数列的求和(涵盖所有高中数列求和的方法)

合集下载

高考数学 数列求和的8种常用方法(最全)

高考数学  数列求和的8种常用方法(最全)
求数列前n项和的8种常用方法

1.等差数列求和公式:
Sn(a1an)nan(n1)d
n212
特别地,当前n项的个数为奇数时,S2k1(2k1)ak1,即前n项和为中间项乘以项数。这个公
式在很多时候可以简化运算;2.等比数列求和公式:
(1)q1,Snna1;
a11qn
(2)q1,Sn
1q
,特别要注意对公比的讨论;
c
项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.适用于
,其中a
an
n
n1
是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。其基本方法是
anfn1fn.常见裂项公式:
(1)1
11,1
1(1
1);1
1(1
)(an的公差为d);
n(n1)
nn1
n(nk)
knnk
anan1
dan
2n2n1
………………………②(设制错位)
①-②得,(11)S
2n
22
222
22
2324
2
2n
2n2n1
(错位相减)
21
2n
∴Sn
4n2
2n1
2n12n1
四.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。这是分解
与组合思想(分是为了更好地合)在数列求和中的具体应用.裂项法的实质是将数列中的每项(通
2S(sin21cos21)(sin22cos22)(sin289cos289)=89
∴S=44.5
例4函数fxx,求
1x
f1f2
2012
2011
2

数列求和的七种基本方法

数列求和的七种基本方法

数列求和的七种基本方法在数学中,数列是一系列按一定规律排列的数值,求和则是将数列中的所有数值相加的运算。

数列求和是数学中非常重要的一部分,它不仅在数学中具有广泛的应用,也在其他学科如物理学、经济学等中发挥着重要的作用。

在数列求和问题中,有许多种基本的方法可以帮助我们解决问题。

一、综合物理方法(高中物理方法):物理学中,我们经常遇到等差数列求和的问题,例如计算平均速度。

我们可以利用物理公式来求解数列的和。

假设一个运动物体在时间t内以a的加速度匀加速运动,初速度为v0,则末速度v= at + v0。

利用等差数列的思想,将时间划分为无穷小时间片段dt,则位移ds= (at + v0)dt。

将位移累加起来,即可得到整个时间段内的位移S。

我们可以通过对时间积分求和来解决这个问题。

二、找到规律在数列求和的问题中,我们常常需要根据数列的规律来进行求和。

数列的规律可以通过观察数列的前几项,并进行逻辑推理来得出。

有时,根据数列的规律,我们可以将数列拆分成若干个简单的数列,从而方便我们进行求和。

例如,对于等差数列an = a1 + (n-1)d,我们可以将其拆分为两个数列,一个是由首项、末项构成的数列(an = a1 + (n-1)d),另一个是由末项、首项构成的数列(a1 = an - (n-1)d)。

我们可以对这两个数列进行求和,然后将结果相加,即可得到等差数列的和。

同样地,对于等比数列an = a1 * q^(n-1),我们可以将其拆分为两个数列,一个是由首项、末项构成的数列(an = a1 * q^(n-1)),另一个是由末项、首项构成的数列(a1 = an / q^(n-1))。

我们可以对这两个数列进行求和,然后将结果相加,即可得到等比数列的和。

三、利用前缀和前缀和也叫做累加和,是指从数列的第一项开始,逐项进行求和,得到的数列。

求和前缀和的过程可以通过递推公式来表示。

对于一个数列{a1, a2, a3, ..., an},它的前缀和表示为{S1, S2, S3, ..., Sn},其中Si表示数列的前i项的和。

数列求和的常见方法

数列求和的常见方法

数列求和的常见方法数列求和是高中数学中重要的概念之一,常见的数列求和方法有多种,包括等差数列求和公式、等比数列求和公式、Telescoping Series(直线和数列)等。

在本文中,我将介绍这些常见的数列求和方法,并给出相应的例子以加深理解。

一、等差数列求和公式等差数列是指一个数列中每个数与它的前一个数的差都相等的数列。

数列求和公式是指利用数列的首项、末项和项数等信息,直接求得数列的和的公式。

等差数列的求和公式为:Sn = (a1 + an)n/2,其中Sn表示数列前n项和,a1表示首项,an表示末项,n表示项数。

例1:求等差数列1,4,7,...,97的和。

解:这是一个等差数列,首项a1 = 1,末项an = 97,项数n =(an - a1)/d + 1 = (97 - 1)/3 + 1 = 33、代入公式Sn = (a1 + an)n/2,得到S33 = (1 + 97)× 33/2 = 1617二、等比数列求和公式等比数列是指一个数列中每个数与它前一个数的比都相等的数列。

数列求和公式是指利用数列的首项、末项和项数等信息,直接求得数列的和的公式。

等比数列的求和公式为:Sn=a1×(1-q^n)/(1-q),其中Sn表示数列前n项和,a1表示首项,q表示公比。

例2:求等比数列2,4,8,...,1024的和。

解:这是一个等比数列,首项a1 = 2,末项an = 1024,q = an/a1= 1024/2 = 512、项数n = logq(an/a1) + 1 = log512((1024/2)/2) +1 = 10。

