2.2.1条件概率
2.2.1条件概率

2.2.1条件概率“条件概率”教学设计⼀、⽬标和⽬标解析(1)通过对具体情境“抽奖问题”的分析,初步理解条件概率的含义(让学⽣明⽩,在加强条件下事件的概率发⽣怎样的变化, 通过与概率的对⽐和类⽐达到对新概念的理解)(2)在理解条件概率定义的基础上,将知识技能化,学会⽤两种⽅法求条件概率,并能利⽤条件概率的性质简化条件概率的运算。
(明确求条件概率的两种⽅法,⼀种是利⽤条件概率计算公式,另⼀种是缩减样本空间法。
并能选择恰当的⽅法解决不同概率模型下的条件概率(3)通过实例激发学⽣学习的兴趣,在辨析条件概率时培养学⽣的思辨能⼒,让学⽣亲⾝经历条件概率概念的形成过程,体会由特殊到⼀般再由⼀般到特殊的思维⽅式。
在参与的过程中让他们感受数学带来的⽆穷乐趣。
注重学习过程中师⽣间、学⽣间的情感交流,充分利⽤各种⼿段激发学习的兴趣,共同体验成功的喜悦。
⼆、教学过程设计(⼀)创设情境,引出课题问题1:1.掷⼀均匀硬币2次,(1)第⼆次正⾯向上的概率是多少?(2)当⾄少有⼀次正⾯向上时,第⼆次正⾯向上的概率是多少?2.设在⼀个罐⼦⾥放有⽩球和⿊球,现依次取两球(没有放回),事件A是第⼀次从罐中取出⿊球,事件B是第⼆次从罐中取出⿊球,那么事件A对事件B有没有影响?(1)如果罐⼦⾥有2个不同⽩球和1个⿊球,事件B发⽣的概率是多少?(2)如果罐⼦⾥有2个不同⽩球和1个⿊球,在事件A发⽣的条件下,事件B发⽣的概率⼜是多少?若在事件A没有发⽣的情况下,事件B发⽣的概率⼜是多少?3.三张奖券中只有⼀张能中奖,现分别由三名同学⽆放回地抽取,问:(1)最后⼀名同学抽到中奖奖券的概率是否⽐前两名同学⼩.(2)如果已经知道第⼀名同学抽到了中奖奖券,那么最后⼀名同学抽到奖券的概率是多少?根据上⾯三个例⼦,你能得出这些概率与我们所学过的概率⼀样吗?什么地⽅不⼀样?请⼤家以⼩组的⽅式讨论⼀下。
预设答案:他们与我们所学的概率不⼀样,都在原有的基础上⼜附加了条件,使得概率发⽣变化。
教学设计6: 2.2.1 条件概率

2.2.1 条件概率教学目标1.通过对具体情境的分析,了解条件概率的定义.2.掌握求条件概率的两种方法.3.利用条件概率公式解决一些简单的问题. 教学知识 1.条件概率条件 设A ,B 为两个事件,且P (A )>0含义 在事件A 发生的条件下,事件B 发生的条件概率记作 P (B |A )读作A 发生的条件下B 发生的概率 计算公式①事件个数法:P (B |A )=n (AB )n (A )②定义法:P (B |A )=P (AB )P (A )2.条件概率的性质 (1)P (B |A )∈[0,1].(2)如果B 与C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). [注意] (1)前提条件:P (A )>0.(2)P (B ∪C |A )=P (B |A )+P (C |A ),必须B 与C 互斥,并且都是在同一个条件A 下. 教前测试1.判断正误(正确的打“√”,错误的打“×”) (1)若事件A ,B 互斥,则P (B |A )=1.( ) (2)P (B |A )与P (A |B )不同.( ) 【答案】(1)× (2)√2.已知P (AB )=310,P (A )=35,则P (B |A )为( )A.950B.12C.910D.14 【答案】B3.由“0”“1”组成的三位数组中,若用事件A 表示“第二位数字为0”,用事件B 表示“第一位数字为0”,则P (A |B )等于( ) A.12 B.13 C.14 D.18 【答案】A4.一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取1只,每次取出后不放回,则若已知第一次取出的是好的,则第二次取出的也是好的概率为________. 【答案】59探究点1 利用定义求条件概率例1.甲、乙两地都位于长江下游,根据多年的气象记录知道,甲、乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时甲地为雨天的概率是多少? (2)甲地为雨天时乙地为雨天的概念是多少?【解】 设“甲地为雨天”为事件A ,“乙地为雨天”为事件B , 根据题意,得P (A )=0.2,P (B )=0.18,P (AB )=0.12. (1)乙地为雨天时甲地为雨天的概率是 P (A |B )=P (AB )P (B )=0.120.18=23. (2)甲地为雨天时乙地为雨天的概率是 P (B |A )=P (AB )P (A )=0.120.2=35. 方法归纳利用定义计算条件概率的步骤(1)分别计算概率P (AB )和P (A ). (2)将它们相除得到条件概率P (B |A )=P (AB )P (A ),这个公式适用于一般情形,其中AB 表示A ,B 同时发生.跟踪训练 如图,EFGH 是以O 为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形HOE (阴影部分)内”,则P (A )=________,P (B |A )=________.