人教A版精编高中数学必修4第二章平面向量2.3.1平面向量基本定理导学案
人教A版高中必修4数学2.3《平面向量的基本定理及坐标表示》同步练习课件(共3课时)

新知探究
题型探究
感悟提升
解
(1)∵△ABC为等边三角形,
∴∠ABC=60° . 如图,延长AB至点D,使AB=BD, → → 则AB=BD, → → ∴∠DBC为向量AB与BC的夹角. ∵∠DBC=120° , → → ∴向量AB与BC的夹角为120° .
(2)∵E为BC的中点, ∴AE⊥BC, → → ∴AE与EC的夹角为90° .
新知探究 题型探究 感悟提升
1 → → → → → 1→ BC=FD=AD-AF=AD-2AB=a-2b, → → → → → → 1→ EF=DF-DE=-FD-DE=-BC-2DC
1 1 1 1 =-a-2b-2×2b=4b-a.
新知探究
题型探究
感悟提升
类型二 向量的夹角问题
→ → → → 提示 不相同,它们互补.AC与AB的夹角为∠CAB,而CA与AB 的夹角为π-∠CAB.
新知探究 题型探究 感悟提升
类型一
用基底表示向量
【例1】 如图,四边形OADB是以 → → OA=a,OB=b为边的平行四边形, 1 1 又BM=3BC,CN=3CD,试用a、b → → → 表示OM、ON、MN.
【例2】 已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹
角是多少?a-b与a的夹角又是多少? [思路探索] 以a,b为邻边作平行四边形,则a+b,a-b分别表示 对角线向量,利用平行四边形的知识求解.
新知探究
题型探究
感悟提升
解
→ → 如图所示,作 OA =a, OB =b,且∠
AOB=60° . → → 以 OA , OB 为邻边作平行四边形OACB,则 → → OC=a+b,BA=a-b. 因为|a|=|b|=2,所以平行四边形OACB是菱形,又∠AOB= → → → → 60° ,所以OC与OA的夹角为30° ,BA与OA的夹角为60° . 即a+b与a的夹角是30° ,a-b与a的夹角是60° .
新人教A版必修4高中数学2.3.1 平面向量基本定理学案

高中数学 2.3.1 平面向量基本定理学案新人教A版必修4【学习目标】1知识与技能(1)了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题;(2)培养学生分析、抽象、概括的推理能力。
2过程与方法(1)通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法;(2)通过本节学习,体会用基底表示平面内任一向量的方法。
3情感.态度与价值观(1)通过本节学习,培养学生的理性思维,培养学生独立思考及勇于探求、敢于创新的精神、培养主动学习的意识;(2)通过平面向量基本定理的探求过程,培养学生观察能力、抽象概括能力、独立思考的能力,激发学生学习数学的兴趣。
【重点难点】重点:平面向量基本定理的应用难点:对平面向量基本定理的发现和形成过程,数学思想的渗透。
【学习内容】一【知识链接】1. 向量加法与减法有哪几种几何运算法则?2.怎样理解向量的数乘运算λa? (1)模:|λa|=|λ||a|;(2)方向:λ>0时λa 与a方向相同;λ<0时λa与a方向相反;λ=0时λa=03. 向量共线定理 :向量b 与非零向量a共线则:有且只有一个非零实数λ,使b =λa.二【新课导入】情景展示:在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,就会形成一个新的数学理论. 三、小组合作、自主探究 探究(一):平面向量的基本定理探究1:给定平面内任意两个不共线的非零向量1e 、2e ,请你作出向量b =31e +22e 、c =1e -22e .探究2:由探究1可知可以用平面内任意两个不共线的非零向量1e 、2e 来表示向量b ,c 那么平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示呢?【定理解读】1 、1e 、2e 必须是平面向量的基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ11e +λ22e .2、λ1,λ2是被a,1e ,2e 的数量 3、基底不唯一,关键是不共线;4、由定理可将任一向量a 在给出基底1e 、2e 的条件下进行分解;5、基底给定时,分解形式唯一.6、λ 1 =0时 ; λ2=0时 ;λ1=0、λ2=0时 。
《平面向量基本定理》教案、导学案、课后作业

《6.3.1 平面向量基本定理》教案【教材分析】本节内容是学生在学习平面向量实际背景及基本概念、平面向量的线性运算(向量的加法、减法、数乘向量、共线向量定理)之后的又一重点内容,它是引入向量坐标表示,将向量的几何运算转化为代数运算的基础,使向量的工具性得到初步的体现,具有承前启后的作用。
【教学目标与核心素养】课程目标1、了解平面向量基本定理;2、理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;3、能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.数学学科素养1.数学抽象:平面向量基底定理理解;2.逻辑推理:用基底表示向量;3.数学建模:利用数形结合的思想运用相等向量,比例等知识来进行转换.【教学重点和难点】重点:平面向量基本定理;难点:平面向量基本定理的理解与应用.【教学过程】一、情景导入已知平面内一向量a是该平面内两个不共线向量b,c的和,怎样表达?问题:如果向量b与e1共线、c与e2共线,上面的表达式发生什么变化?根据作图进行提问、引导、归纳,板书表达式:a=λ1e1+λ2e2要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本25-27页,思考并完成以下问题1、平面向量基本定理的内容是什么?2、如何定义平面向量的基底?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2.注意:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,e1、e2唯一确定的数量. 四、典例分析、举一反三 题型一 正确理解向量基底的概念例1例1 设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④D .③④ 【答案】B【解析】①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.解题技巧(基底向量满足什么条件)考查两个向量能否作为基底,主要看两向量是否为非零向量且不共线.此外,一个平面的基底一旦确定,那么平面内任意一个向量都可以由这组基底唯一表示.注意零向量不能作基底.跟踪训练一1、设e 1,e 2是平面内一组基底,则下面四组向量中,不能作为基底的是( ) A .e 1+e 2和e 1-e 2 B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 2+e 1【答案】B.【解析】∵4e 2-6e 1=-2(3e 1-2e 2),∴两个向量共线,不能作为基底. 题型二 用基底表示向量例2 如图,在平行四边形ABCD 中,设对角线AC ―→=a ,BD ―→=b ,试用基底a ,b 表示AB ―→,BC ―→.【答案】AB ―→=12a -12b ,BC ―→=12a +12b.【解析】 由题意知,AO ―→=OC ―→=12AC ―→=12a ,BO ―→=OD ―→=12BD ―→=12b .所以AB ―→=AO ―→+OB ―→=AO ―→-BO ―→=12a -12b ,BC ―→=BO ―→+OC ―→=12a +12b.解题技巧: (用基底表示向量的方法)将两个不共线的向量作为基底表示其他向量,一般是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.跟踪训练二1、如图所示,梯形ABCD 中,AB ∥CD ,M ,N 分别是DA ,BC 的中点,且DCAB=k ,设AD ―→=e 1,AB ―→=e 2,以e 1,e 2为基底表示向量DC ―→,BC ―→,MN ―→.2、【答案】DC ―→=k e 2.BC ―→=e 1+(k -1)e 2.MN ―→=k +12e 2.