数值随自变量的增大而增大,令x=0,则y=﹣3,∴此函数的图象与y轴的交点坐标是(0,﹣3).故答案为:增大,(0,﹣3).【点评】本题考查的是一次函数的性质和图象上点的坐标特征,熟知正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大以及y轴上的点的横坐标为0是解答此题的关键.9.如果x2=64,那么=±2.【考点】立方根;平方根.【专题】计算题.【分析】根据平方根和立方根的概念求解即可.【解答】解:∵x2=64,∴x=±8,∴=±2.故答案为:±2.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.10.若是方程2x+3y=0的一个解,则8a+12b+15的值是15.【考点】二元一次方程的解.【分析】把代入方程2x+3y=0,得出2a+3b=0,再将8a+12b+15变形为4(2a+3b)+15,然后整体代入计算即可.【解答】解:把代入方程2x+3y=0,得2a+3b=0,则8a+12b+15=4(2a+3b)+15=4×0+15=15.故答案为15.【点评】本题考查了二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,注意运用整体代入的思想.11.如图,在△ABC中,∠1=∠2,∠3=∠4,∠A=65°,则∠F=122.5°.【考点】三角形内角和定理.【分析】根据三角形的内角和得到∠ABC+∠ACB=115°,由∠1=∠2,∠3=∠4,求得∠2+∠4=×115°=57.5°,根据三角形的内角和即可得到结论.【解答】解:∵∠A=65°,∴∠ABC+∠ACB=115°,∵∠1=∠2,∠3=∠4,∴∠2+∠4=×115°=57.5°,∴∠F=180°﹣(∠2+∠4)=122.5°.故答案为:122.5°.【点评】本题考查了三角形的内角和,角平分线的定义,熟记三角形的内角和是解题的关键.12.林书豪是我国优秀篮球运动员,现在在NBA打球,在某次常规赛中,每场个人得分分别是17,8,33,14,25,32,9,27,25,10,这组数据的平均数是20,众数是25,中位数是21.【考点】众数;算术平均数;中位数.【分析】要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这组数据的平均数是(17+8+33+14+25+32+9+27+25+10)=20.将这组数据从小到大重新排列为:8,9,10,14,17,25,25,27,32,33,观察数据可知,最中间的两个数为17,25,所以中位数是(17+25)÷2=21.众数是数据中出现最多的一个数即25.故答案为20,25,21.【点评】本题考查了平均数、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.13.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,则点C到AB的距离CD=.【考点】勾股定理;点到直线的距离.【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出点C到AB的距离.【解答】解:在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵BC=12,AC=9,∴AB===15,∵△ABC的面积=AC•BC=AB•CD,∴CD===,故答案为:.【点评】本题考查了勾股定理、三角形面积的计算方法;熟练掌握勾股定理,通过三角形面积求出CD是解决问题的关键.14.如图,在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,则△ACD是直角三角形.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,直接根据勾股定理求出AC的长即可;在△ACD中,由勾股定理的逆定理即可判断三角形的形状.【解答】解:连接AC,∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5;∵△ACD中,AC=5,CD=12,AD=13,∴AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.故答案为:直角.【点评】本题考查的是勾股定理的逆定理,以及勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.坐标平面内的点与有序实数对是一一对应的.【考点】坐标确定位置.【分析】坐标平面内的点与有序实数对是一一对应的.【解答】解:填有序实数对.【点评】主要考查了坐标平面内的点与有序数对的关系.坐标平面内的点与有序实数对是一一对应的.二、选择题把每题唯一正确的答案的序号填在括号内16.下列运算不正确的是( )A.当a≥0时,=a B.=aC.当a<0时,=﹣a D.=﹣9【考点】算术平方根;立方根.【分析】根据算术平方根的定义,即可解答.【解答】解:当a≥0时,=a,正确;B、=a,正确;C、当a<0时,=﹣a,正确;D、=9,故错误;故选:D.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.17.下列说法不正确的是( )A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数【考点】实数.【专题】计算题.【分析】大于零的数为正数,小于零的数为负数,整数和分数统称有理数,有理数和无理数统称实数,C答案﹣2是负数正确,是有理数正确,也是实数.