【解析】因为圆的半径为1,所以圆的面积S =πr 2=π,正方形EFGH 的面积为⎝⎛⎭⎫2r22=2,所以P (A )=2π.P (B |A )表示事件“已知豆子落在正方形EFGH 中,则豆子落在扇形HOE (阴影部分)”的概率,所以P (B |A )=14.【答案】2π 14探究点2 缩小基本事件范围求条件概率例2.集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回), 乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.【解】 将甲抽到数字a ,乙抽到数字b ,记作(a ,b ),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个,在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率P =915=35.互动探究1.[变问法]本例条件不变,求乙抽到偶数的概率.解:在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35.2.[变条件]若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).解:甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16.方法归纳利用缩小基本事件范围计算条件概率的方法将原来的基本事件全体Ω缩小为已知的条件事件A ,原来的事件B 缩小为AB .而A 中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P (B |A )=n (AB )n (A ),这里n (A )和n (AB )的计数是基于缩小的基本事件范围的.跟踪训练 一个盒子内装有4个产品,其中3个一等品,1个二等品,从中取两次,每次任取1个,作不放回抽取.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,试求条件概率P (B |A ).解:将产品编号为1,2,3号的看作一等品,4号为二等品,以(i ,j )表示第一次,第二次分别取得第i 号,第j 号产品,则试验的基本事件空间Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)},事件A 有9种情况,事件AB 有6种情况,P (B |A )=n (AB )n (A )=69=23.探究点3 条件概率性质的应用例3.在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率.【解】 设“摸出第一个球为红球”为事件A ,“摸出第二个球为黄球”为事件B ,“摸出第三个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130.所以P (B |A )=P (AB )P (A )=145÷110=29,P (C |A )=P (AC )P (A )=130÷110=13.所以P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.所以所求的条件概率为59.求解策略利用条件概率性质的解题策略(1)分析条件,选择公式:首先看事件B ,C 是否互斥,若互斥,则选择公式P (B ∪C |A )=P (B |A )+P (C |A ).(2)分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.跟踪训练 外形相同的球分装在三个盒子中,每盒10个.第一个盒子中有7个球标有字母A ,3个球标有字母B ,第二个盒子中有红球和白球各5个,第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率. 解:设A ={从第一个盒子中取得标有字母A 的球}, B ={从第一个盒子中取得标有字母B 的球}, R ={第二次取出的球是红球}, W ={第二次取出的球是白球}, 则P (A )=710,P (B )=310,所以P (R |A )=12,P (W |A )=12,P (R |B )=45,P (W |B )=15,所以P (RA ∪RB )=P (RA )+P (RB )=P (R |A )P (A )+P (R |B )P (B )=12×710+45×310=0.59.知识结构深化拓展1.对条件概率计算公式的两点说明(1)如果知道事件A 发生会影响事件B 发生的概率,那么P (B )≠P (B |A );(2)已知A 发生,在此条件下B 发生,相当于AB 发生,要求P (B |A ),相当于把A 看作新的基本事件空间计算AB 发生的概率,即P (B |A )=n (AB )n (A )=n (AB )n (Ω)n (A )n (Ω)=P (AB )P (A ). 