代入公式Sn = a1 ×(1 - q^n)/(1 - q),得到S10 =2 ×(1 - 512^10)/(1 - 512) = 2046三、Telescoping Series(直线和数列)Telescoping Series是一种特殊的数列,其中每个项都可以通过其前一项和下一项抵消,最终只剩下首项和末项。

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。

这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111nn a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21n k k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)nk k =-=∑2135(21)n n ++++-=.例1 已知3log 1log 23-=x ,求23n x x x x ++++的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 23n n S x x x x =++++=xx x n --1)1(=211)211(21--n =1-n 21例2 设123n S n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-n n 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。

高中数列求和方法大汇总

高中数列求和方法大汇总

高中数列求和方法大汇总1利用公式法进行数列求和等差、等比数列的求和,直接运用前 n 项和公式或运用等差、等比数列的性质,此部分是基础,也是重点.利用下列常用求和公式求和是数列求和的最基本最重要的方法.(1) 等差数列求和公式:n S =2)(1n a a n +=d n n na 2)1(1-+(2)等比数列求和公式:n S =()⎪⎪⎪⎩⎪⎪⎪⎨⎧≠--=--=111)1()1(111q q qa a qq a q na n n(3)n S =∑=nk k 12=()12)1(61++n n n(4)n S =∑=nk k 13=()2121⎥⎦⎤⎢⎣⎡+n n例1 设{}n a 是公差不为零的等差数列,n S 为其前n 项和,满足:2322a a + = 2524a a +,7S = 7,求数列{}n a 的通项公式及前n 项和n S .解 设公差为d ,依题意有:2522a a -=2324a a -由性质得:()343a a d +- = ()34a a d +因为0≠d ,所以34a a += 0,即0521=+d a , 又由7S = 7得:726771=⨯+d a 解得: 51-=a ,2=d所以{}n a 的通项公式为:72-=n a n 故所求的前n 项和为:n S =()[]nn n n 627252-=⋅-+-评注 本小题主要考查等差数列的通项、求和的有关知识,考查运算和求解的能力。