【解答】解:A、﹣2小于零,是负数,故A正确;B、﹣2小于零是负数,是整数,也是有理数,故B正确;C、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故C错误;D、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故D正确.故选:C.【点评】题目考查了正数、负数、有理数、实数的定义,学生要充分理解各层包含关系,解决此类问题就会迎刃而解.18.下列二次根式是最简二次根式的是( )A. B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的定义分别对每一项进行分析,即可得出答案.【解答】解:A、=5,不是最简二次根式,故本选项错误;B、是最简二次根式,故本选项错误;C、=,不是最简二次根式,故本选项错误;D、=,不是最简二次根式,故本选项错误;故选B.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.19.若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是( )A.B.C.D.【考点】解二元一次方程组;非负数的性质:绝对值.【分析】先根据非负数的性质列出关于x、y的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y的值即可.【解答】解:∵|3x+2y+7|+|5x﹣2y+1|=0,∴,①+②得,8x+8=0,解得x=﹣1,把x=﹣1代入①得,﹣3+2y+7=0,解得y=﹣2,∴方程组的解为.故选C.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.20.为了考察甲、乙两种小麦,分别从中抽取5株苗测得苗高(单位:cm)甲:2,4,6,8,10;乙:1,3,5,7,9.用S甲2和S乙2分别表示两个样本的方差,则( )A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定【考点】方差.【分析】首先计算出甲和乙的平均数,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]计算出方差即可.【解答】解:==6,==5,=[(2﹣6)2+(4﹣6)2+(6﹣6)2+(8﹣6)2+(10﹣6)2]=8,=[(1﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(9﹣5)2]=8,因此S甲2=S乙2.故选:C.【点评】此题主要考查了方差和平均数,关键是掌握方差计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].三、解答题(每小题4分,共20分)21..【考点】二次根式的加减法.【专题】计算题.【分析】解答本题只需将二次根式化为最简,然后合并同类二次根式即可得出的答案.【解答】解:原式=6﹣﹣=.【点评】本题考查二次根式的加减运算,属于基础题,比较简单,解答本题时注意先化简再合并,要细心运算,避免出错.22.计算:﹣﹣(﹣1)0﹣.【考点】二次根式的混合运算;零指数幂.【专题】计算题.【分析】先把各二次根式化为最简二次根式,然后合并即可.【解答】解:原式=3﹣﹣1﹣=﹣1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.对于任意数a,一定等于a吗?请举例说明.【考点】算术平方根.【分析】根据二次根式的性质得出即可.【解答】解:不一定,理由是:只有当a≥0时,才等于a,当a=﹣2时,=2≠a.【点评】本题考查了算术平方根的定义的应用,注意:①当a≥0时,=a,②当a≤0时,=﹣a.24.a+3和2a﹣15是某数的两个平方根,求a.【考点】平方根.【分析】根据已知得出方程a+3+2a﹣15=0,求出方程的解即可.【解答】解:∵某数的平方根是a+3和2a﹣15,∴a+3+2a﹣15=0,解得:a=4.【点评】本题考查了平方根定义的应用,注意:一个正数有两个平方根,它们互为相反数.25.设△ABC三边长为a=5,b=6,c=7,p=(a+b+c).求S△ABC=.【考点】二次根式的应用.【分析】首先计算出p的数值,进一步代入化简求得答案即可.【解答】解:∵a=5,b=6,c=7,∴p=(a+b+c)=×(5+6+7)=9,∴S△ABC===6.【点评】此题考查二次根式的实际运用,代数式求值,掌握二次根式的化简方法是解决问题的关键.四、解答题(每小题7分,共14分)26.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨y=0.5x(x≤3000);②用水量大于3000吨y=0.8x﹣900 (x>3000).(2)某月该单位用水3200吨,水费是1660元;若用水2800吨,水费1400元.(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?【考点】一次函数综合题.【专题】代数综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新版本北师大上学期八年级数学期末试卷 班级: 姓名: 成绩:
一、选择题(本题共有8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是正确的,把正确的序号填在题后的括号内。

