天津市南开区2014届高三一模数学(文)试题及答案

合集下载

2014年普通高等学校招生全国统一考试(天津卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(天津卷)数学试题(文科)解析版

绝密 ★ 启用前2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A ,B 互斥,那么 •圆锥的体积公式13V Sh =.()()()P A B P A P B =+其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =. h 表示圆锥的高. 其中S 表示棱柱的底面面积,h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1. [2014•天津文卷]i 是虚数单位,复数=++ii437( ) A. i -1 B. i +-1 C. i 25312517+ D. i 725717+- 【答案】A 【解析】()()()()()()i i i i i i i i-=+⨯+⨯-+⨯+⨯=-+-+=++14313474137434343743722.2. [2014•天津文卷]设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≥-+.1,02,02y y x y x 则目标函数y x z 2+=的最小值为( )A.2B. 3C. 4D. 5【答案】B【解析】可行域如图x当目标函数线过可行域内A 点时,目标函数有最小值31211=⨯+⨯=z .3. [2014•天津文卷]已知命题为则总有p e x x p x⌝>+>∀,1)1(,0:( ) A.1)1(,0000≤+≤∃x e x x 使得 B. 1)1(,0000≤+>∃x e x x 使得C.1)1(,0000≤+>∃x ex x 总有 D.1)1(,0000≤+≤∃x e x x 总有【答案】B【解析】含量词的命题的否定先改变量词的形式再对命题的结论进行否定.4. [2014•天津文卷] 设,,log ,log 2212-===πππc b a 则( )A .c b a >> B.c a b >> C.b c a >> D.a b c >> 【答案】C【解析】∵1log 2>=πa ,0log 21<=πb ,112<=πc ,∴a c b <<.5. [2014•天津文卷]设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .-21【答案】D【解析】∵()6412344114-=-⨯⨯+=a a S ,又∵,,,421S S S 成等比数列, ∴()()64121121-=-a a a ,解之得211-=a .6. [2014•天津文卷]已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.120522=-y xB.152022=-y xC.1100325322=-y xD.1253100322=-y x 【答案】A 【解析】∵1020,2+-==c ab,∴5=c ,52=a ,202=b , ∴120522=-y x .7. [2014•天津文卷]如图,ABC ∆是圆的内接三角行,BAC ∠的平分线交圆于点D ,交BC 于E ,过点B 的圆的切线与AD 的延长线交于点F ,在上述条件下,给出下列四个结论:①BD 平分CBF ∠;②FA FD FB ⋅=2;③DE BE CE AE ⋅=⋅;④BF AB BD AF ⋅=⋅.则所有正确结论的序号是( )A.①②B.③④C.①②③D. ①②④ 【答案】D 【解析】∵31∠=∠,42∠=∠,∴21∠=∠,34∠=∠, ∴BD 平分CBF ∠,∴ABF ∆∽BDF ∆,∴BF BDAF AB =,∴BD AF BF AB ⋅=⋅, ∴DFBF BF AF =, DF AF BF ⋅=2.8. [2014•天津文卷]已知函数()cos (0),.f x x x x R ωωω=+>∈在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( )A.2πB.23πC.πD.2π 【答案】C【解析】∵()16sin 2=⎪⎭⎫⎝⎛+=πωx x f ,∴216sin =⎪⎭⎫ ⎝⎛+πωx ,∴Zk k x ∈+=+111,266πππω或Z k k x ∈+=+222,2656πππω,则()()ππω1212232k k x x -+=-,又∵相邻交点距离的最小值为3π,∴2=ω,π=T .二、填空题9. [2014•天津文卷]某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 名学生. 【答案】60【解析】由分层抽样方法可得一年级抽取人数为6065544300=+++⨯.10. [2014•天津文卷]一个几何体的三视图如图所示(单位:m ),一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m.俯视图侧视图正视图【答案】320π【解析】由三视图可得该几何体为圆柱与圆锥的组合体,其体积32022314122πππ=⨯⨯+⨯⨯=V .11.[2014•天津文卷]阅读右边的框图,运行相应的程序,输出S 的值为________.【答案】-4【解析】()()42223-=-+-=S .12. [2014•天津文卷]函数()2lg x x f =的单调递减区间是________.【答案】()0,∞-【解析】()2lg x x f =的单调递减区间需满足02>x 且2x y =递减.13. [2014•天津文卷]已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1=⋅AF AE ,则λ的值为________.【答案】2【解析】建立如图所示坐标系,且()0,1-A 、()3,0-B 、()0,1C 、()3,0D ,设()11,y x E ,()22,y x F ,由3BC BE =得()()3,33,111+=y x ,解之得⎪⎪⎭⎫⎝⎛-332,31E ,由DC DF λ=得()()3,3,122-=-yx λ,解之得⎪⎪⎭⎫⎝⎛-λλ33,1F , 又∵13231033,11332,34=-=⎪⎪⎭⎫ ⎝⎛-+⋅⎪⎪⎭⎫ ⎝⎛-=⋅λλλAF AE , ∴2=λ.14. [2014•天津文卷]已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f 若函数x a x f y -=)(恰有4个零点,则实数a 的取值范围为_______.分别作出函数()y f x =与||y a x =的图像,由图知,0a <时,函数()y f x =与||y a x =无交点,0a =时,函数()y f x =与||y a x =有三个交点,故0.a >当0x >,2a ≥时,函数()y f x =与||y a x =有一个交点,当0x >,02a <<时,函数()y f x =与||y a x =有两个交点,当0x <时,若y ax =-与254,(41)y x x x =----<<-相切,则由0∆=得:1a =或9a =(舍),因此当0x <,1a >时,函数()y f x =与||y a x =有两个交点,当0x <,1a =时,函数()y f x =与||y a x =有三个交点,当0x <,01a <<时,函数()y f x =与||y a x =有四个交点,所以学科网当且仅当12a <<时,函数()y f x =与||y a x =恰有4个交点.考点:函数图像ABCD15. [2014•天津文卷]某校夏令营有3名男同学,,A B C 和3名女同学,,X Y Z ,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选中的可能性相同).(Ⅰ)用表中字母列举出所有可能的结果;(Ⅱ)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发表的概率.{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M 发生的概率62().155P M == 考点:古典概型概率16.C7、C8[2012•天津文卷]在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,已知b c a 66=-,C B sin 6sin = (1)求A cos 的值; (2)求)62cos(π-A 的值.PFEDCBA17.G4、G11[2014•天津文卷]如图,四棱锥P ABCD -的底面是平行四边形,BA BD ==,2AD =,PA PD ==,E F 分别是棱AD ,PC 的中点.(Ⅰ)证明 //EF 平面PAB ; (Ⅱ)若二面角P AD B --为60 ,(ⅰ)证明 平面PBC ^平面ABCD ; (ⅱ)求直线EF 与平面PBC 所成角的正弦值.18.H5、H8[2014•天津文卷]设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知AB =(Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F 的直线l 与该圆相切于点M ,2MF =,求椭圆的方程.【答案】(1) e = (2) 22163x y += 【解析】试题分析:(1)求椭圆离心率,就是列出关于a,b,c 的一个等量关系. 由12|||AB F F =,可得2223a b c +=,又222b ac =-,则221.2c a =所以椭圆离心率为e =(2) 由(1)知22222,,a cbc ==所以求椭圆方程只需再确定一个独立条件即可.由切线长=可列出所需的等量关系.先确定圆心:设(,)P x y ,由1(,0),(0,).F c B c -,有11(,),(,).F P x c y F B c c =+=由已知,有110F P F B ⋅=即()0x c c cy ++= ,故有19.(本19. B11、B12 [2014•天津文卷] 已知函数232()(0),3f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=,求a 的取值范围20.A1、D3、E7[2014•天津文卷] 已知q 和n 均为给定的大于1的自然数,设集合{}12,1,0-=q M ,集合{}n i M x q x q x x x x A i n n ,2,1,,121=∈++==-, (1)当3,2==n q 时,用列举法表示集合A ;(2)设,,,,121121--++=+++=∈n n n n q b q b b t q a q a a s A t s 其中 ,,2,1,,n i M b a i i =∈证明:若,n n b a <则t s <.。