例2 等比数列{}n a 的前n 项和为n S ,已知1S ,3S ,2S 成等差数列 (1)求{}n a 的公比q ;(2)若331=-a a ,求n S . 解 (1)依题意有()()2111112q a q a a q a a a ++=++ 由于01≠a ,故 022=+q q又0≠q ,从而21-=q(2)由已知可得:321211=⎪⎭⎫⎝⎛--a a故: 41=a从而n S =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⨯nn 211382112114 评注 在数列求和中,以下三个性质经常用到:(1)在等差数列中,若()*,,,N q p n m qp n m ∈+=+,则有:q p n m a a a a +=+;(2)在等差数列中,若A S n =,B S S n n =-2,C S S n n =-23,则有: A 、B 、C 成等差数列;(3)在等比数列中,若A S n =,B S S n n =-2,C S S n n =-23,则有:A 、B 、C 成等比数列.2裂项相消法顾名思义,“裂项相消法”就是把数列的项拆成几项,使拆裂后的项相互之间出现一些互为相反数的部分,求和时这些互为相反数的部分就能互相抵消,从而达到求和的目的.例3 求数列311⨯,531⨯,751⨯,531⨯,…()()12121+-n n ,…的前n 项和. 解 因为:n a =()()12121+-n n =⎪⎭⎫⎝⎛+--12112121n n所求的和:.nS =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--+⎪⎭⎫ ⎝⎛---++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1211211213217151513131121n n n n =21⎪⎭⎫ ⎝⎛+-1211n =12+n n例4 求和:n S =3211⨯⨯+4321⨯⨯+++⨯⨯ 5431()()211+⨯+⨯n n n解 因为()()211+⨯+⨯k k k =21()()()⎥⎦⎤⎢⎣⎡++-+21111k k k k所以: nS =21()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++⎪⎭⎫ ⎝⎛⨯-⨯+⎪⎭⎫ ⎝⎛⨯-⨯21111431321321211n n n n =21()()⎥⎦⎤⎢⎣⎡++-21121n n = 462322+++n n nn评注 观察相消项的规律是求和的关键,要搞清楚哪些项是合并了,哪些项未合并,并且这类裂项分解往往要对数列的通项进行较大幅度的变形,有的是隔项相消,技巧要求较高.3错位相减法这种方法是把原数列的钱n 项和乘以一个因数作为辅助数列,然后把它与原数列相减而得到一个关于n s 的关系式,接着解这个关系式,进而求的n s 的值.能用错位相减法求和的数列通常是项数相同的一个等差数列和一个等比数列对应项的积组成的相减前在原求和等式的两边同乘以等比数列的公比,两式相减后能组成一个新的等比数列,以便用等比数列求和公式求和.例5 求和:n S =21+43+n n 21285-++ . 解 因为:n S = 21+43+n n 21285-++ (1)所以:21n S = 41+83+1212165+-++n n (2)由(1)—(2),得:21n S = 21+1212221628242+--⎪⎭⎫ ⎝⎛++++n n n =21+12122116181412+--⎪⎭⎫ ⎝⎛++++⨯n n n 再利用等比数列的求和公式得:21n S = 21+11212211211412+----⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-⨯n n n= 112122123+----n n n故:n S = nn 2323+-评注 (1)相减后各项的符号;(2)中间成等比数列部分的项数;(3)最后n S 的表达式 .例6 设0≠a ,求数列a 、23a 、35a 、47a 、… 、()n a n 12-、… 的前n 项和.解 若1=a ,n S = ()127531-+++++n =()[]2121n n ⨯-+= 2n若1≠a ,n S = ()n a n a a a 125332-++++ (1)此时,该数列可以看作是等差数列1、3、5、7、… 、()12-n 与等比数列a 、2a 、3a 、… 、n a 的积构成的数列,且公比a q =.等式两边同乘以 a ,有:a n S = ()14321253+-++++n a n a a a ………………………(2) 由(1)—(2),得:()a -1n S = ()1432122222+--+++++n n a n a a a a a 所以:()a -1n S = ()()1432122+--+++++n n a n a a a a a= ()()11212112+---⎥⎦⎤⎢⎣⎡--+n n a n a a a a化简整理得: n S =()()()221211212a a n a n a a n n --++-+++.评注 这个数列的每一项都含有a ,而a 等于1或不等于1对数列求和的方法有本质上的不同,所以解题是要讨论,切忌漏写.4数学归纳法.这种方法是求出{}n a 的前n 项之和,即先求出1S 、2S 、3S 的值,再通过观察发现规律,从而归纳、猜想得出n s ,并用数学归纳法加以证明.例7 已知数列{}n a 的各项为:()11+a a 、()()211++a a 、…、()()n a n a +-+11、….其中a 是大于0的常数,记数列{}n a 的前n 项之和是n S ,计算1S 、2S 、3S 的值,由此推算出n S 的公式,并用数学归纳法加以证明. 解 1S = 1a =()11+a a2S = 21a a +=()()()21111++++a a a a = ()22+a a3S = 32a S += ()()()32122++++a a a a = ()33+a a由此猜想: n S =()n a a n+用数学归纳法证明如下: 当1=n 时,命题显然成立; 设当k n =时,命题成立,即:k S = ()k a a k+当1+=k n 时,1+k S = 1++k k a S =()()()11+++++k a k a k a a k=()11+++k a a k这就证明了1+=k n 时,命题成立,从而命题对所有的自然数n 都成立. 例8 设数列{}n a 的前n 项之和为n S ,且满足:()n n na s +3 = n a 21+,求n S . 解 因为:1S = 1a ,由()n n na s +3 = n a 21+ 得:()113s s + = 121s +所以:1S =41, 而:2a = 12S S -所以:()[]12223S S S -+ = ()1221S S -+, 得:2S =72 同理求得:3S = 103 由此猜想: n S =13+n n用数学归纳法证明如下: 当1=n 时,命题显然成立; 设当k n =时,命题成立,即:k S = 13+k k当1+=k n 时,由题设有:()[]1113++++k K a k S = 121++k a所以:1+k a = 1++k k a S 从而:1+k S =13311+-+k S k=1331131+-+++k S k k k 由此求得:1+k S =()1131+++k k这就证明了1+=k n 时,命题成立,从而命题对所有的自然数n 都成立.评注 (1)运用数学归纳法的思想是“先猜想、后证明”,对思维能力有较高要求;(2)运用数学归纳法的关键是“由当k n =时成立,如何过渡与转换为当1+=k n 时也成立.”5倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(倒叙),再把它与原数列相加,从而得到n 个()n a a +1.能用这个方法的数列的特点是:在一个数列中与首末两端“等距离”的两项之和(或“系数”之和),等于首末两项之和(等于首末两项“系数”之和).例9 设数列{}n a 是等差数列,求证:nnn n n C a C a C a a 123121+++++ = ()1112-++n n a a . 解 设S = nnn n n C a C a C a a 123121+++++ ……………………………(1) 将上式倒写,得:S = 11211a C a C a C a n n n n n n n ++++-+ 又因为:m n C = m n n C - ,所以:S = n nn n n n n n C a C a C a C a 112101++++-+ ………………………(2) 由(1)+(2),得:2S = ()()()()n nn n n n n n n C a a C a a C a a C a a 1121312011+++++++++-+ 因为:{}n a 是等差数列所以:11++n a a = n a a +2 = 13-+n a a = …所以:2S = ()()nnn n n n C C C C a a ++++++ 31011 = ()n n a a 211⋅++ 即: S = ()1112-+⋅+n n a a故:n nn n n C a C a C a a 123121+++++ = ()1112-++n n a a . 评注 n nn n n C C C C ++++ 310 = n 2. 