1.下列实数中是无理数的是( ) (A )38.0 (B )π (C )
4 (D ) 7
22
-
2.在平面直角坐标系中,点A (1,-3)在( )
(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.-8的立方根是( )
(A )2± (B )2 (C ) -2 (D )24 4.下列四组数据中,不能..作为直角三角形的三边长是( ) (A )3,4,6 (B )7,24,25 (C )6,8,10 (D )9,12,15
5、已知下列各式:①x 1+y =2 ②2x -3y =5 ③21x +xy =2 ④x +y =z -1 ⑤21+x =3
12-x ,
其中二元一次方程的个数是( )
A .1
B .2
C .3
D .4
6、众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( )
A .50,20
B .50,30
C .50,50
D .135,50
7、如图,直线a 、b 都于直线c 相交,下列条件中,
能判断a ∥b 的条件是 。

① ∠1 = ∠2 ② ∠3 = ∠6 ③∠2 = ∠8 ④∠5 + ∠8 = 1800
A .①③ B.①②④ C.①③④ D.②③④
8、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时
间t (时)的函数关系用图象表示应为下图中的( )
二、填空题(每空3分,共24分)
10、256的平方根是 ;
11、在△ABC 中,∠A +∠B = 130°,则∠C = 。

12、若函数是一次函数,则m =_______,且随的增大而_______.
13.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:
80==乙甲x x ,2402
=甲s ,1802=乙
s ,则成绩较为稳定的班级是___. 14、点A (2,-1)关于x 轴对称的点的坐标是 。

15、若0)2(12=-+-x y x ,则x+y=
16若直角三角形的三边长分别为
2、 4、 x ,则x=_____
三、解答题(共72分)
1、化简:(1) (4分) (2)(
)(
)
16373
7--+(4分)
(3)348-(4分)
8
1
3 a b
2 7 6
5 4 第7题
4)3(92=-x
2、解方程组:⎩
⎨⎧=-=-537
23n m n m (4分)
3、(6分)如图在△ABC 中,∠ACB=90º, CD ⊥AB ,D 为垂足,AC=2.1cm,BC=2.8cm. 求① △ABC 的面积; ②斜边AB 的长; ③斜边AB 上的高CD 的长。

4已知,如图,△ABC 中,AE 平分外角∠DAC ,AE ∥BC
. 求证:∠B =∠C .(5分)
5、长方形ABCD ,长为6,宽为4,建坐标系使其中C 点的坐标(-3,2),并且求出其
它顶点的坐标。

(6分)
6、(6分)某校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加10%,总支出节约20%,因而总收入比总支出多100万元.求去年的总收入和总支出.
7、(6分)某校规定:学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?
A
E
B
C
D (第4题)
D
B C
8(6分)有一个两位数,个位数比十位数大5,如果把这两个数的位置对换,那么所得的新数与原数的和是143.求这个两位数.
9、(9分)已知,如图所示,AD ⊥BC ,EF ⊥BC ,∠4=∠C. 求证:∠1=∠2.
10(8分)如图,在平面直角坐标系中,一次函数5+=kx y 的图象经过点A (1,4),点B 是一次函数5+=kx y 的图象与正比例函数x y 3
2
=的图象的交点。

(1)求点B 的坐标。

(2)求△AOB 的面积。

11(4分)已知12-a 的平方根是3±,13-+b a 的算术平方根是4,求b a 2+的平方根.。

相关文档
最新文档