2014年天津高考文科数学试题逐题详解 (纯word解析版)汇编

2014年天津高考文科数学试题逐题详解 (纯word解析版)汇编
2014年天津高考文科数学试题逐题详解 (纯word解析版)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
【2014年天津卷(文01)】 是虚数单位,复数
A. B. C. D.
【答案】A
【解析】
【2014年天津卷(文02)】设变量 、 满足约束条件 ,则目标函数 的最小值为
A. B. C. D.
【答案】C
【解析】log2π>1,log π<0,0<π﹣2<1,即a>1,b<0,0<c<1,∴a>c>b
【2014年天津卷(文05)】设{an}的首项为a1,公差为﹣1的等差数列,Sn为其前n项和,若S1,S2,S4成等比数列,则a1=( )
A.
2
B.
﹣2
C.
D.

【答案】D
【解析】∵{an}是首项为a1,公差为﹣1的等差数列,Sn为其前n项和,∴S1<0时,f(x)=2lg(﹣x)在(﹣∞,0)上是减函数.
∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).
方法二:原函数是由 复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;
又y=lgt在其定义域上为增函数,∴f(x)=lgx2在(﹣∞,0)上是减函数,在(0,+∞)为增函数,∴函数f(x)=lgx2的单调递减区间是(﹣∞,0)
【答案】B
【解析】画出可行域,如图所示.解方程组 得 即点A(1,1).
当目标函数线过可行域内A点时,目标函数有最小值,即zmin=1×1+2×1=3.
【2014年天津卷(文03)】已知命题p:∀x>0,总有(x+1)ex>1,则¬p为( )
A.∃x0≤0,使得(x0+1)ex0≤1B.∃x0>0,使得(x0+1)ex0≤1

天津市南开区2014届高三第一次模拟考试 文科数学 Word版含答案

天津市南开区2014届高三第一次模拟考试 文科数学 Word版含答案

天津市南开区2014届高三第一次模拟考试 文科数学 201 4.03本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分,考试时间120分钟.第I卷1至3页,第II 卷4至10页.祝各位考生考试顺利!第I 卷注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上;2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

3.本卷共8小题,每小题5分,共40分。

参考公式:如果事件A ,B 互斥,那么 ()()()P AB P A P B =+·球的体积公式343V R π=球, 其中R 表示球的半径. 棱柱的体积公式V Sh =柱体,其中S 表示棱柱的底面积, h 表示棱柱的高一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若集合A={|10x x -≥},B={|||2x x >},则集合A B 等于( ).(A) {|1x x ≥} (B) {|21x x x <->或}(C) { |22x x x <->或} (D) {|21x x x <-≥或}(2)已知实数x ,y 满足约束条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则24z x y =+的最小值是( ).(A) 5 (B) -6 (C) 10 (D) -l0(3)若某程序框图如图所示,则该程序运行后输出的B 等于( ). (A) 7 (B) 15 (C) 31 (D) 63 (4)已知a R ∈且0a ≠,则“11a<”是“1a >”的( ) (A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件(5)过点A (-1,0),斜率为k 的直线,被圆22(1)4x y -+=截得的弦长为k 的值为( )。

(A)(B)(C) (D) (6)函数2sin()(09)63x y x ππ=-≤≤的最大值与最小值之和为( )。

2014年高考真题——文科数学(天津卷)解析版 Word版含解析

2014年高考真题——文科数学(天津卷)解析版 Word版含解析

课标【2014·天津文卷】一、选择题1. [2014•天津文卷]i 是虚数单位,复数=++i i437( )A. i -1B. i +-1C. i 25312517+D. i 725717+-【答案】A 【解析】()()()()()()i ii i i i i i -=+⨯+⨯-+⨯+⨯=-+-+=++14313474137434343743722.2. [2014•天津文卷]设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≥-+.1,02,02y y x y x 则目标函数y x z 2+=的最小值为()A.2B. 3C. 4D. 5【答案】B【解析】可行域如图当目标函数线过可行域内A 点时,目标函数有最小值31211=⨯+⨯=z .3. [2014•天津文卷]已知命题为则总有p e x x p x ⌝>+>∀,1)1(,0:( )A.1)1(,0000≤+≤∃x e x x 使得B. 1)1(,0000≤+>∃xe x x 使得C.1)1(,0000≤+>∃xe x x 总有 D.1)1(,0000≤+≤∃x e x x 总有【答案】B【解析】含量词的命题的否定先改变量词的形式再对命题的结论进行否定.4. [2014•天津文卷] 设,,log ,log 2212-===πππc b a 则( )A .c b a >> B.c a b >> C.b c a >> D.a b c >>【答案】C【解析】∵1log 2>=πa ,0log 21<=πb ,112<=πc ,∴a c b <<.5. [2014•天津文卷]设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .-21 【答案】D 【解析】∵()6412344114-=-⨯⨯+=a a S ,又∵,,,421S S S 成等比数列, ∴()()64121121-=-a a a ,解之得211-=a . 6. [2014•天津文卷] 已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.120522=-y x B.152022=-y x C.1100325322=-y x D.1253100322=-y x 【答案】A 【解析】∵1020,2+-==c ab ,∴5=c ,52=a ,202=b , ∴120522=-y x . 7. [2014•天津文卷]如图,ABC ∆是圆的内接三角行,BAC ∠的平分线交圆于点D ,交BC 于E ,过点B 的圆的切线与AD 的延长线交于点F ,在上述条件下,给出下列四个结论:①BD 平分CBF ∠;②FA FD FB ⋅=2;③DE BE CE AE ⋅=⋅;④BF AB BD AF ⋅=⋅.则所有正确结论的序号是( )A.①②B.③④C.①②③D. ①②④【答案】D【解析】∵31∠=∠,42∠=∠,∴21∠=∠,34∠=∠,∴BD 平分CBF ∠,∴ABF ∆∽BDF ∆, ∴BF BD AF AB =,∴BD AF BF AB ⋅=⋅,∴DFBF BF AF =, DF AF BF ⋅=2. 8. [2014•天津文卷]已知函数()sin cos (0),.f x x x x R ωωω+>∈在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( ) A.2π B.23π C.π D.2π 【答案】C【解析】∵()16sin 2=⎪⎭⎫ ⎝⎛+=πωx x f ,∴216sin =⎪⎭⎫ ⎝⎛+πωx ,∴Z k k x ∈+=+111,266πππω或Z k k x ∈+=+222,2656πππω,则()()ππω1212232k k x x -+=-,又∵相邻交点距离的最小值为3π,∴2=ω,π=T . 二、填空题9. [2014•天津文卷]某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 名学生.【答案】60 【解析】由分层抽样方法可得一年级抽取人数为6065544300=+++⨯. 10. [2014•天津文卷] 1 234一个几何体的三视图如图所示(单位:m ),一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m.俯视图侧视图正视图 【答案】320π【解析】由三视图可得该几何体为圆柱与圆锥的组合体,其体积32022314122πππ=⨯⨯+⨯⨯=V .11.[2014•天津文卷]阅读右边的框图,运行相应的程序,输出S 的值为________.【答案】-4【解析】()()42223-=-+-=S .12. [2014•天津文卷]函数()2lg x x f =的单调递减区间是________.【答案】()0,∞-【解析】()2lg x x f =的单调递减区间需满足02>x 且2x y =递减.13. [2014•天津文卷]已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上, 3BC BE =,DC DF λ=.若1=⋅AF AE ,则λ的值为________.【答案】2【解析】建立如图所示坐标系,且()0,1-A 、()3,0-B 、()0,1C 、()3,0D ,设()11,y x E ,()22,y x F ,由3B C B E =得()()3,33,111+=y x ,解之得⎪⎪⎭⎫ ⎝⎛-332,31E ,由D C D Fλ=得()()3,3,122-=-y x λ,解之得⎪⎪⎭⎫ ⎝⎛-λλ33,1F , 又∵13231033,11332,34=-=⎪⎪⎭⎫ ⎝⎛-+⋅⎪⎪⎭⎫ ⎝⎛-=⋅λλλ, ∴2=λ.14. [2014•天津文卷]已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f 若函数x a x f y -=)(恰有4个零点,则实数a 的取值范围为_______.【答案】21<<a【解析】AB CD在同一坐标系内分别作出()x f y =与||x a y =的图象,当||x a y =与()x f y =的图象相切时⎩⎨⎧>---=-0452a x x ax ,解之得1=a ,∴||x a y =与()x f y =的图象有四个交点时,21<<a .15. [2014•天津文卷]某校夏令营有3名男同学,,A B C 和3名女同学,,X Y Z ,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选中的可能性相同).(Ⅰ)用表中字母列举出所有可能的结果;(Ⅱ)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发表的概率.16.C7、C8[2012•天津文卷]在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,已知b c a 66=-,C B sin 6sin =(1)求A cos 的值;(2)求)62cos(π-A 的值.()0|45|2≤++=x x x y |2|2-=x y||x a y =PFE D CBA 17.G4、G11[2014•天津文卷]如图,四棱锥P ABCD -的底面是平行四边形,BA BD ==,2AD =,PA PD ==,E F 分别是棱AD ,PC 的中点. (Ⅰ)证明 //EF 平面PAB ; (Ⅱ)若二面角P AD B --为60, (ⅰ)证明 平面PBC ^平面ABCD ; (ⅱ)求直线EF 与平面PBC 所成角的正弦值.18.H5、H8[2014•天津文卷] 设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知12AB F =. (Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F 的直线l 与该圆相切于点M,2MF =,求椭圆的方程.19. B11、B12 [2014•天津文卷] 已知函数232()(0),3f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=,求a 的取值范围20.A1、D3、E7[2014•天津文卷]已知q 和n 均为给定的大于1的自然数,设集合{}12,1,0-=q M ,集合{}n i M x q x q x x x x A i n n ,2,1,,121=∈++==-, (1)当3,2==n q 时,用列举法表示集合A ;(2)设,,,,121121--++=+++=∈n n n n q b q b b t q a q a a s A t s 其中,,2,1,,n i M b a i i =∈证明:若,n n b a <则t s <.。