例10 已知函数()x f =241+x ,求: n S = ()()11210f n n f n f n f f +⎪⎭⎫ ⎝⎛-++⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛+ . 解 可证当21x x + = 1时,()()21x f x f + =21因为: n S = ()()11210f n n f n f n f f +⎪⎭⎫ ⎝⎛-++⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛+ (1)将上式倒写,得:n S = ()()01211f n f n n f n n f f +⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+ …………(2)由(1)+(2),得: 2S=()()[]()()[]01221110f f n n f n f n n f n f f f +++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++ =()211212121212121个+++++++n =21+n 所以:n S = 41+n 例11 设221)(+=x x f ,利用本文中推导等差数列前n 项和公式的方法,求:()()()()6504)5(f f f f f +++++-+- 的值.解: ∵221)(+=x x f ,∴xxxx f 2222221)1(1⋅+=+=--=xx22221+⋅,∴22222211)1()(=+⋅+=-+xxx f x f , 设 S = ()()()()6504)5(f f f f f +++++-+- …………………(1)将上式倒写,得:S = ()()()()5405)6(-+-+++++f f f f f ………………(2)由(1)+(2),得:S 2 = ()[]()()[]()()[]65546)5(f f f f f f +-+++-++- = 26∴S = ()()()()6504)5(f f f f f +++++-+- = 23.点评 使用“倒序相加法”求和的题型特征是“与首末两端距离相等的两项的和都相等”. 本题中,倒序相加后,对应项的和中自变量的和都等于1,故需探求()()x f x f -+1的值.6并项求和法将数列的相邻两项(或若干项)合并一项(或一组)得到一个新的、容易求和的数列,然后再求整个数列的前n 项和.例12 (1)求1002-992+982-972+…+22-12的值(2)求数列1,21,21,31,31,31,41,41,41,41…前100项的和解 (1)1002-992+982-972+…+22-12=(100+99)(100-99)+(98-97)(98-97)+…+(2+1)(2-1) = (100+99)+(98+97)+…+(2+1) =2)1100(100+⨯= 5050(2)根据21有2项,31有3项,41有4项,项数和1+2+3+…+14=105,则最后一项为141,且141有9项,100S = 1+(21+21)+(31+31+31)+(41+41+41+41)+…+(141+141+…+141) = 1+1+1+1+…+1+9×141= 131497拆项重组法有一类数列,既不是等差数列,也不是等比数列,但经细心观察,仔细分析之后发现:若将这数列中的每一项都两项之和,再重新组合,它就可以分成几个等差、等比或常见的数列,然后分别求和,再将其合并即可,这种方法就称为拆项重组法.例13 求数列211、413、815、1617、……的前n 项和n S .解 因为:211 = 211+. 413 = 413+815 = 815+ 1617 = 1617+ …… ()n n 2112- = ()n n 2112+-所以:n S = ()n n 21121617815413211-+++++= ()⎪⎭⎫ ⎝⎛++++++-+++++n n 21161814121127531= 211211212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-+nn= nn 2112-+ 例14求和:⎪⎭⎫ ⎝⎛+++++++⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+n n 21814121814121341212211解 括号中式子的通向公式是: n a = n n 21814121+++++= 21121121-⎪⎭⎫ ⎝⎛-⨯+n n= ()n n 211-+ 所以所求的和:n S = ()[]⎥⎦⎤⎢⎣⎡++++-+++++n n 218141211432=()[]21121121212-⎪⎭⎫ ⎝⎛-⨯-⨯++nn n= 1212322-++nn n . 评注 先研究通项,抓住特点,确定拆项方法,将数列通过拆项重组,转化为等差、等比或熟悉的数列,然后求和.8通项分析法对数列的通项不是很明确的数列,就应先对其通项求和或变形,进行分析,从而决定使用哪种方法求和.例15 已知数列{}n a 的通项n a = n n n n n +-++23412,求此数列的前n 项和. 解 因为: n a = n n n n n +-++23412= ()()nn n n n n n n +-+++22221= ()112+-+n n n n .所以:n S = ()⎪⎪⎭⎫ ⎝⎛+⨯-+++⎪⎭⎫ ⎝⎛⨯-++⎪⎭⎫ ⎝⎛⨯-+113212*********n n n n=()()()⎥⎦⎤⎢⎣⎡+++⨯-+++++++++112113213212222n n n n = ()()()⎪⎭⎫⎝⎛+--++++111216121n n n n n n=()()111321++-++n n n n例16 已知数列{}n a 中,1a = 1,2a = 1+2+1,3a = 122212++++ 4a = 1222221232++++++,…,求数列{}n a 的前n 项和. 解 因为: n a = 122222212212+++++++++-- n n = ()()12222222123212++++++++++--- n n n= 212121211--+---n n = ()()12121-+--n n = 2231-⋅-n所以:n S = ()()()()22322322321312-⨯++-⨯+-⨯+-⨯-n . = ()n n 22221312-++++⨯-= n n221213-⎪⎪⎭⎫ ⎝⎛--⨯ = 3223--⋅n n评注 数列的通项公式反映了一个数列的特点,充分研究数列的通项公式,常常对求和是十分有用的.9构造等式法这种方法是指构造一个含有未知数的等式,然后令这个未知数分别等于1、2、3、…、n ,于是得到n 个等式,接着将这n 等式相加,与数列和无关的项能小区,而剩下的就是所求数列的和或能组成等差数列或等比数列,进而求出所求的n S .此法适用于求由自然数的幂构成的数列的前n 项和.例17 求数列21,22,23,…,2n 的前n 项和.解 因为:()31+m = 13323+++m m m 所以:()331m m -+ = 1332++m m 依次令m = 1、2、3、…、n ,得: 3312- = 113132+⨯+⨯, 3323- = 123232+⨯+⨯, 3334- = 133332+⨯+⨯, ……()331n n -+ = 1332++n n 将上面n 个等式相加得:()3311-+n = ()()n n n ++++++++++ 321332132222 由此解得:2222321n ++++ =()()6121++n n n评注 这个结论是前n 个自然数的平方和公式,它具有便于记忆的特征,又有一定的实用价值,应注意记忆及应用.10导数求和法通过对数列的通项进行联想,合理运用逆向思维,由求导公式()'n x = 1-n nx ,可联想到它们是另外一个和式的导数.关键要抓住数列通项的结构特征.例18 求和:(1)n S = ()032112≠++++-x nx x x n ;(2)n S = ()*32132N n nC C C C nnn n n ∈++++ .解 (1) 当1=x 时,n S = n ++++ 321 = ()121+n n ;当1≠x 时,nx x x x ++++ 32= xx x n --+11两边都是关于x 的函数,求导得:()'32n x x x x ++++ = '11⎪⎪⎭⎫ ⎝⎛--+x x x n由此有 :12321-++++n nxx x =()()21111x nx x n n n -++-+即:n S = 12321-++++n nxx x =()()21111x nx x n n n -++-+.(2)因为:()n x +1 = nn n n n x C x C x C ++++ 2211 两边都是关于x 的函数,所以:求导得:()11-+n x n = 1232132-++++n n n n n n x nC x C x C C令1=x ,得:12-⋅n n = n nn n n nC C C C ++++ 32132 即:n S = n nn n n nC C C C ++++ 32132 = 12-⋅n n . 评注 本题的解题思路是建立在敏锐的洞察式子特征的基础上的,联想熟悉的函数关系式,并求导和赋值,又隐去了函数的表象,难度较高,技巧性强.同样的思路和方法可借下面一道题:变式 求()*32)1(3221N n nC n C C n nn n ∈-++⨯⨯+⨯⨯ 的值。