【解析】法一:∵AB ―→=e 2,DCAB=k ,∴DC ―→=k AB ―→=k e 2.∵AB ―→+BC ―→+CD ―→+DA ―→=0,∴BC ―→=-AB ―→-CD ―→-DA ―→=-AB ―→+DC ―→+AD ―→=e 1+(k -1)e 2. 又MN ―→+NB ―→+BA ―→+AM ―→=0,且NB ―→=-12BC ―→,AM ―→=12AD ―→,∴MN ―→=-AM ―→-BA ―→-NB ―→=-12AD ―→+AB ―→+12BC ―→=k +12e 2.法二:同法一得DC ―→=k e 2,BC ―→=e 1+(k -1)e 2.连接MB ,MC ,由MN ―→=12(MB ―→+MC ―→)得MN ―→=12(MA ―→+AB ―→+MD ―→+DC ―→)=12(AB ―→+DC ―→)=k +12e 2.题型三 平面向量基本定理的应用例3 如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN 的值.【答案】AP ∶PM =4,BP ∶PN =32.【解析】 设BM ―→=e 1,CN ―→=e 2,则AM ―→=AC ―→+CM ―→=-3e 2-e 1,BN ―→=BC ―→+CN ―→=2e 1+e 2. ∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ使得AP ―→=λAM ―→=-λe 1-3λe 2, BP ―→=μBN ―→=2μe 1+μe 2.故BA ―→=BP ―→+PA ―→=BP ―→-AP ―→=(λ+2μ)e 1+(3λ+μ)e 2. 而BA ―→=BC ―→+CA ―→=2e 1+3e 2,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.∴AP ―→=45AM ―→,BP ―→=35BN ―→,∴AP ∶PM =4,BP ∶PN =32.解题技巧(平面向量基本定理应用时注意事项)若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量( 一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.跟踪训练三1.在△ABC 中,AD →=13AB →,AE →=14AC →,BE 与CD 交于点P ,且AB →=a ,AC →=b ,用a ,b 表示AP →.【答案】AP →=311 a +211b . 【解析】如图,取AE 的三等分点M ,使AM =13AE ,连接DM ,则DM//BE.设AM =t (t >0),则ME =2t . 又AE =14AC ,∴AC =12t ,EC =9t ,∴在△DMC 中,CE CM =CP CD =911,∴CP =911CD ,∴DP =211CD ,AP →=AD →+DP →=AD →+211DC →=13AB →+211(DA →+AC →)=13AB →+211⎝ ⎛⎭⎪⎫-13AB →+AC →=311AB →+211AC →=311 a +211b . 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本27页练习,36页习题6.3的1,11题. 【教学反思】教学过程中说到基底问题时,要注重数形结合思想的培养.特别是很多学生总是把他和单位向量分不开,教师需要给学生引导,要注意不共线的两个向量都可以作为基底这个思想.在进行向量运算时需要进行转化,运用相等向量,比例等知识来进行;学生在解题时很少注意到这个问题,只是纯粹的利用向量知识解题,所以很难找到思路.《6.3.1 平面向量基本定理》导学案【学习目标】 知识目标1、了解平面向量基本定理;2、理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量 解决实际问题的重要思想方法;3、能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 核心素养1.数学抽象:平面向量基底定理理解;2.逻辑推理:用基底表示向量;3.数学建模:利用数形结合的思想运用相等向量,比例等知识来进行转换. 【学习重点】:平面向量基本定理;【学习难点】:平面向量基本定理的理解与应用. 【学习过程】 一、预习导入阅读课本25-27页,填写。
高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,
[教案精品]新课标高中数学人教A版必修四全册教案2. 3平面向量基本定理及坐标表示(三)
![[教案精品]新课标高中数学人教A版必修四全册教案2. 3平面向量基本定理及坐标表示(三)](https://img.taocdn.com/s3/m/efee8da0f705cc175527099b.png)
2.3.4 平面向量共线的坐标表示教案目的:<1)理解平面向量共线的坐标表示;<2)掌握平面上两点间的中点坐标公式及定点坐标公式;<3)会根据向量的坐标,判断向量是否共线.教案重点:平面向量公线的坐标表示及定点坐标公式,教案难点:向量的坐标表示的理解及运算的准确性教案过程:一、复习引入:1.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2b5E2RGbCAP(1>我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2>基底不惟一,关键是不共线;(3>由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4>基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量2.平面向量的坐标表示分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得p1EanqFDPw把叫做向量的<直角)坐标,记作其中叫做在轴上的坐标,叫做在轴上的坐标,特别地,,,.2.平面向量的坐标运算<1)若,,则,,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差. . 实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
<2)若,,则一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.向量的坐标与以原点为始点、点P为终点的向量的坐标是相同的。
3.练习:1.若M(3, -2> N(-5, -1> 且,求P点的坐标2.若A(0, 1>, B(1, 2>, C(3, 4> ,则 2=.3.已知:四点A(5, 1>, B(3, 4>, C(1, 3>, D(5, -3> ,如何求证:四边形ABCD是梯形.?二、讲解新课:1、思考:<1)两个向量共线的条件是什么?<2)如何用坐标表示两个共线向量?设=(x1, y1> ,=(x2, y2> 其中≠.由=λ得, (x1, y1> =λ(x2, y2> 消去λ,x1y2-x2y1=0∥ (≠>的充要条件是x1y2-x2y1=0探究:<1)消去λ时能不能两式相除?<不能∵y1, y2有可能为0,∵≠∴x2, y2中至少有一个不为0)<2)能不能写成?<不能。
第二章 平面向量基本定理

人教A版必修四·新课标·数学
版块导航
2.两向量的夹角与垂直 → → (1)夹角:已知两个 非零向量 a 和 b,作OA=a, =b, OB 则∠AOB=θ,叫做向量 a 与 b 的夹角.
①范围: 向量 a 与 b 的夹角的范围是[0°, 180°]. ②当 θ=0°时,a 与 b 同向. ③当 θ=180°时,a 与 b 反向.
人教A版必修四·新课标·数学
版块导航
→ → 解法二:(方程思想):设AB=x,BC=y,则有 → → → → → → → → AB+BC=AC,AD-AB=BD且AD=BC=y. x+y=a, 1 1 1 1 1 → 1 即 ∴x= a- b,y= a+ b,即AB= a- 2 2 2 2 2 2 y-x=b. → 1 1 b,BC= a+ b. 2 2
人教A版必修四·新课标·数学
版块导航
向量夹角的概念 【例 4】 已知两非零向量 a 与 b 的夹角为 80°,试求下 列向量的夹角: (1)a 与-b; (2)2a 与 3b.