2014年天津市高考数学试卷(文科)答案与解析

2014年天津市高考数学试卷(文科)答案与解析

2014年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2014•天津)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:将复数的分子与分母同时乘以分母的共轭复数3﹣4i,即求出值.解答:解:复数==,故选A.点评:本题考查了复数的运算法则和共轭复数的意义,属于基础题.2.(5分)(2014•天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.5考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.3.(5分)(2014•天津)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤1考点:命题的否定;全称命题.专题:简易逻辑.分析:据全称命题的否定为特称命题可写出命题p的否定.解答:解:根据全称命题的否定为特称命题可知,¬p为∃x0>0,使得(x0+1)e≤1,故选:B.点评:本题主要考查了全称命题的否定的写法,全称命题的否定是特称命题.4.(5分)(2014•天津)设a=log2π,b=logπ,c=π﹣2,则()A.a>b>c B.b>a>c C.a>c>b D.c>b>a考点:对数值大小的比较.专题:函数的性质及应用.分析:根据对数函数和幂函数的性质求出,a,b,c的取值范围,即可得到结论.解答:解:log2π>1,logπ<0,0<π﹣2<1,即a>1,b<0,0<c<1,∴a>c>b,故选:C点评:本题主要考查函数值的大小比较,利用对数函数和幂函数的性质是解决本题的关键,比较基础.5.(5分)(2014•天津)设{a n}的首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1=()A.2B.﹣2 C.D.﹣考点:等比数列的性质;等差数列的性质.专题:等差数列与等比数列.分析:由等差数列的前n项和求出S1,S2,S4,然后再由S1,S2,S4成等比数列列式求解a1.解答:解:∵{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,∴S1=a1,S2=2a1﹣1,S4=4a1﹣6,由S1,S2,S4成等比数列,得:,即,解得:.故选:D.点评:本题考查等差数列的前n项和公式,考查了等比数列的性质,是基础的计算题.6.(5分)(2014•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.解答:解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.点评:本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.7.(5分)(2014•天津)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④考点:与圆有关的比例线段;命题的真假判断与应用.专题:直线与圆.分析:本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.解答:解:∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵AD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD•FA.即结论②成立.由,得AF•BD=AB•BF.即结论④成立.正确结论有①②④.故答案为D点评:本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度不大,属于基础题.8.(5分)(2014•天津)已知函数f(x)=sinωx+cosωx(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A.B.C.πD.2π考点:三角函数的周期性及其求法;正弦函数的图象.专题:三角函数的图像与性质.分析:根据f(x)=2sin(ωx+),再根据曲线y=f(x)与直线y=1的交点中,相邻交点距离的最小值为,正好等于f(x)的周期的倍,求得函数f(x)的周期T的值.解答:解:∵已知函数f(x)=sinωx+cosωx=2sin(ωx+)(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,正好等于f (x)的周期的倍,设函数f(x)的最小正周期为T,则=,∴T=π,故选:C.点评:本题主要考查函数y=Asin(ωx+φ)的图象特征,得到正好等于f(x)的周期的倍,是解题的关键,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2014•天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.考点:分层抽样方法.专题:概率与统计.分析:先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.解答:解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.点评:本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.10.(5分)(2014•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.考点:由三视图求面积、体积.专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.11.(5分)(2014•天津)阅读如图的框图,运行相应的程序,输出S的值为﹣4.考点:程序框图.专题:算法和程序框图.分析:写出前二次循环,满足判断框条件,输出结果.解答:解:由框图知,第一次循环得到:S=﹣8,n=2;第二次循环得到:S=﹣4,n=1;退出循环,输出﹣4.故答案为:﹣4.点评:本题考查循环结构,判断框中n≤1退出循环是解题的关键,考查计算能力.12.(5分)(2014•天津)函数f(x)=lgx2的单调递减区间是(﹣∞,0).考点:复合函数的单调性.专题:函数的性质及应用.分析:先将f(x)化简,注意到x≠0,即f(x)=2lg|x|,再讨论其单调性,从而确定其减区间;也可以函数看成由复合而成,再分别讨论内层函数和外层函数的单调性,根据“同増异减”再来判断.解答:解:方法一:y=lgx2=2lg|x|,∴当x>0时,f(x)=2lgx在(0,+∞)上是增函数;当x<0时,f(x)=2lg(﹣x)在(﹣∞,0)上是减函数.∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).方法二:原函数是由复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=lgt在其定义域上为增函数,∴f(x)=lgx2在(﹣∞,0)上是减函数,在(0,+∞)为增函数,∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).点评:本题是易错题,学生在方法一中,化简时容易将y=lgx2=2lg|x|中的绝对值丢掉,方法二对复合函数的结构分析也是最常用的方法,此外,本题还可以利用数形结合的方式,即画出y=2lg|x|的图象,得到函数的递减区间.13.(5分)(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC=3BE,DC=λDF,若•=1,则λ的值为2.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论.解答:解:∵BC=3BE,DC=λDF,∴=,=,=+=+=+,=+=+=+,∵菱形ABCD的边长为2,∠BAD=120°,∴||=||=2,•=2×2×cos120°=﹣2,∵•=1,∴(+)•(+)=++(1+)•=1,即×4+×4﹣2(1+)=1,整理得,解得λ=2,故答案为:2.点评:本题主要考查向量的基本定理的应用,以及数量积的计算,要求熟练掌握相应的计算公式.14.(5分)(2014•天津)已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实数a的取值范围为(1,2).考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:由y=f(x)﹣a|x|=0得f(x)=a|x|,利用数形结合即可得到结论.解答:解:由y=f(x)﹣a|x|=0得f(x)=a|x|,作出函数y=f(x),y=a|x|的图象,当a≤0,不满足条件,∴a>0,当a=2时,此时y=a|x|与f(x)有三个交点,当a=1时,此时y=a|x|与f(x)有五个交点,∴要使函数y=f(x)﹣a|x|恰有4个零点,则1<a<2,故答案为:(1,2)点评:本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 15.(13分)(2014•天津)某校夏令营有3名男同学,A、B、C和3名女同学X,Y,Z,其年级情况如表:一年级二年级三年级男同学 A B C女同学X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(Ⅰ)用表中字母列举出所有可能的结果;(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.考点:古典概型及其概率计算公式;列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(Ⅰ)用表中字母一一列举出所有可能的结果,共15个.(Ⅱ)用列举法求出事件M包含的结果有6个,而所有的结果共15个,由此求得事件M发生的概率.解答:解:(Ⅰ)用表中字母列举出所有可能的结果有:(A,B)、(A,C)、(A,X)、(A,Y)、(A,Z)、(B,C)、(B,X)、(B,Y)、(B,Z)、(C,X)、(C,Y)、(C,Z)、(X,Y)、(X,Z )、(Y,Z),共计15个结果.(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,则事件M包含的结果有:(A,Y)、(A,Z)、(B,X)、(B,Z)、(C,X)、(C,Y),共计6个结果,故事件M发生的概率为=.点评:本题考主要查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于基础题.16.(13分)(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a ﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.考点:正弦定理;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.17.(13分)(2014•天津)如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点.(Ⅰ)证明EF∥平面PAB;(Ⅱ)若二面角P﹣AD﹣B为60°,(i)证明平面PBC⊥平面ABCD;(ii)求直线EF与平面PBC所成角的正弦值.考点:二面角的平面角及求法;直线与平面平行的判定;平面与平面垂直的判定;直线与平面所成的角.专题:空间角;空间向量及应用;立体几何.分析:(Ⅰ)要证明EF∥平面PAB,可以先证明平面EFH∥平面PAB,而要证明面面平行则可用面面平行的判定定理来证;(Ⅱ)(i)要证明平面PBC⊥平面ABCD,可用面面垂直的判定定理,即只需证PB⊥平面ABCD即可;(ii)由(i)知,BD,BA,BP两两垂直,建立空间直角坐标系B﹣DAP,得到直线EF的方向向量与平面PBC法向量,其夹角的余弦值的绝对值即为所成角的正弦值.解答:解:(Ⅰ)证明:连结AC,AC∩BD=H,∵底面ABCD是平行四边形,∴H为BD中点,∵E是棱AD的中点.∴在△ABD中,EH∥AB,又∵AB⊂平面PAB,EH⊄平面PAD,∴EH∥平面PAB.同理可证,FH∥平面PAB.又∵EH∩FH=H,∴平面EFH∥平面PAB,∵EF⊂平面EFH,∴EF∥平面PAB;(Ⅱ)(i)如图,连结PE,BE.∵BA=BD=,AD=2,PA=PD=,∴BE=1,PE=2.又∵E为AD的中点,∴BE⊥AD,PE⊥AD,∴∠PEB即为二面角P﹣AD﹣B的平面角,即∠PEB=60°,∴PB=.∵△PBD中,BD2+PB2=PD2,∴PB⊥BD,同理PB⊥BA,∴PB⊥平面ABD,∵PB⊂平面PBC,∴平面PAB⊥平面ABCD;(ii)由(i)知,PB⊥BD,PB⊥BA,∵BA=BD=,AD=2,∴BD⊥BA,∴BD,BA,BP两两垂直,以B为坐标原点,分别以BD,BA,BP为X,Y,Z轴,建立如图所示的空间直角坐标系B﹣DAP,则有A(0,,0),B(0,0,0),C(,﹣,0),D(,0,0),P(0,0,),∴=(,﹣,0),=(0,0,),设平面PBC的法向量为,∵,∴,令x=1,则y=1,z=0,故=(1,1,0),∵E,F分别是棱AD,PC的中点,∴E(,,0),F(,﹣,),∴=(0,,),∴===﹣,即直线EF与平面PBC所成角的正弦值为.点评:本题主要考查空间直线与平面平行的判定定理以及线面角大小的求法,要求熟练掌握相关的判定定理.18.(13分)(2014•天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|=2,求椭圆的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)分别用a,b,c表示出|AB|和|F1F2|,根据已知建立等式求得a和c的关系,进而求得离心率e.(Ⅱ)根据(1)中a和c的关系,用c表示出椭圆的方程,设出P点的坐标,根据PB为直径,推断出BF1⊥PF1,进而知两直线斜率相乘得﹣1,进而求得sinθ和cosθ,表示出P点坐标,利用P,B求得圆心坐标,则可利用两点间的距离公式分别表示出|OB|,|OF2|,利用勾股定理建立等式求得c,则椭圆的方程可得.解答:解:(Ⅰ)依题意可知=•2c,∵b2=a2﹣c2,∴a2+b2=2a2﹣c2=3c2,∴a2=2c2,∴e==.(Ⅱ)由(Ⅰ)知a2=2c2,∴b2=a2﹣c2=c2,∴椭圆方程为+=1,B(0,c),F1(﹣c,0)设P点坐标(csinθ,ccosθ),以线段PB为直径的圆的圆心为O,∵PB为直径,∴BF1⊥PF1,∴k BF1•k PF1=•=﹣1,求得sinθ=﹣或0(舍去),由椭圆对称性可知,P在x轴下方和上方结果相同,只看在x轴上方时,cosθ==,∴P坐标为(﹣c,c),∴圆心O的坐标为(﹣c,c),∴r=|OB|==c,|OF2|==c,∵r2+|MF2|2=|OF2|2,∴+8=c2,∴c2=3,∴a2=6,b2=3,∴椭圆的方程为+=1.点评:本题主要考查了直线与圆锥曲线的位置关系.第(1)相对简单,主要是求得a和c 的关系;第(2)问较难,利用参数法设出P点坐标是关键.19.(14分)(2014•天津)已知函数f(x)=x2﹣ax3(a>0),x∈R.(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,求a 的取值范围.考点:导数在最大值、最小值问题中的应用;函数在某点取得极值的条件;利用导数研究函数的极值.专题:导数的综合应用.分析:(Ⅰ)求导数,利用导数的正负,可得f(x)的单调区间,从而求出函数的极值;(Ⅱ)由f(0)=f()=0及(Ⅰ)知,当x∈(0,)时,f(x)>0;当x∈(,+∞)时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B={|x∈(1,+∞),f(x)≠0},则对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,等价于A⊆B,分类讨论,即可求a的取值范围.解答:解:(Ⅰ)f′(x)=2x﹣2ax2=2x(1﹣ax),令f′(x)=0,解得x=0或x=.当x变化时,f′(x),f(x)的变化情况如下表:x (﹣∞,0)0(0,)(,+∞)f′(x)﹣0 + 0 ﹣f(x)递减0 递增递减所以,f(x)的单调递减区间为:(﹣∞,0)和,单调递增区间为,当x=0时,有极小值f(0)=0,当x=时,有极大值f()=;(Ⅱ)由f(0)=f()=0及(Ⅰ)知,当x∈(0,)时,f(x)>0;当x∈(,+∞)时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B={|x∈(1,+∞),f(x)≠0},则对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,等价于A⊆B,显然A≠∅下面分三种情况讨论:①当>2,即0<a<时,由f()=0可知,0∈A,而0∉B,∴A不是B的子集;②当1≤≤2,即时,f(2)≤0,且f(x)在(2,+∞)上单调递减,故A=(﹣∞,f(2)),∴A⊆(﹣∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(﹣∞,0),即(﹣∞,0)⊆B,∴A⊆B;③当<1,即a>时,有f(1)<0,且f(x)在(1,+∞)上单调递减,故B=(,0),A=(﹣∞,f(2)),∴A不是B的子集.综上,a的取值范围是[].点评:利用导数可以求出函数的单调区间和极值;解决取值范围问题,很多时候要进行等价转化,分类讨论.20.(14分)(2014•天津)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.考点:数列与不等式的综合;数列的求和.专题:等差数列与等比数列;点列、递归数列与数学归纳法.分析:(Ⅰ)当q=2,n=3时,M={0,1},A={x|,xi∈M,i=1,2,3}.即可得到集合A.(Ⅱ)由于a i,b i∈M,i=1,2,…,n.a n<b n,可得a n﹣b n≤﹣1.由题意可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1],再利用等比数列的前n项和公式即可得出.解答:(Ⅰ)解:当q=2,n=3时,M={0,1},A={x|,x i∈M,i=1,2,3}.可得A={0,1,2,3,4,5,6,7}.(Ⅱ)证明:由设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.a n<b n,∴a n﹣b n≤﹣1.可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1]=<0.∴s<t.点评:本题考查了考查了集合的运算及其性质、等比数列的前n项和公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.。