2.两个区别(1)P (B |A )与P (A |B )意义不同,由条件概率的定义可知P (B |A )表示在事件A 发生的条件下事件B 发生的条件概率;而P (A |B )表示在事件B 发生的条件下事件A 发生的条件概率.(2)P (B |A )与P (B ):在事件A 发生的前提下,事件B 发生的概率不一定是P (B ),即P (B |A )与P (B )不一定相等. 当堂检测1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56 B.910 C.215D.115【解析】P (AB )=P (B |A )·P (A )=13×25=215,故选C.【答案】C2.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( ) A.49 B.29 C.12 D.13【解析】由题意可知.n (B )=C 1322=12,n (AB )=A 33=6.所以P (A |B )=n (AB )n (B )=612=12.【答案】C3.考虑恰有两个小孩的家庭.(1)若已知某家有男孩,求这家有两个男孩的概率;(2)若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率(假定生男生女为等可能).解:Ω={(男,男),(男,女),(女,男),(女,女)}. 设B =“有男孩”,则B ={(男,男),(男,女),(女,男)}. A =“有两个男孩”,则A ={(男,男)},B 1=“第一个是男孩”,则B 1={(男,男),(男,女)}, 于是得(1)P (B )=34,P (BA )=P (A )=14,所以P (A |B )=P (BA )P (B )=13;(2)P (B 1)=12,P (B 1A )=P (A )=14,所以P (A |B 1)=P (B 1A )P (B 1)=12.。
2.2.1条件概率

三、概念形成
1.条件概率 一般地,对于任何两个事件A、B,在已知事件A发 生的条件下,事件B发生的概率叫做条件概率,用
“P(B|A)”来表示。
我们把由事件A和事件B同时发生的事件,称为事件 的交或积。用“A∩B”或“AB”来表示。
A∩B A
B
2.条件概率公式的推导 例子:抛掷红、蓝两颗骰子,设事件A=“蓝色骰子 的点数为3或6”,事件B=“两颗骰子的点数之和大于
例3.甲、乙两地都位于长江下游,根据一百年的气象 记录,知道甲、乙两地一年中雨天占的比例分别为20% 和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时,甲地也为雨天的概率是多少? (2)甲地为雨天时,乙地也为雨天的概率是多少? 解:设A=“甲地为雨天”,B=“乙地为雨天”,则依 题意有P(A)=0.20,P(B)=0.18,P(A∩B)=0.12。 (1)乙地为雨天时,甲地为雨天的概率是
Ω A B
练习:如图,由面积为400cm2的矩形区域Ω内有半径为 6cm的两圆A,B,相交弦长为6cm,现在Ω内随机取 点,若已知点取自圆A内,求在此条件下点取在圆B内 的概率。 解:设A=“圆A内所有点”,B=“圆B内所有点”,则
几何概型
已知事件A发生的条件下,事件B发生,即点取自两 圆的公共部分A∩B。 由已知可求得A圆区域的面积为36πcm2,B圆区域的面 积为36πcm2,两圆公共部分的面积为 12 18 3cm2 所以,P( A)
2.2.1 条件概率
学习目标
1、条件概率的概念
2、条件概率的公式 3、条件概率的应用
一、兴趣引入
“玛丽莲问题”
玛丽莲(Marilyn vos Savant),美国专栏作家。她在 《Parade》杂志上主持一个叫做“Ask Marilyn”的专栏, 回答读者的各种问题。1991年,她提出了这个著名的玛丽 莲问题(Behind Monty Hall’s Doors)。 “你参加电视台的一个抽奖节目。 台上有三个门,一个后边有汽车,其余 后边是山羊。主持人让你任意选择其一 。然后他打开其余两个门中的一个,你 看到是山羊。这时,他给你机会让你可 以重选,也就是你可以换选另一个剩下 的门。那么,你换不换?”
2.2.1条件概率

n(B)=A14 A511,
n(BC)=A14 A31
P(C
|
B)
n(BC) n(B)
A14 A31 A14 A511
43 4 51
1 17
解2: 设A表示“第一次抽到B”,
C表示“第二次抽到A”。
所以:P(B)=
A14 A511 A522
4, 52
P(BC)=
A14 A31 A522
43 52 51
10 3
1 2
5
方法二:缩小样本空间法 因为n(AB)=6,n(A)=12,所以 P(B A) n( AB) 6 1 n( A) 12 2
小试牛刀
从一副不含大小王的52张扑克牌中 不放回地抽取2次,每次抽1张,已知 第1次抽到A,求第2次也抽到A的概率?