思路分析:作出向量 a,b,再作出相应的向量,依据向 量夹角的定义来确定.
人教A版必修四·新课标·数学
版块导航
解:(1)由向量夹角的定义,如下图①,向量 a 与-b 的 夹角为 100°.(2)如下图②,向量 2a 与 3b 的夹角为 80°.
人教A版必修四·新课标·数学
版块导航
规 律 归 纳 本类型题需不断地利用三点共线进行转化,最后通过利 用任意一向量基底表示的唯一性,即若 a=λ1e1+µ1e2 且 a= λ =λ , 1 2 λ2e1+µ2e2,则 来构建方程,使得问题获解. µ1=µ2
人教A版必修四·新课标·数学
答案:C
平面向量基本定理(教学设计)
《平面向量基本定理(第一课时)》教学设计一、教材分析:本节内容是人教A版普通高中课程标准实验教科书必修4第二章第3节“平面向量基本定理及坐标表示”的第一课时内容,本节共2个课时。
平面向量基本定理是本节的重点也是本节的难点。
平面向量基本定理告诉我们同一平面内任一向量都可以表示为两个不共线向量的线性组合,由于高中数学设计的向量是自由向量,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任何一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点和两个不共线的向量得到表示,这是引进平面向量基本定理一个原因(学生可以不讲)。
实际上,本节课在本章中起到一个“承上启下”的作用,一方面要在平面向量线性运算的基础上归纳定理,另一方面,作为平面向量基本定理的特殊情况,研究平面向量的正交分解及坐标表示,是建立向量坐标的一个逻辑基础,它揭示了平面向量的基本关系和基本结构,是学生后续学习向量坐标表示的基础。
二、学情分析:知识方面:学生学习了第一节“平面向量的实际背景及基本概念”和第二节“平面向量的线性运算”,已经有了一定的平面向量基础知识,学力和能力方面:授课对象为省级示范学校高一学生,有比较扎实的数学基本知识,其数学基本素养和学习能力应该在普通高中学生中处于中上水平。
三、教师教学的出发点:根据课程标准的要求备课,备学生,把课程标准的要求溶解在课堂中,让学生在潜移默化中提高数学素养。
本节课的教学设计主要是针对学习情况为中等的学生(占大多数),第一、注重知识的生成,通过创设问题情境,引导学生自主学习,主动探究发现新知(平面向量基本定理);第二、注重数学思维的培养,通过问题的两个方面,即平面向量合成和分解,培养学生的观察能力,启发学生的逆向思考能力,抽象概括能力,引导学生进行适当的合情推理(定理的证明);第三、注重对知识的理解、消化、应用,主要通过典型的问题,掌握对新知的应用,可进行适当的拓展,发散思维;第四:激发学生的学习兴趣,在3个方向:新知识的维度拓展的兴趣激发,解决几何问题的兴趣激发,后续学习的兴趣激发。
2014-2015学年高中数学人教A版必修四平面向量导学案
§2.1平面向量的实际背景及基本概念导学案【学习要求】1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.【学法指导】本节内容涉及的概念较多,必须认真辨析易混淆的概念,如向量与数量、向量与矢量、向量与有向线段、平行向量与共线向量、相等向量等.这些内容是平面向量的起始内容,是构建向量理论体系的基础,要注意认真体会概念的内涵.【知识要点】1.向量:既有 ,又有 的量叫做向量.2.向量的几何表示:以A 为起点、B 为终点的有向线段记作____. 3.向量的有关概念:(1)零向量:长度为 的向量叫做零向量,记作 .(2)单位向量:长度等于 个单位的向量,叫做单位向量. (3)相等向量: 且 的向量叫做相等向量.(4)平行向量(共线向量):方向 的 向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于b ,记作 . ②规定:零向量与 平行.【问题探究】探究点一 向量的概念和几何表示(1)我们知道,力和位移都是既有大小,又有方向的量.数学中,我们把这种既有大小,又有方向的量叫做向量.而把那些只有大小,没有方向的量称为数量.例如,已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度. 其中是数量的有 ,是向量的有 . 向量的模是非负数,可以比较大小,向量不能比较大小.(2)带有方向的线段叫做有向线段,向量可以用有向线段来表示.有向线段AB →的长度就是向量AB →的长度(简称模),记作|AB →|;有向线段AB →箭头表示向量AB →的方向.假设下图每个格子是边长为1 cm ,比例尺为1∶100,请求出下列各向量的模. |AB →|= ,|CD →|= ,|EF →|= ,|GH →|= ,|a |= .探究点二 几个向量概念的理解(1)零向量:长度为零的向量叫做零向量,记作0,它的方向是任意的. (2)单位向量:长度(或模)为1的向量叫做单位向量.(2)相等向量:长度相等方向相同的向量叫做相等向量.若向量a 与b 相等,记作a =b .研究向量问题时要注意,从大小和方向两个方面考虑,不可忽略其中任何一个要素.对于初学者来讲,由于向量是一个相对新的概念,常常因忽略向量的方向性而致错.例如:下列说法中正确的是________.①3牛顿的力一定大于2牛顿的力;②长度相等的向量叫作相等向量;③一个向量的相等向量有无数多个;④若|a |=|b |,则a =b 或a =-b ;⑤单位向量都大于零向量. 想一想,在同一平面内,把所有长度为1的向量的始点固定在同一点,这些向量的终点形成的轨迹是什么? 探究点三 平行向量与共线向量方向相同或相反的非零向量叫做平行向量.向量a 、b 平行,通常记作a ∥b .规定:零向量与任一向量平行,即对于任意向量a ,都有0∥a .a 、b 、c 是一组平行向量,任作一条与a 所在直线平行的直线l ,在l 上任取一点O ,则可在l 上分别作出OA →=a ,OB →=b ,OC →=c .由于任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.也就是说,平行向量与共线向量是等价的,因此要注意避免向量平行、共线与平面几何中的直线、线段的平行和共线相混淆. 练一练,如图所示,四边形ABCD 和BCED 都是平行四边形,(1)写出与BC →相等的向量:________.(2)写出与BC →共线的向量:________. 想一想,向量平行具备传递性吗?【典型例题】例1 判断下列命题是否正确,并说明理由.①若a ≠b ,则a 一定不与b 共线;②若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点;③在平行四边形ABCD 中,一定有AB →=DC →;④若向量a 与任一向量b 平行,则a =0; ⑤若a =b ,b =c ,则a =c ;⑥若a ∥b ,b ∥c ,则a ∥c . 跟踪训练1 判断下列命题是否正确,并说明理由. (1)若向量a 与b 同向,且|a |>|b |,则a >b ;(2)若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)对于任意|a |=|b |,且a 与b 的方向相同,则a =b ; (4)向量a 与向量b 平行,则向量a 与b 方向相同或相反例2 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →、BC →、CD →;(2)求|AD →|.跟踪训练2 在如图的方格纸上,已知向量a ,每个小正方形的边长为1. (1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?例3 如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量;(2)写出与EF →的模大小相等的向量;(3)写出与EF →相等的向量.跟踪训练3 如图,D ,E ,F 分别是正三角形ABC 各边的中点.(1)写出图中所示向量与向量DE →长度相等的向量;(2)写出图中所示向量与向量FD →相等的向量;(3)分别写出图中所示向量与向量DE →,FD →共线的向量.【当堂检测】1.下列说法正确的是( )A .方向相同或相反的向量是平行向量B .零向量的长度是0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量 2.下列命题正确的是 ( )A .若|a |=|b |,则a =b 或a =-bB .向量的模一定是正数C .起点不同,但方向相同且模相等的几个向量是相等向量D .向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在同一直线上 3.在下图所示的坐标纸上,用直尺和圆规画出下列向量.(1)OA →,使|OA →|=42,点A 在点O 东偏北45°; (2)AB →,使|AB →|=4,点B 在点A 正东方向; (3)BC →,使|BC →|=6,点C 在点B 正北方向. 4.如图所示,以1×2方格纸中的格点(各线段 的交点)为起点和终点的向量中.