2014年全国高考天津市数学(文)试卷及答案【精校版】

2014年全国高考天津市数学(文)试卷及答案【精校版】

绝密 ★ 启用前2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A ,B 互斥,那么 •圆锥的体积公式13V Sh =.()()()P A B P A P B =+其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =. h 表示圆锥的高. 其中S 表示棱柱的底面面积,h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数734ii+=+( )(A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ 解:()()()()73472525134343425i i ii i i i i +-+-===-++-,选A .xECBA (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5 解:作出可行域,如图结合图象可知,当目标函数通过点()1,1时,z 取得最小值3,选B .(3)已知命题p :0x ">,总有()11x x e +>,则p Ø为( (A )00x $£,使得()0011xx e £+ (B )00x $>,使得0011xx e £+(C )0x ">,总有()11x x e +£ (D )0x "£,总有()11xx e +£解:依题意知p Ø为:00x $>,使得()0011xx e £+,选B .(4)设2log a p =,12log b p =,2c p-=,则( )(A )a b c >> (B )b a c >> (C )a c b >> (D )c b a >> 解:因为1a >,0b <,01c <<,所以a c b >>,选C .(5)设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D )12- 解:依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-,选D . (6)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= 解:依题意得22225b ac c a bìï=ïïï=íïïï=+ïî,所以25a =,220b =,选A . (7)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分C B F Ð;②2FB FD FA =?;③AE CEBE DE ??;④AF BD AB BF ??.则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④解:由弦切角定理得FBD EAC BAE ???,又BFD AFB ??, 所以BFD D ∽AFB D ,所以BF BDAF AB=,即AF BD AB BF ??,排除A 、C .又FBDEAC DBC ???,排除B ,选D .(8)已知函数()cos f x x x w w =+()0w >,x R Î,在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3p,则()f x 的最小正周期为( ) (A )2p(B )23p (C )p (D )2p解:因为()2sin 6f x x p w 骣÷ç=+÷ç÷ç桫,所以()1f x =得1sin 62x p w 骣÷ç+=÷ç÷ç桫, 所以266x k p p w p +=+或5266x k ppw p +=+,k Z Î. 因为相邻交点距离的最小值为3p,所以233p pw =,2w =,T p =,选C . 第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。