解1: 设B表示“第一次抽到A”, C表示“第二次抽到A”。则有:
由券古,典最概后型一得名,同学“抽已到知中第奖一奖名券同学”没的有概抽率到为中2 4 奖,即奖2 1
若用A表示事件“第一名同学没有抽到中奖券”,
则将“已知第一名同学没有抽到中奖奖券的条件下,
最后一名同学抽到中奖奖券”的概率记为P(B|A)
想一想
为什么两个问题的概率不一样?
P(B|A) ≠ P(B)?
P(B A) P( AB) P( A)
为在事件A发生的条件下,事件B发生的条件概率. P(B︱A)读作 A 发生的条件下 B发生的概率.
2.条件概率的性质
1)有界性:
0 P(B | A) 1
2)可加性:如果B和C是两个互斥事件,则 P(B C | A) P(B | A) P(C | A)
第1次抽取到理科题的概率
解:设第1次抽到理科题为事件A,第2次抽到理科题为 事件B,则第1次和第2次都抽到理科题为事件AB.
2.2.1条件概率

2. 事件 A与 B都发生的事件叫做 A与 B的积事件 , 记为 A B (或 AB );
3.若 A B 为不可能事件,则说事件A与B互斥.
引例:掷红、蓝两颗骰子。设事件A=“蓝色骰子的点数为3 或6”事件B=“两颗骰子点数之和大于8”;
求(1)P(A),P(B),P(A∩B)
(2)在“事件A已发生”的附加条件下事件B发生的概率?
若已知有一个女孩,求另一个是男孩的概率;
变式:在一个有三个孩子的家庭中,已知有一 个是男孩,求至少有一个女孩的概率。
例2.某种动物出生之后活到20岁的概率为 0.7,活到25岁的概率为0.56,求现年为20 岁的这种动物活到25岁的概率。 解 设A表示“活到20岁”(即≥20),B表示 “活到25岁” (即≥25) 则 P( A) 0.7, P( B) 0.56
对任意事件A和事件B,在已知事件A发生的 条件下事件B发生的条件概率”,叫做条件概率, 记作P(B |A).
P( A B) , P(A)>0. 2.条件概率计算公式: P( B | A) P( A)
例1.抛掷一颗骰子,观察出现的点数 B={出现的点数是奇数}={1,3,5} A={出现的点数不超过3}={1,2,3} 若已知出现的点数不超过3,求出现的点数是奇数的概率 解:即事件 A 已发生,求事件 B 的概率
由于B A故A B B,
所求概率为
P( A B) P( B) P( B A) 0.8 P( A) P( A)
B
0.56
0.7
A
归纳总结
1.条件概率中两个事件互相影响; 2.弄清“事件A发生”,“事件A发生且事件B发
生”,
“事件B在事件A发生的条件下发生”三者之间的关 3. 解法:①公式法 系 .
2.2.1条件概率

3、 一个家庭中有两个孩子,已知其中有一个是女孩, 问这时另一个小孩也是女孩的概率为多大?
解 {(男, 男), (男, 女), (女, 男), (女, 女)}
A={已知一个是女孩}={(男, 女), (女, 男), (女, 女)}
B {另一个也是女孩} {(女, 女)}
1 所以所求概率为 . 3
(3)法1 P( B | A) P( AB) 10 1 . 3 2法2 P( A) 5
n( AB) 6 1 P( B | A) n( A) 12 2
一张储蓄卡的密码共有6位数字,每位数字 都可以从0~9中任选一个。某人在银行自动提款机上 取钱时,忘记了密码的最后一位数字。求:
由于B A故A B B,
所求概率为
P( AB) P( B) P( B A) 0.8 P( A) P( A)
B
5
0.56
0.7
A
课堂小结
1. 条件概率的定义.
2. 条件概率的性质.
P ( AB ) P ( B A) P ( A)
(1)减缩样本空间法
3. 条件概率的计算方法.
例2
(1)任意按最后一位数字,不超过2次就按对的概率。 (2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。 解:设“第i次按对密码”为事件 Ai (i=1,2),则 A 表示“不超过2次就按对密码”。
(A1
A1A2 )
1. 掷两颗均匀骰子,问: ⑴ “ 第一颗掷出6点”的概率是多少? ⑵ “掷出点数之和不小于10”的概率又是多少? ⑶ “已知第一颗掷出6点,则掷出点数之和不小于10”的概率呢?