(1)写出与AF →、AE →相等的向量;(2)写出与AD →模相等的向量.【课堂小结】1.向量是既有大小又有方向的量,解决向量问题时一定要从大小和方向两个方面去考虑.2.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一条直线上.当然,同一直线上的向量也是平行向量.3.规定:零向量与任一向量都平行.【拓展提高】§2.2.1 向量加法运算及其几何意义【学习要求】1.理解并掌握加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算. 3.了解向量加法的交换律和结合律,并能依几何意义作图解释加法运算律的合理性.【学法指导】1.使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.2.向量的三角形法则可推广到n 个向量求和——多边形法则,即n 个首尾相连的向量的和对应的向量是由第一个向量起点指向第n 个向量的终点的向量.3.当两向量不共线时,向量加法的三角形法则与平行四边形法则是一致的.而当两个向量共线时,三角形法则适用,平行四边形法则就不适用了.【知识要点】1.向量的加法法则 (1)三角形法则如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量____叫做a 与b 的和(或和向量),记作_____,即a +b =AB →+BC →=_____.上述求两个向量和的作图法则,叫做向量求和的三角形法则.对于零向量与任一向量a 的和有a +0=__+__=__. (2)平行四边形法则如图所示,已知两个不共线向量a ,b ,作OA →=a ,OB →=b ,则O 、A 、B 三点不共线,以 , 为邻边作 ,则对角线上的向量 =a +b ,这个法则叫做两个向量求和的平行四边形法则. 2.向量加法的运算律(1)交换律:a +b = .(2)结合律:(a +b )+c = .【问题探究】探究点一 向量加法的三角形法则如图所示,是上海到台北的航线示意图:一是经香港转停到台北;二是由上海直接飞往台北.问题1 当向量a ,b 是共线向量时,a +b 又如何作出? 问题2 想一想,|a +b |与|a |和|b |之间的大小关系如何?当a 与b 同向共线时,a +b 与____同向,且|a +b |=_______.当a 与b 反向共线时,若|a |>|b |,则a +b 与__的方向相同,且|a +b |=_______;若|a |<|b |,则a +b 与__的方向相同,且|a +b |=_______.探究点二 向量加法的平行四边形法则向量加法还可以用平行四边形法则:先把两个已知向量的起点平移到同一点,再以 这两个已知向量为邻边作平行四边形,则这两邻边所夹的对角线就是这两个已知向量的和.以点A 为起点作向量AB →=a ,AD →=b ,以AB 、AD 为邻边作▱ABCD ,则以A 为起点的对角线AC →就是a 与b 的和,记作a +b =AC →,如图.对于零向量与任一向量a ,我们规定:a +0=0+a =a .①根据下图中的平行四边形ABCD 验证向量加法的交换律:a +b =b +a .(注:AB →=a ,AD →=b ).②根据下图中的四边形,验证向量加法的结合律:(a +b )+c =a +(b +c ).探究点三 向量加法的多边形法则向量加法的三角形法则可以推广为多个向量求和的多边形法则,即把每个向量平移,使这些向量首尾相连,则由第一个向量的起点指向最后一个向量终点的向量就是这些向量的和向量.即:A 1A 2→+A 2A 3→+A 3A 4→+… +A n -1A n =A 1A n →.或A 1A 2→+A 2A 3→+… +A n -1A n +A n A 1→=__. 这是一个极其简单却非常有用的结论(如图).利用向量加法的多边形法则化简多个向量的和有时非常有效.例如,在正六边形ABCDEF 中, AC →+BD →+CE →+DF →+EA →+FB →=________.【典型例题】例1 已知向量a ,b 如图所示,试用三角形法则和平行四边形法则作出向量a +b . 跟踪训练1 如图,已知向量a ,b ,c ,利用三角形法则作出向量a +b +c .例2 化简:(1)BC →+AB →; (2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 跟踪训练2 如图,在平行四边形ABCD 中,O 是AC 和BD 的交点.(1)AB →+AD →=________; (2)AC →+CD →+DO →=________;(3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________.例3 在水流速度为4 3 h km /的河中,如果要船以12 h km /的实际航速与河岸垂直行驶,求船航行速度的大小和方向.跟踪训练3 某人在静止的水中的游泳速度为2 3 h km /,如果他以这个速度径直游向河对岸,已知水流的速度为2 h km /,那么他实际沿什么方向前进?速度大小为多少?【当堂检测】1.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则下列等式中错误的是 ( )A .FD →+DA →+DE →=0B .AD →+BE →+CF →=0C .FD →+DE →+AD →=AB → D .AD →+EC →+FD →=BD →2.设E 是平行四边形ABCD 外一点,如图所示,化简下列各式:(1)DE →+EA →=________;(2)BE →+AB →+EA →=______;(3)DE →+CB →+EC →=________;(4)BA →+DB →+EC →+AE →=________. 3.如图所示,P ,Q 是△ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.4.如图所示,在四边形ABCD 中,AC →=AB →+ AD →,试判断四边形的形状.【课堂小结】1.三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的.当两个向量首尾相连时常选用三角形法则,当两个向量共始点时,常选用平行四边形法则.2.向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.【拓展提高】§2.2.2 向量减法运算及其几何意义【学习要求】1.理解相反向量的含义,向量减法的意义及减法法则.2.掌握向量减法的几何意义.3.能熟练地进行向量的加、减运算.【学法指导】1.关于向量的减法,在向量代数中,常有两种理解方法:第一种方法:是将向量的减法定义为向量加法的逆运算,也就是说,如果b +x =a ,则x 叫做a 与b 的差,记作a -b ,这样,作a -b 时,可先在平面内任取一点O ,再作OA →=a ,OB →=b ,则BA →=a -b .(如图(1))第二种方法:是在相反向量的基础上,通过向量的加法定义向量的减法,即已知a ,b ,定义a -b =a +(-b ),在这种定义下,作a -b 时,可先在平面内任取一点O ,作OB ′→=-b ,OA →=a ,则由向量加法的平行四边形法则知OC →=a +(-b ),由于a +(-b )=a -b ,即OC →=a -b .(如图(2))2.关于“差向量”方向的确定,通常归纳为“指向被减向量”,这个结论成立的前提是两个“作差向量”共起点,因此几何法确定差向量的方向有两个关注点:(1)共起点;(2)指被减.【知识要点】1.我们把与向量a 长度相等且方向相反的向量称作是向量a 的相反向量,记作____,并且有a +(-a )=__. 2.向量减法的定义若b +x =a ,则向量x 叫做a 与b 的 ,记为______,求两个向量差的运算,叫做 . 3.向量减法的平行四边形法则以向量AB →=a ,AD →=b 为邻边作 ,则对角线的向量BD →=b -a ,DB →=a -b . 4.向量减法的三角形法则在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 表示从向量 的终点指向向量 的终点的向量.【问题探究】探究点一 向量的减法对照实数的减法,类比向量的减法,完成下表:对比项实数的减法向量的减法对比 内容(1)相反数绝对值相等,符号相反的两个数,互为相反数(1)相反向量的两个向量,互为相反向量 (2)零的相反数是零(2)对比项 实数的减法向量的减法对比内容(3)互为相反数的和是零(3)(4)实数的减法:减去一个数等于加上这个数的相反数(4)向量的减法:减去一个 向量相当于根据相反向量的含义,完成下列结论:(1)-AB →=___;(2)-(-a )=__;(3)-0=__; (4)a +(-a )=__; (5)若a 与b 互为相反向量,则有:a =____,b =____,a +b =__. 探究点二 向量减法的三角形法则(1)由于a -b =a +(-b ).