2014年高考文数天津卷试题及详细答案解析

2014年普通高等学校招生全国统一考试(天津卷)数 学 (文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷参考公式:·如果事件A ,B 互斥,那么P (A ∪B )=P (A )+P (B ). ·圆柱的体积公式V=Sh.其中S 表示圆柱的底面面积,h 表示圆柱的高.·圆锥的体积公式V=13Sh.其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,复数734ii+=+=( ). A.1i - B.1i -+ C.17312525i + D.172577i -+ 【答案】A 【解析】7+i 3+4i=(7+i)(3-4i)(3+4i)(3-4i)=21−28i+3i+425=1-i .2.设变量x , y 满足约束条件20201x y x y y +-≥⎧⎪--≤⎨⎪≥⎩则目标函数z=x+2y 的最小值为( ).A.2B.3C.4D.5 【答案】B【解析】作出约束条件的可行域如图中阴影所示.∵z=x+2y ,∴y= - 12x+12 z.∴直线y=-12x+12z 在y 轴上的截距越小,z 就越小. 作直线l 0:x+2y=0,平移l 0,当过A 点时, 直线y= - 12x+12z 在y 轴上的截距最小.由{y =1,x +y -2=0,解得A (1,1),∴z min =1+2×1=3.3.已知命题p :∀x>0,总有(x+1)e x >1,则p ⌝为( ).A.∃x 0≤0,使得(x 0+1)e x 0≤1B.∃x 0>0,使得(x 0+1)e x 0≤1C.∀x>0,总有(x+1)e x ≤1D.∀x ≤0,总有(x+1)e x ≤1 【答案】B【解析】由全称命题∀x ∈M , p (x )的否定为∃x 0∈M ,p ⌝(x ),可得p ⌝:∃x 0>0,使得(x 0+1)e x 0≤1.故选B .4.设2212log ,log ,a b c πππ-===,则( ).A.a>b>cB.b>a>cC.a>c>bD.c>b>a 【答案】C【解析】∵a=log 2π > log 22=1,b=lo g 12π<lo g 121=0,c= π-2= 1π2∈(0,1),∴a>c>b.故选C .5.设{a n }是首项为a 1,公差为-1的等差数列, S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ).A.2B.-2C.12D.- 12【答案】D【解析】由题意知S 22=S 1·S 4,则(a 1+a 1-1)2=a 1(4a 1-6),解得a 1= - 12.故选D .6.已知双曲线()222210,0x y a b a b-=>>的一条渐近线平行于直线l :y=2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ). A.x 25−y 220=1 B.x 220−y 25=1 C.3x 225−3y 2100=1 D.3x 2100−3y 225=1【答案】A【解析】由双曲线方程可得其渐近线方程为y=±bax.∵一条渐近线平行于直线y=2x+10,∴ba=2.①对直线y=2x+10,令y=0,解得x= -5. ∴由题意知c=5.② 又∵a 2+b 2=c 2,③联立①②③,解得a 2=5,b 2=20, ∴所求双曲线的方程为x 25−y 220=1.故选A .7.如图,△ABC 是圆的内接三角形,∠BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F.在上述条件下,给出下列四个结论: ①BD 平分∠CBF ;②FB 2=FD ·FA ;③AE ·CE=BE ·DE ;④AF ·BD=AB ·BF. 则所有正确结论的序号是( ). A.①② B.③④C.①②③D.①②④【答案】D【解析】如右图,在圆中,∵∠1与∠3所对的弧相同,∴∠1=∠3.又BF 为圆的切线,则∠2=∠4.又∵AD 为∠BAC 的平分线,∴∠1=∠2.∴∠3=∠4. ∴BD 平分∠CBF.故①正确.在△BFD 和△AFB 中,∵∠F 为公共角,且∠4=∠2, ∴△BFD ∽△AFB.∴BF AF=DF BF=BD AB.∴BF 2=AF ·DF ,BF ·AB=BD ·AF.故②正确,④正确. 由相交弦定理可知③不正确,故选D .8.已知函数f (x )=√3sin ωx+cos ωx (ω>0),x ∈R .在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( ).A .π2 B.2π3C.πD.2π【答案】C【解析】f (x )=√3sin ωx+cos ωx=2sin (ωx +π6).设距离最小的相邻两交点的横坐标分别为x 1,x 2,且x 1<x 2,则x 2-x 1=π3.∴ωx 1+π6=2k π+π6, k ∈Z 或ωx 2+π6=2k π+56π,k ∈Z .∴ω(x 2-x 1)=56π - π6=23π.∴ω3π=23π.∴ω=2.∴T=2π2= π.第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.9.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取 名学生. 【答案】60 【解析】300×44+5+5+6= 60(名).10.一个几何体的三视图如图所示(单位:m), 则该几何体的体积为 m 3. 【答案】203【解析】由三视图知该几何体上面为圆锥,下面为圆柱.V=13π×22×2+π×12×4=203π.11.阅读下边的框图,运行相应的程序,输出S 的值为 . 【答案】4【解析】初始时,S=0,n=3;第1次运作,S=0+(-2)3=-8,n=3-1=2; 第2次运作,S=-8+(-2)2=-4,n=2-1=1, 此时满足n ≤ 1,输出-4.12.函数f (x )=lg x 2的单调递减区间是 . 【答案】(-∞,0)【解析】函数f (x )=lg x 2的定义域为(-∞,0)∪(0,+∞).∵f (x )=lg x 在(0,+∞)上为增函数,y=x 2在[0,+∞)上为增函数,在(-∞,0]上为减函数, ∴f (x )=lg x 2的单调减区间为(-∞,0).13.已知菱形ABCD 的边长为2,∠BAD=120°,点E ,F 分别在边BC ,DC 上,BC=3BE , DC=λ DF ,若AE ⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =1,则 λ 的值为 . 【答案】2【解析】∵四边形ABCD 为菱形,且边长为2,∠BAD=120°,∴BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ .由题意得AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗ , AF ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +1λAB ⃗⃗⃗⃗⃗ . ∴AE ⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗ )·(1λAB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=1λ×4+AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ +13λAB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ +13×4=4λ+(1+13λ)×2×2×(-12)+43=1. ∴4λ - 2 -23λ+43 =1.∴1λ(4−23)=3 - 43.∴λ=2. 14.已知函数f (x )={|x 2+5x +4|,x ≤0,2|x -2|,x >0,若函数y=f (x )-a|x|恰有4个零点,则实数a 的取值范围为 . 【答案】(1,2)【解析】分别作出函数y=f (x )与y=a|x|的图象, 由图知,a<0时,函数y=f (x )与y=a|x|无交点; a=0时,函数y=f (x )与y=a|x|有三个交点,故a>0. 当x>0,a ≥2时,函数y=f (x )与y=a|x|有一个交点;当x>0,0<a<2时,函数y=f (x )与y=a|x|有两个交点;当x<0时,若y=-ax 与y=-x 2-5x-4(-4<x<-1)相切,则由Δ=0得a=1或a=9(舍). 因此当x<0,a>1时,函数y=f (x )与y=a|x|有两个交点; 当x<0,a=1时,函数y=f (x )与y=a|x|有三个交点; 当x<0,0<a<1时,函数y=f (x )与y=a|x|有四个交点.所以当且仅当1<a<2时,函数y=f (x )与y=a|x|恰有4个零点.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同). (1) 用表中字母列举出所有可能的结果;(2) 设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.分析: (1)用列举法写出从6人中选2人的所有结果.(2)先写出事件M 发生时所含的所有结果,再运用古典概型概率公式求解. 解: (1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.16.(本小题满分13分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知a-c=√66b ,sin B=√6sin C. (1) 求cos A 的值;(2) 求cos 26A π⎛⎫- ⎪⎝⎭的值.分析: (1)利用条件中角的关系,利用正弦定理化为边的形式,结合已知,用c 表示出a ,b ,运用余弦定理求解cos A.(2)由(1)可先求sin A ,再用二倍角公式求sin 2A ,cos 2A 的值,利用两角差的余弦公式求解.