分析: X1YX2 , X2YX1 , X1 X2Y , X2 X1Y ,YX1 X2 ,YX2 X1 B X X Y , X X Y
2.2.1条件概率
(2)计算 n(A), n(AB)或P(A), P(AB); ) 或 (3)计算 )计算P(B|A)
练习:甲乙两地都位于长江下游,根据一百多年的气象记录, 练习:甲乙两地都位于长江下游,根据一百多年的气象记录, 知道甲乙两地一年中雨天所占的比例分别为20% %,两地 知道甲乙两地一年中雨天所占的比例分别为 %和18%,两地 %, 同时下雨的比例为12%, %,问 同时下雨的比例为 %,问: (1)乙地为雨天时甲地也为雨天的概率是多少? )乙地为雨天时甲地也为雨天的概率是多少? (2)甲地为雨天时乙地也为雨天的概率是多少? )甲地为雨天时乙地也为雨天的概率是多少? (3)甲乙两市至少一市下雨的概率是多少? )甲乙两市至少一市下雨的概率是多少? 解:设A={甲地为雨天 , B={乙地为雨天 , 甲地为雨天}, 乙地为雨天}, 甲地为雨天 乙地为雨天 则P(A)=20%,P(B)=18%,P(AB)=12%, , , ,
方法:( )对于古典概型的题目, 方法 (1)对于古典概型的题目,可采用缩减样本空间
n( AB ) 的办法计算条件概率 P ( B | A) = n( A)
(2)直接利用定义计算:P ( B | A) = )直接利用定义计算: 步骤:( )用字母表示事件; 步骤 (1)用字母表示事件;
P ( AB ) P ( A)
n( AB ) P ( AB ) n(Ω ) P ( B | A) = = n( A) P ( A) n(Ω )
条件概率的定义: 条件概率的定义:
一般地, 为两个事件, 一般地,设A,B为两个事件,且P(A)>0,则 , 为两个事件 ,
P( AB) P(B A) = P( A)
在原样本空间 的概率
(1)乙地为雨天时甲地也为雨天的概率是 P ( AB ) 12% 2 P( A B) = = = P ( B ) 18% 3 (2) 甲 地 为 雨 天 时 乙 地 也 为 雨 天 的 概 率 是 P ( AB ) 12% 3 P ( B A) = = = P ( A) 20% 5
2.2.1条件概率(刘建波改)
2.2.1条件概率文山中学 刘建波课前准备:一、课标点击(一)学习目标:了解 条件概率的概.(二)教学重、难点:条件概率公式及其简单应用是重点,公式的推导是难点.二、教学过程:(一)知识链接链接1、我们知道求事件的概率有加法公式:若事件A 与B 互斥,则.()()()P A B P A P B =+那么怎么求A 与B 的积事件AB 呢注:1.事件A 与B 至少有一个发生的事件叫做A 与B 的和事件,记为A B (或A B + );2.事件A 与B 都发生的事件叫做A 与B 的积事件,记为 A B (或AB );3.若AB 为不可能事件,则说事件A 与B 互斥(二)问题导引三张奖券中只有一张能中奖,现分别由三名同学无放回的抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小。
如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又 是多少?已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?学习探究(一)自主探究:借助抛掷红黑两枚骰子,通过坐标系分析.(二)知识点梳理:1.条件概率对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的条件概率”,叫做条件概率。
记作P(B |A).2.条件概率计算公式:()(|)()P AB P A B P A = 注:⑴0(|)P B A ≤≤1;⑵几何解释:⑶可加性:如果B C 和互斥,那么[]()|(|)(|)P B C A P B A P C A =+3.概率 P(B|A)与P(AB)的区别与联系(),,(),.,(),(),()().A A P AB AB P B A B AB P B A AB P AB P B A P AB ΩΩ=Ω=Ω表示在样本空间中计算发生的概率而表示在缩小的样本空间中计算发生的概率用古典概率公式则中样本点数中样本点数中样本点数中样本点数一般来说比大(三)思考与讨论:1:一般地,在已知另一事件A 发生的前提下,事件B 发生的可能性大小不一定再是P(B).即(|)()P B A P B ≠条件的附加意味着对样本空间进行压缩2:对于上面的事件A 和事件B ,P(B|A)与它们的概率有什么关系呢?()()()()(|)()()()()n AB n AB P AB n P B A n A n A P A n Ω===Ω 3:P(B |A)相当于把A看作新的基本事件空间求A∩B发生的概率(四) 典例探讨例1:个家庭中有两个小孩,假定生男生女是等可能的,已经知道这个家庭有一个女孩,,问这时另一个小孩是男孩的概率是多少?解:此题为古典概型,设(男,女)表示第一个是男孩,第二个是女孩.()()()(){Ω=男,男,男,女,女,男,女,女 }{A =(男,女),(女,男)(,女,女) ()()()}{B =男,男,男,女,女,男()()}{A B =男,女,女,男()()321,442P A P A B === ()()()324132P A P B A P A B === 故所求条件概率为23例2 某种动物出生之后活到20岁的概率为0.7,活到25岁的概率为0.56,求现年为20岁的这种动物活到25岁的概率。
高二数学必修1课件:2.2.1 条件概率
问题探究
若事件A1,A2,…,An两两之间相互 独立,则P(A1A2…An)等于什么?如何证明?