因此要作出a 与b 的差向量a -b ,可以转化为作a 与-b 的和向量.已知向量a ,b 如图所示,请你利用平行四边形法则作出差向量a -b .(2)当把两个向量a ,b 的始点移到同一点时,它们的差向量a -b 可以通过下面的作法得到: ①连接两个向量(a 与b )的终点;②差向量a -b 的方向是指向被减向量的终点.这种求差向量a -b 的方法叫向量减法的三角形法则.概括为“移为共始点,连接两终点,方向指被减”.请你利用向量减法的三角形法则作出上述向量a 与b 的差向量a -b . 探究点三 |a -b |与|a |、|b |之间的关系 (1)若a 与b 共线,怎样作出a -b ?(2)通过上面的作图,探究|a -b |与|a |,|b |之间的大小关系: 当a 与b 不共线时,有:_____________________; 当a 与b 同向且|a |≥|b |时,有:_______________; 当a 与b 同向且|a |≤|b |时,有:_______________.【典型例题】例1 如图所示,已知向量a 、b 、c 、d ,求作向量a -b ,c -d .跟踪训练1 如图所示,在正五边形ABCDE 中,AB →=m ,BC →=n ,CD →=p ,DE →=q ,EA →=r ,求作向量m -p+n -q -r .例2 化简下列式子:(1)NQ →-PQ →-NM →-MP →;(2)(AB →-CD →)-(AC →-BD →).跟踪训练2 化简:(1)(BA →-BC →)-(ED →-EC →);(2)(AC →+BO →+OA →)-(DC →-DO →-OB →). 例3 若AC →=a +b ,DB →=a -b .(1)当a 、b 满足什么条件时,a +b 与a -b 垂直? (2)当a 、b 满足什么条件时,|a +b |=|a -b |?(3)当a 、b 满足什么条件时,a +b 平分a 与b 所夹的角? (4)a +b 与a -b 可能是相等向量吗?跟踪训练3 如图所示,已知正方形ABCD 的边长等于1,AB →=a ,BC →=b ,AC →=c ,试求:(1)|a +b +c |;(2)|a -b +c |.【当堂检测】1.在平行四边形ABCD 中,AC →-AD →等于( )A .AB → B .BA →C .CD → D .DB →2.在平行四边形ABCD 中,下列结论错误的是 ( )A .AB →-DC →=0B .AD →-BA →=AC → C .AB →-AD →=BD →D .AD →+CB →=03.在平行四边形ABCD 中,BC →-CD →+BA →-AD →=_______.4.已知OA →=a ,OB →=b ,若|OA →|=12,|OB →|=5,且∠AOB =90°,则|a -b |=________【课堂小结】1.向量减法的实质是向量加法的逆运算.利用相反向量的定义,-AB →=BA →就可以把减法转化为加法.即:减去一个向量等于加上这个向量的相反向量.如a -b =a +(-b ).2.在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减数”.解题时要结合图形,准确判断,防止混淆.3.以平行四边形ABCD 的两邻边AB 、AD 分别表示向量AB →=a ,AD →=b ,则两条对角线表示的向量为AC →=a+b ,BD →=b -a ,DB →=a -b ,这一结论在以后应用非常广泛,应该加强理解并记住.【拓展提高】§2.2.3 向量数乘运算及其几何意义【学习要求】1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.【学法指导】1.实数λ与向量a 可作数乘,但实数λ不能与向量a 进行加、减运算,如λ+a ,λ-a 都是无意义的.还必须明确λa 是一个向量,λ的符号与λa 的方向相关,|λ|的大小与λa 的模长有关.2.利用数乘运算的几何意义可以得到两个向量共线的判定定理及性质定理,一定要注意,向量的共线(平行)与直线共线(或平行)的区别;常用向量共线解决平面几何中的“平行”或“点共线”问题.【知识要点】1.向量数乘运算实数λ与向量a 的积是一个 ,这种运算叫做向量的 ,记作 ,其长度与方向规定如下: (1)|λa |= .(2)λa (a ≠0)的方向⎩⎪⎨⎪⎧当 时,与a 方向相同当 时,与a 方向相反;特别地,当λ=0或a =0时,0a = 或λ0= .2.向量数乘的运算律(1)λ(μa )= .(2)(λ+μ)a = .(3)λ(a +b )= .特别地,有(-λ)a = = ;λ(a -b )= . 3.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使______. 4.向量的线性运算向量的 、 、 运算统称为向量的线性运算,对于任意向量a 、b ,以及任意实数λ、μ1、μ2,恒有λ(μ1a ±μ2b )= .【问题探究】探究点一 向量数乘运算的物理背景(1)一物体作匀速直线运动,一秒钟的位移对应向量v ,那么在同方向上3秒钟的位移对应的向量用3v 表示,试在直线l 上画出3v 向量,看看向量3v 与v 的关系如何?(2)已知非零向量a ,作出a +a +a 和(-a )+(-a )+(-a ),你能说明它们与向量a 之间的关系吗? (3)已知非零向量a ,你能说明实数λ与向量a 的乘积λa 的几何意义吗? 探究点二 向量数乘的运算律根据实数与向量积的定义,可以验证下面的运算律:设λ,μ∈R ,则有 ①λ(μa )=(λμ)a ;②(λ+μ)a =λa +μa ;③λ(a +b )=λa +λb .向量等式的证明依据是相等向量的定义,既要证明等式两边的模相等,又要证明方向相同.你能根据这两条证明其中的第①条运算律吗? 探究点三 共线向量定理及应用由向量数乘的含义,我们容易得到向量共线的等价条件:如果a (a ≠0)与b 共线,当且仅当存在一个实数λ,使b =λa .判断两个向量是否共线可转化为存在性问题.解决存在性问题通常是假设存在,再根据已知条件找等量关系列方程(组)求解.若有解且与题目条件无矛盾则存在,反之不存在.例如,已知e 1,e 2是不共线的向量,a =3e 1+4e 2,b =6e 1-8e 2,则a 与b 是否共线? 探究点四 三点共线的判定由共线向量定理可得,A ,B ,C 三点共线⇔存在λ∈R ,使AC →=λAB →.请你根据该结论证明下列常用推论:推论1:已知O 为平面ABC 内任一点,若A 、B 、C 三点共线,则存在α、β∈R ,使OC →=αOA →+βOB →,其中α+β=1.推论2:已知O 为平面ABC 内任一点,若存在α,β∈R ,使OC →=αOA →+βOB →,α+β=1,则A 、B 、C 三点共线.【典型例题】例1 计算: (1)(-3)×4a ; (2)3(a +b )-2(a -b )-a ; (3)(2a +3b -c )-(3a -2b +c ). 跟踪训练1 计算:(1)6(3a -2b )+9(-2a +b );(2)12⎣⎡⎦⎤3a +2b -23a -b -76⎣⎡⎦⎤12a +37⎝⎛⎭⎫b +76a ; (3)6(a -b +c )-4(a -2b +c )-2(-2a +c ).例2 已知任意两个非零向量a ,b ,作OA →=a +b ,OB →=a +2b ,OC →=a +3b .试判断A 、B 、C 三点之间的位置关系,并说明理由.跟踪训练2 已知两个非零向量e 1和e 2不共线,如果AB →=2e 1+3e 2,BC →=6e 1+23e 2,CD →=4e 1-8e 2,求证:A 、B 、D 三点共线.例3 如图,▱ABCD 的两条对角线相交于点M ,且AB →=a ,AD →=b ,你能用a 、b 表示MA →、MB →、MC →和MD →吗?跟踪训练3 如图,D 、E 分别是边AB 、AC 的中点,求证:DE →=12BC →.【当堂检测】1.化简:(1)8(2a -b +c )-6(a -2b +c )-2(2a +c ); (2)⎥⎦⎤⎢⎣⎡--+)24()82(2131b a b a 2.如图,AM →=13AB →,AN →=13AC →.求证:MN →=13BC →.3.已知e 1与e 2不共线,AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线.4.若非零向量a 与b 不共线,k a +b 与a +k b 共线,试求实数k 的值.【课堂小结】1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的.2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.共线向量定理是证明三点共线的重要工具.即三点共线问题通常转化为向量共线问题.【拓展提高】§2.3平面向量的基本定理及坐标表示【学习要求】1.理解平面向量基本定理的内容,了解向量一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.【学法指导】1.