解:(1)在△ABC 中,由b sinB=c sinC,及sin B=√6sin C ,可得b=√6c. 又由a-c=√66b ,有a=2c.所以,cos A=b 2+c 2-a 22bc=2222√6c 2=√64. (2)在△ABC 中,由cos A=√64,可得sin A=√104. 于是cos 2A=2cos 2A-1= - 14,sin 2A=2sin A ·cos A= √154. 所以,cos (2A -π6)=cos 2A ·cos π6+sin 2A ·sin π6=√15-√38. 17.(本小题满分13分)如图,四棱锥P-ABCD 的底面ABCD 是平行四边形,BA=BD=√2, AD=2,PA=PD=√5,E ,F 分别是棱AD ,PC 的中点. (1) 证明:EF ∥平面PAB ; (2) 若二面角P-AD-B 为60°. ①证明:平面PBC ⊥平面ABCD ;②求直线EF 与平面PBC 所成角的正弦值.分析:(1)由线线平行证明线面平行.从而在平面PAB 中,寻求过A 点与EF 平行的直线即可.可借助于中位线构造平行四边形求证.(2)①由线面垂直可证面面垂直.先由二面角定义找出二面角P-AD-B 的平面角,结合长度在△PEB 中,运用勾股定理,证明BE ⊥PB.再证明BE ⊥BC ,进而证明BE ⊥平面PBC ,再证得平面PBC ⊥平面ABCD.②由①易知∠EFB 为所求角.再在△EBF 中,利用EF 与BE 的边长求正弦值. (1)证明: 如图,取PB 中点M ,连接MF ,AM. 因为F 为PC 中点,故MF ∥BC 且MF= 12BC.由已知有BC ∥AD ,BC=AD.又由于E 为AD 中点,因而MF ∥AE ,且MF=AE , 故四边形AMFE 为平行四边形,所以EF ∥AM. 又AM ⊂平面PAB ,而EF ⊄平面PAB. 所以EF ∥平面PAB. (2) ①证明: 连接PE ,BE.因为PA=PD ,BA=BD ,而E 为AD 中点,故PE ⊥AD ,BE ⊥AD. 所以∠PEB 为二面角P-AD-B 的平面角. 在△PAD 中,由PA=PD=√AD=2,可解得PE=2. 在△ABD 中,由BA=BD=√2,AD=2,可解得BE=1. 在△PEB 中,PE=2,BE=1,∠PEB=60°.由余弦定理,可解得PB=√3,从而∠PBE=90°,即BE ⊥PB. 又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC. 又BE ⊂平面ABCD ,所以,平面PBC ⊥平面ABCD. ②解:连接BF.由①知,BE ⊥平面PBC , 所以∠EFB 为直线EF 与平面PBC 所成的角. 由PB=√3及已知,得∠ABP 为直角. 而MB= 12PB=√32,可得AM= √112,故EF=√112. 又BE=1,故在直角三角形EBF 中,sin ∠EFB=BE EF=2√1111.所以,直线EF 与平面PBC 所成角的正弦值为2√1111. 18.(本小题满分13分)设椭圆 x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B.已知|AB|=√32|F 1F 2|. (1) 求椭圆的离心率;(2) 设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=2√2.求椭圆的方程.分析:(1)由条件求出|AB|,|F 1F 2|,用a ,b ,c 表示,结合平方关系,求出离心率e= ca 的值.(2)利用(1)中离心率的值,可将椭圆方程中a 2,b 2用c 2表示,设出P 点坐标(x 0,y 0),表示出F 1P ⃗⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗ ,利用以线段PB 为直径的圆过点F 1,可得F 1P ⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗ =0,得出x 0,y 0的关系,结合P 在椭圆上,解出x 0,y 0用c 表示.从而求出圆心、半径,并用c 表示,再利用l 与圆相切及|MF 2|=2√2,结合勾股定理求出c ,得椭圆方程. 解: (1)设椭圆右焦点F 2的坐标为(c ,0). 由|AB|=√32|F 1F 2|,可得a 2+b 2=3c 2, 又b 2=a 2-c 2,则c 2a 2=12.所以,椭圆的离心率e=√22.(2)由(1)知a 2=2c 2,b 2=c 2.故椭圆方程为x 22c +y 2c =1.设P (x 0,y 0).由F 1(-c ,0),B (0,c ), 有F 1P ⃗⃗⃗⃗⃗⃗ =(x 0+c ,y 0),F 1B ⃗⃗⃗⃗⃗⃗ =(c ,c ).由已知,有F 1P ⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗ =0,即(x 0+c )c+y 0c=0. 又c ≠0,故有x 0+y 0+c=0.① 因为点P 在椭圆上,故x 022c +y 02c =1.②由①和②可得3x 02+4cx 0=0. 而点P 不是椭圆的顶点,故x 0= - 43c ,代入①得y 0= c3,即点P 的坐标为(-4c 3,c 3).设圆的圆心为T (x 1,y 1),则x 1=-43c+02= - 23c , y 1=c3+c 2=23c ,进而圆的半径r=√(x 1-0)2+(y 1-c)2=√53c. 由已知,有|TF 2|2=|MF 2|2+r 2,又|MF 2|=2√2,故有(c +23c)2+(0−23c)2=8+59c 2,解得c 2=3.所以,所求椭圆的方程为x 26+y 23=1.19.(本小题满分14分)已知函数f (x )=x 2 - 23ax 3(a>0),x ∈R . (1) 求f (x )的单调区间和极值;(2) 若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1.求a 的取值范围. 分析:(1)第一步:求导,解f ' (x )=0的根,第二步:列表,判断函数f (x )的单调性求出极值,第三步:结论.(2)设集合A={f (x )|x ∈(2,+∞)},B={1f(x)|x∈(1,+∞),f(x)≠0},则可将已知条件转化为A ⊆B 的问题.由(1)知f (x )=0的根为x=32a,再讨论32a与1,2的大小关系,进而分三种情况分别讨论“A ⊆B”是否成立,求出a 的范围. 解: (1)由已知,有f'(x )=2x-2ax 2(a>0). 令f ' (x )=0,解得x=0或x=1a .当x 变化时,f'(x ),f (x )的变化情况如下表:x(-∞,0)(0,1a) 1a(1a,+∞)所以, f (x )的单调递增区间是10,a ⎛⎫ ⎪⎝⎭;单调递减区间是(-∞,0),1,a ⎛⎫+∞ ⎪⎝⎭. 当x=0时,f (x )有极小值,且极小值f (0)=0; 当1x a =时, f (x )有极大值,且极大值2113f a a ⎛⎫= ⎪⎝⎭(2)由f (0)=f (32a)=0及(1)知,当x ∈(0,32a )时, f (x )>0;当3,2x a ⎛⎫∈+∞⎪⎝⎭时, f (x )<0. 设集合A={f (x )| x ∈(2,+∞)},集合()()()11,,0B x f x f x ⎧⎫⎪⎪=∈+∞≠⎨⎬⎪⎪⎩⎭. 则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B ,显然,0B ∉.下面分三种情况讨论: ①当32a>2,即0<a<34时,由f (32a)=0可知,0∈A ,而0B ∉,所以A 不是B 的子集.②当1≤32a≤ 2,即34≤ a ≤ 32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A=(-∞,f (2)),因而A ⊆(-∞,0);由f (1) ≥ 0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B ,所以,A ⊆B. ③当32a<1,即a>32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故()1,01B f ⎛⎫=⎪⎪⎝⎭, A=(-∞, f (2)), 所以A 不是B 的子集.综上,a 的取值范围是[34,32].20.(本小题满分14分)已知q 和n 均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x 1+x 2q+…+x n q n-1,x i ∈M ,i=1,2,…,n }. (1) 当q=2,n=3时,用列举法表示集合A ;(2) 设s ,t ∈A ,s=a 1+a 2q+…+a n q n-1,t=b 1+b 2q+…+b n q n-1,其中a i ,b i ∈M ,i=1,2,…,n. 证明:若a n <b n ,则s<t.分析:(1)先由已知写出M ,及描述法的集合A ,再对x i 值的情况讨论,写出A 的列举法表示.(2)证明s<t ,可用作差法,即判断s-t<0.作差后利用放缩法,将差式转化为等比数列求和判断差的符号.(1) 解: 当q=2,n=3时,M={0,1},A={x|x=x 1+x 2·2+x 3·22,x i ∈M ,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(2) 证明: 由s ,t ∈A ,s=a 1+a 2q+…+a n q n-1,t=b 1+b 2q+…+b n q n-1,a i ,b i ∈M ,i=1,2,…,n 及a n <b n ,可得s-t=(a 1-b 1)+(a 2-b 2)q+…+(a n-1-b n-1)q n-2+(a n -b n )q n-1 ≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q -1)(1-q n -1)1−q- q n-1= -1<0.所以,s<t.。