P(A1A2…An)=P(A1)P(A2)…P(An)
第二十三页,编辑于星期一:一点 分。
典例讲评
例1 某商场推出二次开奖活动,凡购买 一定价值的商品可以获得一张奖券,每张 奖券可以分别参加两次抽奖方式相同的兑 奖活动,如果两次兑奖活动的中奖概率都 是0.05,求两次抽奖中下列事件的概率. (1)两次都中奖;
第十一页,编辑于星期一:一点 分。
课堂小结
3.互斥事件的并事件的条件概率性质, 类似于互斥事件的概率加法公式,并可 以推广到多个互斥事件的并事件的条件 概率.
第十二页,编辑于星期一:一点 分。
2.2 二项分布及其应用 2.2.2 事件的相互独立性
第十三页,编辑于星期一:一点 分。
复习回顾
1.条件概率P(B|A)的含义与计算公式 分别是什么?
课堂小结
2.公式P(AB)=P(A)P(B)可以理解为: 相互独立事件同时发生的概率,等于它 们的概率之积.如果事件A与B不相互独 立,那么事件A与B同时发生的概率应 利用条件概率求解.
第二十七页,编辑于星期一:一点 分。
课堂小结
3.两个事件互斥与两个事件相互独立是 完全不同的两个概念,若事件A与B互斥, 则P(A∪B)=P(A)+P(B),这是和事件的 加法公式;若事件A与B相互独立,则 P(AB)=P(A)P(B),这是积事件的乘法公 式.
第六页,编辑于星期一:一点 分。
概念生成
结合条件概率的定义,如何推导 P[(B∪C)|A]与P(B|A),P(C|A)的关系?
P[(B∪C)|A]=P(B|A)+P(C|A)
第七页,编辑于星期一:一点 分。
课件6:2.2.1 条件概率
解 由题意知 P(A)=145,P(B)=125,P(AB)=110,
1 故 P(B|A)=PP((AAB))=140=38.
15
1 P(A|B)=PP((ABB))=120=34.
15
题型一 条件概率的计算
例1.抛掷红、蓝两颗骰子,记事件A为“蓝色骰子的点数为3或 6”,事件B为“两颗骰子的点数之和大于8”.
(3)方法一:因为 P(AB)=53××42=130,
3 所以 P(B|A)=PP((AAB))=130=12.
5
方法二:因为 n(A)=3×4=12,n(AB)=3×2=6,
所以 P(B|A)=nn((AAB))=162=12.
题型二 条件概率的性质
例2.在某次考试中,要从20道题中随机地抽出6道题,若考生至少 能答对其中的4道题即可通过;若至少能答对其中5道题就获得优秀, 已知某考生能答对其中10道题,并且知道他在这次考试中已经通过, 求他获得优秀成绩的概率.
1
3
A.2
B.5
23C.3来自D.50【解析】 由条件概率公式知 P(B|A)=PP((AAB)), ∴P(AB)=P(B|A)×P(A)=130×15=530. 【答案】 D
2.在一个盒子中有大小相同的 10 个球,其中 6 个红球,4
个白球,两人无放回地各取一个球,则在第一个人摸出红球的
条件下,第二个人也摸出红球的概率是( )
2.2.1 条件概率
目标导航 1.理解条件概率的定义. 2.掌握条件概率的两种计算方法. 3.利用条件概率公式解决一些简单的实际问题.
入门答疑 这个家庭中有两个孩子,已知老大是女孩,问这时另一个小孩也 是女孩的概率为多大?