平面向量基本定理的实质:平面内的任一向量都可以沿两个不共线的方向分解成两个向量和的形式;而且基底一旦确定,这种分解是唯一的.2.求两个非零向量夹角,要注意两向量一定是有公共起点;两向量夹角的范围是[0,π].【知识要点】 1.平面向量基本定理 (1)定理:如果e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的 向量a , 实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把 的向量e 1,e 2叫做表示这一平面内 向量的一组基底. 2. 两向量的夹角与垂直 (1)夹角:已知两个 向量a 和b ,作OA →=a ,OB →=b ,则 =θ (0°≤θ≤180°)叫做向量a 与b 的夹角. ①范围:向量a 与b 的夹角的范围是 .②当θ=0°时,a 与b . ③当θ=180°时,a 与b .(2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作______.【问题探究】探究点一 平面向量基本定理的提出(1)平面内的任何向量都能用这个平面内两个不共线的向量来表示.如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG →,a .通过观察,可得: AB →=_______,CD →=________,EF →=_______,GH →=__________,HG →=_________,a =______. (2)平面向量基本定理的内容是什么?什么叫基底? 探究点二 平面向量基本定理的证明 (1)证明定理中λ1,λ2的存在性.如图,e 1,e 2是平面内两个不共线的向量,a 是这一平面内任一向量,a 能否表示成λ1e 1+λ2e 2的形式,请通过作图探究a 与e 1、e 2之间的关系. (2)证明定理中λ1,λ2的唯一性.如果e 1、e 2是同一平面内的两个不共线的向量,a 是和e 1、e 2共面的任一向量,且存在实数λ1、λ2使a =λ1e 1+λ2e 2,证明λ1,λ2是唯一确定的.(提示:利用反证法) 探究点三 向量的夹角(1)已知a 、b 是两个非零向量,过点O 作出它们的夹角θ.(2)两个非零向量夹角的范围是怎样规定的?确定两个向量夹角时,要注意什么事项? (3)在等边三角形ABC 中,试写出下面向量的夹角:①〈AB →,AC →〉= ;②〈AB →,CA →〉= ; ③〈BA →,CA →〉= ;④〈AB →,BA →〉= .【典型例题】例1 已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c . 跟踪训练1 如图所示,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.例2 如图,梯形ABCD 中,AB ∥CD ,且AB =2CD ,M 、N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a 、b 表示DC →、BC →、MN →.跟踪训练2 如图,已知△ABC 中,D 为BC 的中点,E ,F 为BC 的三等分点,若AB →=a ,AC →=b ,用a 、b 表示AD →、AE →、AF →.例3 在△OAB 中,OC →=14OA →,OD →=12OB →,AD与BC 交于点M ,设OA →=a ,OB →=b ,以a ,b为基底表示OM →.跟踪训练3 如图所示,已知△AOB 中,点C 是以A 为中心的点B 的对称点,OD →=2DB →,DC 和OA 交于点E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →、DC →;(2)若OE →=λOA →,求实数λ的值.【当堂检测】1.等边△ABC 中,AB →与BC →的夹角是 ( ) A .30° B .45° C .60° D .120°2.设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)3.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=________.4.已知G 为△ABC 的重心,设AB →=a ,AC →=b .试用a 、b 表示向量AG →.【课堂小结】1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.【拓展提高】§2.3.2 平面向量的正交分解及坐标表示§2.3.3 平面向量的坐标运算【学习要求】1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.【学法指导】1.向量的正交分解是把一个向量分解为两个互相垂直的向量,是向量坐标表示的理论依据.向量的坐标表示,沟通了向量“数”与“形”的特征,使向量运算完全代数化.2.要区分向量终点的坐标与向量的坐标.由于向量的起点可以任意选取,如果一个向量的起点是坐标原点,这个向量终点的坐标就是这个向量的坐标;若向量的起点不是原点时,则向量的终点坐标并不是向量的坐标,此时AB →=(x B -x A ,y B -y A ).3.向量和、差的坐标就是它们对应向量坐标的和、差,数乘向量的坐标等于这个实数与原来向量坐标的积.【知识要点】1.平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个 的向量,叫做把向量正交分解.(2)向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个 i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使得a =x i +y j ,则 叫做向量a 的坐标, 叫做向量a 的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若A (x ,y ),则OA →= ,若A (x 1,y 1),B (x 2,y 2),则AB →= 2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a +b = , 即两个向量和的坐标等于这两个向量相应坐标的和.(2)若a =(x 1,y 1),b =(x 2,y 2),则a -b = , 即两个向量差的坐标等于这两个向量相应坐标的差.(3)若a =(x ,y ),λ∈R ,则λa = ,即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.【问题探究】探究点一 平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.对于平面内的任一向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标.显然有,i = ,j = ,0= .问题1 根据下图写出向量a ,b ,c ,d 的坐标,其中每个小正方形的边长是1.问题2 当向量的始点坐标为原点时,终点坐标是对应向量的坐标;当向量的始点不是坐标原点时,向量AB →=(x B -x A ,y B -y A ).所以相等向量的坐标相同,从原点出发的向量和平面直角坐标系的点是一一对应关系. 请把下列坐标系中的向量的始点移到原点,并标出向量a ,b ,c ,d 所对应的点A ,B ,C ,D .探究点二 平面向量的坐标运算问题1 已知a =OA →,b =OB →,c =OC →,如下图所示,写出a ,b ,c 的坐标,并在直角坐标系内作出向量a +。
人教A版高中数学必修四课件:第二章2.3.1平面向量基本定理 (共16张PPT)
x
e2
O
a 3e1 2e2
3 a x 4y 2
yn
A
a 3m 2n
当a 0时, 有且只有1 2 0时可使 0 1 e1 2 e2 , (e1 , e2不共线).
若1与2中只有一个为零 , 情况会是怎样?
若2 0, 则a 1 e1 ,即a与e1共线, 若1 0, 则a 2 e2 ,即a与e2共线,
本题在解决过程中用到了两向量共 线的等价条件这一定理,并用基向量表 示有关向量,用待定系数法列方程,通 过消元解方程组。这些知识和考虑问题 的方法都必须切实掌握好。
课堂总结 1.平面向量基本定理可以联系物理 学中的力的分解模型来理解,它说明在
同一平面内任一向量都可以表示为不共
线向量的线性组合,该定理是平面向量
D
A
N M B
C
例2.用向量的方法证明: 1 平行四边形OACB中, BD BC , OD与BA 3 1 相交于E , 求证 : BE BA. 4 D B C E
O
A
例3.证明: 向量OA, OB, OC的终点A, B, C共线 的等价条件是存在实数 、 且 1, 使得 OC OA OB.
问题 3 : 设 e1 , e2 是同一平面内两个不共 线的向量, a是这一平面内的任一向 量, 我们来通过作图研 究a与e1 , e2 之间的关系?