天津市南开区2014届高三第一次模拟考试文科数学试卷(带解析)

天津市南开区2014届高三第一次模拟考试文科数学试卷(带解析)1.若集合A={|10x x -≥},B={|||2x x >},则集合A B 等于( ).(A){|1x x ≥} (B){|21x x x <->或}(C){|22x x x <->或} (D){|21x x x <-≥或}【答案】D【解析】 试题分析:}1{≥=x x A ,}22{-<>=x x x B 或,}21{-<≥=∴x x x B A ,故选D. 考点:集合的交并补运算 2.已知实数x ,y 满足约束条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则24z x y =+的最小值是( ).(A)5 (B)-6 (C)10 (D)-l0【答案】B【解析】试题分析:当目标函数过C 点时,目标函数取得最小值,()33-,C ,代入y x Z 42+=,6min -=Z .考点:线性规划3.若某程序框图如图所示,则该程序运行后输出的B 等于( ).(A)7 (B)15 (C)31 (D)63【答案】D【解析】试题分析:循环前1,1A B ==,第一圈 32==B A , 是;第二圈 73==B A ,;是第三圈 154==B A , 是第四圈 315==B A , ;是第三圈 636==B A ,; 否则输出的结果为63,故选D. 考点:循环结构4.已知a R ∈且0a ≠,则“11a<”是“1a >”的( ) (A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】B【解析】 试题分析:011<⇔<a a或1>a ,所以是1>a 的必要非充分条件.故选B. 考点:充分必要条件5.过点A (-1,0),斜率为k 的直线,被圆22(1)4x y -+=截得的弦长为k 的值为( )。