数列求和公式七个方法

数列求和公式七个方法

数列求和公式七个方法数列求和是数学中常见的问题之一、下面将介绍七种常用的数列求和方法,包括等差数列求和、等比数列求和、等差数列二次项求和、递归数列求和、斐波那契数列求和、等差数列部分项求和、正弦数列求和。

一、等差数列求和:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

从首项到第n项的和Sn可以通过以下公式计算:Sn = (n/2)(a1 + an)其中,n为项数,a1为首项,an为末项,Sn为和。

二、等比数列求和:等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。

从首项到第n项的和Sn可以通过以下公式计算:Sn=a1(q^n-1)/(q-1)其中,n为项数,a1为首项,q为公比,Sn为和。

三、等差数列二次项求和:对于等差数列的二次项和,可以通过对等差数列求和公式进行二次求和得到。

Sn=(n/6)*(2a1+(n-1)d)(a1+(n-1)d+d)其中,n为项数,a1为首项,d为公差,Sn为和。

四、递归数列求和:递归数列是一种特殊的数列,其中每一项都是前一项的函数。

递归数列的求和可以通过编写一个递归函数来实现。

例如,对于斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=1可以编写一个递归函数,将前两个项相加,并递归调用函数来求和。

五、斐波那契数列求和:斐波那契数列是一种特殊的递归数列,其中前两个项为1,从第三项开始每一项都是前两项的和。

斐波那契数列求和可以通过编写一个循环来实现,累加每一项的值。

六、等差数列部分项求和:对于等差数列的部分项求和,可以通过求解两个和的差来实现。

设Sn为从第m项到第n项的和,Sm为从第1项到第m-1项的和,Sn 可以通过以下公式计算:Sn = Sn - Sm = (n-m+1)(a1 + an) / 2其中,m和n为项数,a1为首项,an为末项。

七、正弦数列求和:正弦数列是一种特殊的数列,其中每一项的值由正弦函数确定。

高中数列求和

一般数列求和应从通项入手,然后通过对其变形转换,形成遇特殊数列(等比或等差)或具有某种方法使用特点的形式,在选择适合的求和方法。

下面给大家带来了高中数学数列求和方法,希望对您们有帮助。

1.公式法(适用于等比和等差数列)这是非常常规的方法,只要先判断出数列是否为等比和等差数列就可以套公式进行计算了。

一般来说这也不算难题2.裂项相消(适用于分时形式的通项公式)我们可以把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后进行累加,之后我们就可以消除中间的许多项。

3.错位相减法(适用于通项公式为等差的一次函数乘以等比和等差等比相乘的数列)这个方法不推荐大家死背公式,建议大家可以做几道运用此方法的题去熟悉它,这个公式原理是将公式乘以一个数之后将它与原式(求和式子)相减,形成一个用规律可循的式子,从而求和。