平面向量基本定理: 如果e1 , e2 是同一平面内两个不共 线的向量, 那 么对于平面内的任一向 量a , 有且只有一对实数
1 , 2 , 使得a 1 e1 2 e2 .
坐标表示的基础,其本质是一个向量在
其他两个向量上的分解。
2. 在实际问题中的指导意义在于
高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4
2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1.平面向量基本定理学习目标.1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一.平面向量基本定理思考1.如果e 1,e 2是两个不共线的确定向量,那么与e 1,e 2在同一平面内的任一向量a 能否用e 1,e 2表示?依据是什么?答案. 能.依据是数乘向量和平行四边形法则.思考2.如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么? 答案. 不一定,当a 与e 1共线时可以表示,否则不能表示.梳理.(1)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二.两向量的夹角与垂直思考 1.平面中的任意两个向量都可以平移至起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? 答案. 存在夹角,不一样.思考2.△ABC 为正三角形,设AB →=a ,BC →=b ,则向量a 与b 的夹角是多少? 答案.如图,延长AB 至点D ,使AB =BD ,则BD →=a ,∵△ABC 为等边三角形,∴∠ABC =60°,则∠CBD =120°,故向量a 与b 的夹角为120°. 梳理.(1)夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b .类型一.对基底概念的理解例1.如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是(..) ①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A.①② B.②③ C.③④ D.② 答案.B解析.由平面向量基本定理可知,①④是正确的;对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,故选B.反思与感悟.考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练1.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是(..) A.e 1-e 2,e 2-e 1 B.2e 1-e 2,e 1-12e 2C.2e 2-3e 1,6e 1-4e 2D.e 1+e 2,e 1-e 2答案.D解析.选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2(e 1-12e 2),也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 类型二.向量的夹角例2.已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.解.如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA 、OB 为邻边作▱OACB , 则OC →=a +b ,BA →=OA →-OB →=a -b , BC →=OA →=a .因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC , 即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.反思与感悟.(1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1、λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练2.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案.90°解析.由AO →=12(AB →+AC →)知,O ,B ,C 三点共线,且O 是线段BC 的中点,故线段BC 是圆O 的直径,从而∠BAC =90°,因此AB →与AC →的夹角为90°.类型三.平面向量基本定理的应用例3.如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.解.∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点,∴AD →=BC →=2BE →,BA →=CD →=2CF →,∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE → =-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →. 解.取CF 的中点G ,连接EG . ∵E 、G 分别为BC ,CF 的中点,∴EG →=12BF →=12b ,∴DG →=DE →+EG →=a +12b .又∵DG →=34DC →=34AB →,∴AB →=43DG →=43(a +12b )=43a +23b .又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →,∴AD →=BC →=b +12(43a +23b )=23a +43b . 反思与感悟.将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练3.如图所示,在△AOB 中,OA →=a ,OB →=b ,M ,N 分别是边OA ,OB 上的点,且OM →=13a ,ON →=12b ,设AN →与BM →相交于点P ,用基底a ,b 表示OP →.解.OP →=OM →+MP →,OP →=ON →+NP →. 设MP →=mMB →,NP →=nNA →,则 OP →=OM →+mMB →=13OA →+m (OB →-OM →)=13a +m (b -13a )=13(1-m )a +m b , OP →=ON →+nNA →=12OB →+n (OA →-ON →)=12b +n (a -12b )=12(1-n )b +n a . ∵a ,b 不共线, ∴⎩⎪⎨⎪⎧ 13(1-m )=n ,12(1-n )=m ,即⎩⎪⎨⎪⎧n =15,m =25.∴OP →=15a +25b .1.下列关于基底的说法正确的是(..)①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的. A.① B.② C.①③ D.②③ 答案.C解析.零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,①③正确. 2.在直角三角形ABC 中,∠BAC =30°,则AC →与BA →的夹角等于(..) A.30° B.60° C.120° D.150°答案.D解析.由向量夹角定义知,AC →与BA →的夹角为150°.3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________. 答案.-15.-12解析.∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.4.如图所示,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则当以a ,b 为基底时,AC →可表示为________,当以a ,c 为基底时,AC →可表示为________.答案.a +b .2a +c解析.由平行四边形法则可知,AC →=AB →+AD →=a +b ,以a ,c 为基底时将BD →平移,使点B 与点A 重合,再由三角形法则和平行四边形法则即可得到.5.已知在梯形ABCD 中,AB ∥DC ,且AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用a 、b 为基底表示DC →,BC →,EF →.解.连接FD ,∵DC ∥AB ,AB =2CD ,E ,F 分别是DC ,AB 的中点, ∴DC 綊FB .∴四边形DCBF 为平行四边形. 依题意,DC →=FB →=12AB →=12b , BC →=FD →=AD →-AF → =AD →-12AB →=a -12b ,EF →=DF →-DE →=-FD →-DE →=-BC →-12DC →=-⎝ ⎛⎭⎪⎫a -12b -12×12b =14b -a .1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件.