(A)3±(B)3(C)【答案】A【解析】试题分析:设直线为()1+=x k y ,根据弦长公式32222=-=d r l ,可得:1=d ,1122=+=k kd ,解得:33±=k ,故选A. 考点:直线与圆的位置关系6.函数2sin()(09)63x y x ππ=-≤≤的最大值与最小值之和为( )。

天津市六校2014届高三上学期第一次联考数学(文)试题 Word版含答案

天津市六校2014届高三第一次联考数学试卷(文科)一、选择题(每题5分,共8题)1.已知复数12z i =-,那么1z =( )A.55+B.55-C.1255i +D.1255i - 2. “1x >”是“1x >” 的A .充分不必要条件 B.必要不充分条件 C. 充分必要条件 D.既不充分又不必要条件3.设变量x,y 满足,x y 1x y 1x +≤⎧⎪-≤⎨⎪≥0⎩,则x y +2的最大值和最小值分别为( )A . 1,-1 B. 2,-2 C. 1,-2 D.2,-14. 方程03log 4=-x x 的根所在区间为( )A .)25,2( B. )3,25( C.)4,3( D.)5,4(5.已知定义在R 上的函数)(x f 是偶函数,对2)3()2()2( -=--=+∈f x f x f R x ,当有都 时,)2013(f 的值为( ) A .-2 B. 2C.4D.-46. 若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( )A . [3,1]-- B. [1,3]- C. [3,1]- D. (,3][1,)-∞-+∞ 7. 在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A . 3B .2 3C .3 3 D. 4 38.则使方程()x f x m +=有解的实数m 的取值范围是( )A .(1,2) B. (,1][2,)-∞⋃+∞ C.(,1)(2,)-∞⋃+∞ D. (,2]-∞-二、填空题(每小题5分,共6小题)9.已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B = 。

10.已知(2,0),(2,2),(2,1)OB OC CA ===,则OA 与OB 夹角的正弦值为_____.11.如图,PT 切圆O 于点T ,PA 交圆O 于A 、B 两点,且与直径CT 交于点D ,6,3,2===BD AD CD ,则=PB 。

天津市六校2014届高三上学期第一次联考文科数学试卷(解析版)

天津市六校2014届高三上学期第一次联考文科数学试卷(解析版)一、选择题1A .【答案】 D【解析】D.考点:共轭复数、复数的四则运算. 2)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】A 【解析】A. 考点:向量的数量积、平行向量.3( )A. 1【答案】B 【解析】B.考点:简单的线性规划.4)A【答案】C 【解析】C.考点:函数与方程.5.已知定义的偶函数,当)A.-2 B. 2 C.4 D.-4【答案】A【解析】4为周期的周期函数,所以A.考点:函数的对称与周期.6)Ax+【答案】C 【解析】C.考点:直线与圆的位置关系.7( ).A.【答案】D.【解析】D.考点:三角形面积公式.8.()AB.【答案】B【解析】B.考点:函数的值域.二、填空题9.已知集合,,则B= .【解析】试题分析:},,由交集定义可知{|B x x =考点:解不等式、集合的运算.10.已知OB_____.【解析】试题分析:,设与夹角为,则5||||OA OB =⨯⋅考点:向量的夹角、数量积.11.如图, PT 切圆O 于点【答案】15 【解析】考点:切线的性质、切割线定理、相交弦定理.12.某四棱锥的三视图如图所示,该四棱锥的表面积是 .OTBPCD A【解析】试题分析:由三视图可知,这个四棱锥的底面是一个边长为4的正方形,且高为2,所以它考点:三视图、正棱锥的表面积.13则输出的数等于 .【答案】正(主)视图侧(左)视图俯视图4【解析】考点:算法与框图.14离心率是椭圆离心率的两倍,则双曲线的方程为.【解析】三、解答题15(I(II【答案】(I(II)最大值为2【解析】试题分析:(I答,在三角形中求角或边,通常对条件进行“统一”,统一为边或统一为角,主要的工具是正弦定理和余弦定理,同时不要忘记了三角形内角和定理;(II)先通过三角函数的恒等变涉及三角函数的值域问题,多数情况再利用三角函数的性质解答,也有部分题目,可转化为角的某个三角函数,然后用换元法转化为非三角函数问题.试题解析:(I从而,又,所以,则5分(II)由(I 6分于是,2.2,分考点:三角函数性质、正弦定理.16.某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共52品尝后,从5杯饮料中选出3若该员工3杯都选对,则评为优秀;若3杯选对2(Ⅰ)求此人被评为优秀的概率;(Ⅱ)求此人被评为良好及以上的概率.【答案】【解析】试题分析:根据古典概型的两个特点(基本事件的有限性和每个基本事件发生的等可能性)判断本题属于古典概型,古典概型中,求事件发生的概率,先要求出基本事件数,再求出所求概率事件包含的基本事件数,相比即可.试题解析:从5杯饮料中任选3种)3种)32种)考点:组合数的计算、古典概型.17(Ⅲ)在(Ⅱ)的条件下,. 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;【解析】试题分析:由题目给条件易想到利用勾股定理逆定理;(Ⅱ),将以上分析写成综合法即可,找到这一点后,也可用别的方法证明,如勾股定理逆定理;(Ⅲ)求直线与平面所成的角,根据其定义,应作出这条直线在平面中的射影,再求这条直线与其射影的夹角(三角函数值).AEBCC 1B 1A 1试题解析:AB B=4分AB B=8分因为点,,由(2分考点:空间中直线与平面垂直、直线与平面平行、平面与平面垂直的判定与性质.18,4,.(1);.【答案】(1(2【解析】试题分析:(1)根据椭圆的定义,可判断点的轨迹为椭圆,再根据椭圆的基本量,容易写出但如果根据特殊曲线的定义,先行判断出曲线的形状(如椭圆,圆,抛物线等),则可直接写出其方程;(2)一般地,涉及直线与二次曲线相交的问题,则可联立方程组,或解出交点坐标,或设而不求,利用一元二次方程根与系数的关系建立关系求出参数的值(取值范围),本用一元二次方程根与系数的关系消去坐标即得.试题解析:(1)由椭圆定义可知,, 长半轴为2的椭圆, 2分分分(2),得 分分分考点:椭圆的方程,直线与椭圆的位置关系. 19. (1(2(3)在(2【答案】(1)详见解析;【解析】试题分析:(1列;(2)由(1)求出其通项公式;(3)(等差乘等比型)可用错位相减法求和.证明数列为等差数列或等比数列,应紧扣定义,通过对所给条件变形,得到递推关系,而等差乘等比型数列的求和最常用的就是错位相减法,使用这个方法在计算上要有耐心和细心,注意各项的符号,防止出错.试题解析:(1分分分分∴5分(27分2为公比,4为首项的等比数列∴∴分(3分 12n++① 2132n ++② ① 1222n n ++-11212n n --+- 23n +分 考点:等差数列、等比数列、错位相减法.20(I.【答案】(1(2【解析】试题分析:(I )先用导数工具求出函数的单调区间,然后考察区间(Ⅱ)不等式恒成立问题,通常可最小值即可.对于不等式恒成立问题通常可以通过分离参数或直接考察函数的性质解决,一般说方便分离参数的还是分离参数,这样在研究函数的性质时可避开参变数的影响,便于解决问题.1分3分(I所以,分所以,分即 9分分分分考点:函数与导数、函数的极值和最值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档