4.分组求和(适用于将一个式子拆开后有等差或等比产生的数列)遇到这种式子时,我们将他拆开,然后分别求和即可。

数列求和1. 公式法:等差数列求和公式:Sn=n(a1+an)/2=na1+n(n-1)d/2 等比数列求和公式:Sn=na1(q=1) Sn=a1(1-qn)/(1-q)=(a1-an×q)/(1-q) (q≠1)2.分组法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 例如:an=2n+n-13.倒序相加法这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an) Sn =a1+ a2+ a3+...... +an Sn =an+ a(n-1)+a(n-3)...... +a1 上下相加得到2Sn 即 Sn= (a1+an)n/24.错位相减法适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式{ an }、{ bn }分别是等差数列和等比数列. Sn=a1b1+a2b2+a3b3+...+anbn 例如:an=a1+(n-1)d bn=a1•q(n-1) Cn=anbn Tn=a1b1+a2b2+a3b3+a4b4....+anbn qTn=a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1) Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1) Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn) =a1b1-an•b1•qn+d•b2[1-q(n-1)]/(1-q) Tn=上述式子/(1-q)求和方法一、裂项相消Sn=A1+A2+···+AnAn=f(n+1)-f(n)f(x)为任意函数Sn=f(2)-f(1)+f(3)-f(2)+···+f(n+1)-f(n) #注意到中间的全部抵消了!=f(n+1)-f(1)二、分组求和概括:若Cn=An+Bn,且An,Bn是可求和数列,则Cn可以用分组求和通常情况下,An,Bn为等差或等比或其它可求和数列2、公式:∑Cn=∑Bn+∑An例题:求在闭区间[4,8]上分母为3的所有最简分数的和分析:题中符合条件的所有分数为13/3 14/3 16/3 17/3 ······22/3 23/3 #求这些数的和注意观察这其实是两个等差数列1)13/3 16/3 19/3 22/32)14/3 17/3 20/3 23/3把这两个数列分别求和,就是本题答案∑=(13/3+22/3)*4/2+(14/3+23/3)*4/2=48三、倍差法1、概括Cn=An*Bn其中An为等差数列 Bn为等比数列可以应用倍差法2、例题求数列An=(2n-1)*2^(n-1)的和解:Sn=1*2^0+3*2^1+5*2^2+······+(2n-3)*2^(n-2)+(2n-1)*2^(n-1)2Sn= +1*2^1+3*2^2+······+(2n-5)*2^(n-2)+(2n-3)*2^(n-1)+(2n-1)*2^n 注意这里,错开一位,剩下的2次数相同将下面的式子和上面的式子作差,得Sn=(2n-1)*2^n-2*(2+4+8+······+2^(n-1))-1中间的可以用等比数列求和,就可以解决四、常见裂项公式(1) n(n+1)=[(n+1)(n+2)-(n-1)n(n+1)]/3(2) 1/(n(n+1))=1/n-1/(n+1)(3) 1/(根号下n+根号下n+1)=根号n+1 - 根号n(4) n/(n+1)!=1/n!-1/(n+1)!常用的方法1、分组法求数列的和:如an=2n+3n2、错位相减法求和:如an=n·2^n3、裂项法求和:如an=1/n(n+1)4、倒序相加法求和:如an=n5、求数列的最大、最小项的方法:①an+1-an=……如an=-2n2+29n-3②(an>0)如an=③an=f(n)研究函数f(n)的增减性如an=an^2+bn+c(a≠0)6、在等差数列中,有关Sn的最值问题——常用邻项变号法求解:(1)当a1>0,d<0时,满足{an}的项数m使得Sm取最大值.(2)当a1<0,d>0时,满足{an}的项数m使得Sm取最小值.在解含绝对值的数列最值问题时,注意转化思想的应用。

高中数列专题求和方法

专题:数列及其数列求和一、数列求和的常用方法:(1)公式法:必须记住几个常见数列前n 项和 等差数列:2)1(2)(11d n n na a a n S n n -+=+=; 等比数列:⎪⎩⎪⎨⎧≠--==11)1(111q q q a q na S n n ; (2)分组求和:如:求1+1,41+a ,712+a ,…,2311-+-n an ,…的前n 项和 可进行分组即:2374111111132-+++++++++-n a a a a n 前面是等比数列,后面是等差数列,分别求和 (注:⎪⎪⎩⎪⎪⎨⎧≠-=+=12)13(12)13(a n n a n n S n )(3)裂项法:如)2(1+=n n a n ,求S n ,常用的裂项111)1(1+-=+n n n n ,)211(21)2(1+-=+n n n n ;])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n (4)错位相减法:其特点是c n =a n b n 其中{a n }是等差,{b n }是等比 如:求和S n =1+3x+5x 2+7x 3+……+(2n -1)x n -1 注意讨论x , ⎪⎩⎪⎨⎧≠-+++--==+1)1()1()12()12(1212x x x x n x n x n S n n n (5)倒序求和:等差数列的求和公式就是用这种方法推导出来的。

如求证:C n 0+3C n 1+5C n 2+… +(2n —1) C n n =(n+1)2n ►名题归类例释错位相减法:例1 n n 2n 164834221S +⋯⋯++++=求和 例2 求数例1,3a ,5a 2,7a 3,…(2n-1)a n-1,…(a≠1)的前n 项和.解:因 S n =1+3a +5a 2+7a 3+…+(2n -1)a n-1, (1)(1)×a 得aS n =a +3a 2+5a 3+…(2n-3)a n-1+(2n -1)a n ,(2)两式相减得(1-a)S n =1+2a +2a 2+2a 3+…+2a n-1-(2n -1)a n=2(1+a +a 2+a 3+…+a n-1)-(2n -1)a n -1=1)12(1)112-----⋅n n a n aa ( 所以:a a n a a S n n n -+----=11)12()1()1(22例3.已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =…. (Ⅰ)证明:数列1{1}na -是等比数列; (Ⅱ)数列{}nn a 的前n 项和n S . 解:(Ⅰ) 121n n n a a a +=+, ∴ 111111222n n n na a a a ++==+⋅, ∴ 11111(1)2n na a +-=- 又123a =,∴11112a -=, ∴数列1{1}n a -是以12为首项,12为公比的等比数列.(Ⅱ)由(Ⅰ)知1111111222n n n a -+-=⋅=,即1112n n a =+,∴2n n n n n a =+. 设23123222n T =+++ (2)n n +, ① 则23112222n T =++…1122n n n n +-++,② 由①-②得 2111222n T =++…11111(1)1122112222212n n n n n n n n n +++-+-=-=---, ∴11222n n n n T -=--.又123+++…(1)2n n n ++=. ∴数列{}n n a 的前n 项和 22(1)4222222n n n n n n n n n S +++++=-+==. 例4:已知数列{a n }是等差数列,且a 1=2,a 1+ a 2+ a 3=12,令b n = a n x n (x ∈R),求数列{b n }的前n 项和公式。