(2)零向量与任意向量共线,故不能作为基底.2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.课时作业一、选择题1.设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是(..)A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2答案.B解析.B中,∵6e1-8e2=2(3e1-4e2),∴(6e1-8e2)∥(3e1-4e2),∴3e1-4e2和6e1-8e2不能作为基底.2.若向量a与b的夹角为60°,则向量-a与-b的夹角是(..)A.60°B.120°C.30°D.150°答案.A3.如图所示,用向量e1,e2表示向量a-b为(..)A.-4e1-2e2B.-2e1-4e2C.e1-3e2D.3e1-e2答案.C解析.如图,由向量的减法得a -b =AB →.由向量的加法得AB →=e 1-3e 2.4.设向量e 1和e 2是某一平面内所有向量的一组基底,若3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,则实数y 的值为(..) A.3 B.4 C.-14 D.-34答案.B解析.因为3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2, 所以(3x -4y +7)e 1+(10-y -2x )e 2=0,又因为e 1和e 2是某一平面内所有向量的一组基底,所以⎩⎪⎨⎪⎧3x -4y +7=0,10-y -2x =0,解得⎩⎪⎨⎪⎧x =3,y =4,故选B.5.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →等于(..) A.a +λb B.λa +(1-λ)b C.λa +b D.11+λa +λ1+λb 答案.D解析.∵P 1P →=λPP 2→,∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2, ∴OP →=11+λOP →1+λ1+λOP →2=11+λa +λ1+λb .6.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为(..) A.165 B.125 C.85 D.45 答案.C解析.∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于(..)A.14a +12b B.12a +14b C.23a +13b D.12a +23b 答案.C解析.如图,设CF →=λCD →,AE →=μAF →,则CD →=OD →-OC →=12b -12a ,故AF →=AC →+CF →=(1-12λ)a +12λb .∵AF →=1μAE →=1μ(AO →+OE →)=1μ(12a +14b )=12μa +14μb , ∴由平面向量基本定理,得⎩⎪⎨⎪⎧1-12λ=12μ,12λ=14μ,∴⎩⎪⎨⎪⎧λ=23,μ=34,∴AF →=23a +13b ,故选C.二、填空题8.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________. 答案.(-∞,4)∪(4,+∞)解析.若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.9.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为________. 答案.60°解析.作OA →=a ,OB →=b ,则BA →=a -b ,∠AOB 为a 与b 的夹角,由|a |=|b |=|a -b |知△AOB 为等边三角形,所以∠AOB =60°.10.如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.答案.43解析.设AB →=a ,AD →=b ,则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.三、解答题11.判断下列命题的正误,并说明理由:(1)若a e 1+b e 2=c e 1+d e 2(a 、b 、c 、d ∈R ),则a =c ,b =d ;(2)若e 1和e 2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.解.(1)错,当e 1与e 2共线时,结论不一定成立.(2)正确,假设e 1+e 2与e 1-e 2共线,则存在实数λ,使e 1+e 2=λ(e 1-e 2),即(1-λ)e 1=-(1+λ)e 2.因为1-λ与1+λ不同时为0, 所以e 1与e 2共线,这与e 1,e 2不共线矛盾.所以e 1+e 2与e 1-e 2不共线,即它们可以作为基底,该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.12.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.解.如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt△OCD 中,∵|OC →|=23,∠COD =30°,∠OCD =90°,∴|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →,即λ=4,μ=2,∴λ+μ=6.13.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB=k .设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →.解.方法一.如图所示,∵AB →=e 2,且DC AB=k , ∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD →=e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0,且NB →=-12BC →,AM →=12AD →, ∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC → =k +12e 2. 方法二.如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得DC →=k e 2.则BC →=BE →+EC →=-(AB →-DC →)+AD →=e 1+(k -1)e 2,MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →) =k +12e 2. 方法三.如图所示,连接MB ,MC .同方法一可得DC →=k e 2,BC →=e 1+(k -1)e 2.由MN →=12(MB →+MC →),得MN →=12(MA →+AB →+MD →+DC →)=12(AB →+DC →)=k +12e 2. 四、探究与拓展14.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.答案.90°解析.由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |,所以∠ABO =30°,OA ⊥OB ,即向量a 与c 的夹角为90°.15.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2.(1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式;(3)若4e 1-3e 2=λa +μb ,求λ,μ的值.(1)证明.若a ,b 共线,则存在λ∈R ,使a =λb ,则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧ λ=1,3λ=-2⇒⎩⎪⎨⎪⎧ λ=1,λ=-23.∴λ不存在,故a 与b 不共线,可以作为一组基底.(2)解.设c =m a +n b (m ,n ∈R ),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.∴⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧ m =2,n =1.∴c =2a +b . (3)解.由4e 1-3e 2=λa +μb ,得 4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2) =(λ+μ)e 1+(-2λ+3μ)e 2. ∴⎩⎪⎨⎪⎧ λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1. 故所求λ,μ的值分别为3和1.。