高中数列求和的7种方法

破解数列求和的6种常见方法数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种方法进行系统探讨。

一、公式求和法通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式求和,或者利用前个正整数和的计算公式等直接求和。

因此有必要熟练掌握一些常见的数列的前项和公式.正整数和公式有:例1 已知数列的前项和为,且若,求数列的前项和分析:根据数列的项和前项和的关系入手求出再根据()求出数列的通项公式后,确定数列的特点,根据公式解决.【解析】当时,当时,适合上式,,,即,是首项为4、公比为2的等比数列.【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题.二、分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如:①,其中②例2 已知数列的通项公式为求数列的前项和.分析:该数列的通项是由一个等比数列与一个等差数列组成的,所以可将其转化为一个等比数列与一个等差数列进行分组求和.【解析】===【能力提升】在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成等差数列或等比数列,那么我们就可以用此方法求和.三、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可用此法来求和.例3 已知数列是首项为公比为的等比数列,设,数列满足求数列的前项和分析:根据等比数列的性质可以知道数列为等差数列,这样数列就是一个等差数列与一个等比数列对应项的乘积构成的数列,因而可考虑用错位相减法来解决.【解析】由题意知,,又,故,.,于是两式相减,得.【能力提升】错位相减法适用于数列,其中是等差数列,是等比数列.若等比数列中公比未知,则需要对公比分两种情况进行分类讨论.四、倒序相加法如果一个数列,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前项和即可用倒序相加法.例4 已知函数求分析:由所求的和式的特点,易想到探究:和为1的两个自变量函数值的和是否为常数.从而确定可否用倒序相加法求和.【解析】因为所以设, ①②①+ ②得:,所以【能力提升】倒序相加法来源于课本,是等差数列前项和公司推导时所运用的方法,它是一种重要的求和方法。

数列求和7种方法(方法全_例子多)

数列求和7种方法(方法全_例子多)一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求+++++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=?-=?-=x x x由等比数列求和公式得 n n x x x x S ++++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1++=n n S n (利用常用公式)∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解:原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设n n x n x x x x xS )12(7531432-+++++=……………………….② (设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--++++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----?+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232++++=…………………………………①14322226242221+++++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=+++++证明:设nnn n n n C n C C C S )12(53210+++++=…………………………..① 把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S +++-++=- (反序)又由mn nm n C C -=可得 n nn n n n n C C C n C n S +++-++=-1103)12()12(…………..……..② ①+②得n n n n n n n n n C C C C n S2)1(2))(22(2110?+=+++++=- (反序相加)∴ n n n S 2)1(?+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222+++++的值解:设89sin 88sin 3sin 2sin 1sin 22222+++++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++++=S …………..② (反序)又因为 1cos sin ),90cos(sin22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-++++-n a a a n ,… 解:设)231()71()41()11(12-++++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+++++++++=-n aa a S n n (分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +++++++++++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) n nn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++=-则(7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列++++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++++++=n n S n (裂项求和)=)1()23()12(n n -+++-+- =11-+n[例10] 在数列{a n }中,11211++++++=n n n n a n ,又12+?=n n n a a b ,求数列{b n }的前n 项的和. 解:∵ 211211n n n n n a n =++++++=∴ )111(82122+-=+?=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-++-+-+-=n n S n (裂项求和)=)1 11(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1?= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的求和一、教学目标:1.熟练掌握等差数列与等比数列的求和公式;2.能运用倒序相加、错位相减、拆项相消等重要的数学方法进行求和运算; 3.熟记一些常用的数列的和的公式. 二、教学重点:特殊数列求和的方法.三、教学过程:(一)主要知识:1.直接法:即直接用等差、等比数列的求和公式求和。

(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)2.公式法:222221(1)(21)1236nk n n n k n =++=++++=∑2333331(1)1232nk n n kn =+⎡⎤=++++=⎢⎥⎣⎦∑ 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ ,)121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。

6.合并求和法:如求22222212979899100-++-+- 的和。

7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。

解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S nn n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++=(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时③k k k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。

2.错位相减法求和例2.已知数列)0()12(,,5,3,112≠--a a n a a n ,求前n 项和。

思路分析:已知数列各项是等差数列1,3,5,…2n-1与等比数列120,,,,-n a a a a 对应项积,可用错位相减法求和。

解:()1)12(53112--++++=n n a n a a S ()2)12(5332nn a n a a a aS -++++=()()n n n a n a a a a S a )12(22221)1(:21132--+++++=---当nn n n a a a S a a )12()1()1(21)1(,121----+=-≠-时 21)1()12()12(1a a n a n a S n n n --++-+=+ 当2,1n S a n ==时3.裂项相消法求和例3.求和)12)(12()2(534312222+-++⋅+⋅=n n n S n 思路分析:分式求和可用裂项相消法求和.解: )121121(211)12)(12(11)12)(12(11)2()12)(12()2(22+--+=+-+=+-+-=+-=k k k k k k k k k k a k 12)1(2)1211(21)]121121()5131()311[(2121++=+-+=+--++-+-+=+++=n n n n n n n n a a a S n n 练习:求n n a n a a a S ++++= 32321 答案: ⎪⎪⎩⎪⎪⎨⎧≠----=+=)1()1()1()1()1(2)1(2a a a a n a a a n n S n n n4.倒序相加法求和例4求证:n nn n n n n C n C C C 2)1()12(53210+=+++++ 思路分析:由m n n m n C C -=可用倒序相加法求和。

证:令)1()12(53210n nn n n n C n C C C S +++++=则)2(35)12()12(0121nn n n n n n n C C C C n C n S ++++-++=- mn nm n C C -= nn n n n n C n C n C n C n S )22()22()22()22(2:)2()1(210++++++++=+∴ 有 n nn n n n n n C C C C n S 2)1(])[1(210⋅+=+++++=∴ 等式成立5.其它求和方法还可用归纳猜想法,奇偶法等方法求和。

例5.已知数列{}n n n n S n a a 求],)1([2,---=。

思路分析:n n n a )1(22---=,通过分组,对n 分奇偶讨论求和。

解:nn n a )1(22-+-=,若∑=-+++++-===mk km n m S S m n 212)1(2)2321(2,2 则)1(2)12()2321(2+-=+-=++++-=n n m m m S n若)12(22)12(])1(2[22)12(,1222212-++-=--++-=-==-=-m m m m m m a S S S m n m m m m n 则22)1()1(224222---=-+++-=-+-=n n n n m m⎩⎨⎧---+-=∴)(2)()1(2为正奇数为正偶数n n n n n n S n 预备:已知n n n a a a a x a x a x a x f ,,,,)(321221且+++=成等差数列,n 为正偶数,又n f n f =-=)1(,)1(2,试比较)21(f 与3的大小。

解:⎩⎨⎧=+-+-+-=-=++++=-n a a a a a f n a a a a f n n n 13212321)1()1( ⎩⎨⎧==+∴⎪⎩⎪⎨⎧==+∴2222)(121d n a a n d n n n a a n n 12122)1(111-=∴=∴⎩⎨⎧==-++∴n a a d nd n a a n n nn f x n x x x x f )21)(12()21(5)21(321)21()12(53)(3232-++++=-++++=可求得n n n f )21)(12()21(3)21(2---=-,∵n 为正偶数,3)21(<∴f(四)巩固练习:1.求下列数列的前n 项和n S :(1)5,55,555,5555,…,5(101)9n-,…; (2)1111,,,,,132435(2)n n ⨯⨯⨯+;(3)n a =; (4)23,2,3,,,n a a a na ;(5)13,24,35,,(2),n n ⨯⨯⨯+; (6)2222sin 1sin 2sin 3sin 89++++.解:(1)555555555n n S =++++个5(999999999)9n =++++个235[(101)(101)(101)(101)]9n =-+-+-++- 235505[10101010](101)9819n n n n =++++-=--. (2)∵1111()(2)22n n n n =-++,∴11111111[(1)()()()]2324352n S n n =-+-+-++-+1111(1)2212n n =+--++. (3)∵n a===∴1n S n =+++1)(1n =++++1=.(4)2323n n S a a a na =++++,当1a =时,123n S =+++ (1)2n n n ++=,当1a ≠时,2323n S a a a =+++…nna + ,23423n aS a a a =+++…1n na ++,两式相减得 23(1)n a S a a a -=+++ (1)1(1)1n nn n a a a nana a++-+-=--,∴212(1)(1)n n n na n a aS a ++-++=-.(5)∵2(2)2n n n n +=+,∴ 原式222(123=+++ (2))2(123n ++⨯+++…)n +(1)(27)6n n n ++=.(6)设2222sin 1sin 2sin 3sin 89S =++++, 又∵2222sin 89sin 88sin 87sin 1S =++++, ∴ 289S =,892S =. 2.已知数列{}n a 的通项65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,求其前n 项和n S .解:奇数项组成以11a =为首项,公差为12的等差数列, 偶数项组成以24a =为首项,公比为4的等比数列;当n 为奇数时,奇数项有12n +项,偶数项有12n -项, ∴1121(165)4(14)(1)(32)4(21)221423n n n n n n n S --++--+--=+=+-, 当n 为偶数时,奇数项和偶数项分别有2n项,∴2(165)4(14)(32)4(21)221423n n n n n n n S +----=+=+-, 所以,1(1)(32)4(21)()23(32)4(21)()23n n nn n n S n n n -⎧+--+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数.四、小结:1.掌握各种求和基本方法;2.利用等比数列求和公式时注意分11≠=q q 或讨论。

相关文档
最新文档