[提示] Ω={(男,男),(男,女),(女,男),(女,女)}, A={已知老大是女孩}={(女,男),(女,女)} , B={另一个也是女孩}={(女,女)}, 所以所求概率为12.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大(珠海)附中
第一章 计数原理
条件概率 Conditional Probability
定义 设A,B为同一个随机试验中的两个随机事件 , 且P(A)>0, 则称
P ( AB ) P ( B A) P ( A)
条件概率
(4)已知A发生,则可能出现的基本事件必定在事件A中,
注意:一般 P(B|A)≠P(B), P(B|A)≠P(AB)
2 则A发生的条件下,B发生的概率 P(B|A)= 3
第一章 计数原理
推广:如何计算P(B|A)呢?
一般地,用 Ω (样本空间)表示所有可能的基本事 件的全体,n(Ω)表示Ω中基本事件的个数,n(A)、 n(B)、n(AB)分别表示事件A、B、AB中所包含的基 本事件的个数. 如:引例中,Ω = {1点, 2点, 3点, 点, 5点, 6点}, n(Ω)= 6,n(A)=3,n(AB)=2. A ={1点, 2点, 3点}, n( AB ) n( AB ) n( A) P ( AB ) / P(B|A)= n( A ) n() n() P ( A)
北师大(珠海)附中
第一章 计数原理 例1:5题中有3理科题2文科题,有放回依次抽取2题。 (1)第1次抽到理科题的概率; (2)第1次和第2次都抽到理科题的概率; (3)在第1次抽到理科题的条件下,第2次抽到理科题的 概率。
北师大(珠海)附中
第一章 计数原理 例2:一张储蓄卡的密码共6位数字,每位数字都可从 0~9中任选一个. 某人在自动取款机上取钱时,忘记了 密码的最后一位数字,求: (1)任意按最后一位数字,不超过两次按对的概率; (2)如果他记得密码的最后一位是偶数,不超过两次就 按对的概率。 解: 设第 i 次按对密码为事件A i (i =1, 2),则 1 91 1 (1)P(A1∪(A1 A2))= P(A1)+ P(A1A2) 10 10 9 5 (2)设最后一位按偶数为事件B,则
为在事件A发生的条件下,事件B发生的条件概率. 一般把 P(B︱A)读作 A 发生的条件下 B 的概率。
北师大(珠海)附中
第一章 计数原理 条件概率的性质:
思考:(1)若A、B互斥,则P(B|A)= (2)若 A B,则P(B|A)=
0 ;
1 ;
北师大(珠海)附中
第一章 计数原理 例1:5题中有3理科题2文科题,不放回依次抽取2题。 (1)第1次抽到理科题的概率; (2)第1次和第2次都抽到理科题的概率; (3)在第1次抽到理科题的条件下,第2次抽到理科题的 概率。 注意: 较复杂概率问题的步骤: (1)设简单事件; (2)用简单事件表示出待求事件的概率; (3)计算概率;
1 41 2 P(A1∪(A1 A2)|B)= P(A1|B)+P(A1 A2|B)= 5 5 4 5
北师大(珠海)附中
1.4.4 乘法公式
对任意事件 A , B
P ( AB ) P ( A ) P ( B A) ( P ( A) 0)
P ( AB ) P ( B ) P ( A B)
北师大(珠海)附中
第一章 计数原理 例1:5题中有3理科题2文科题,不放回依次抽取2题。 (1)第1次抽到理科题的概率; (2)第1次和第2次都抽到理科题的概率; (3)在第1次抽到理科题的条件下,第2次抽到理科题的 概率。 注意: 条件概率的求法一般有三: (1)在原样本空间,用事件的概率来计算条件概率,即 P ( AB ) P(B|A)= P ( A) (2)在原样本空间,对事件的记数来计算条件概率,即 n( AB ) P(B|A)= n( A ) (3)缩小样本空间,用记数来计算概率;
第一章 计数原理
2.2.1条件概率
北师大(珠海)附中
引例:掷一枚骰子一次, (1)求出现点数不大于3的概率; (2)求出现奇数点的概率; (3)求点数不大于3同时是奇数的概率; (4)若已知点数不大于3,求出现奇数点的概率 分析:设“出现点数不大于3”为事件A, “出现奇数 点”为事件B,则
3 1 (1)P(A)= ; 6 2 3 1 (2)P(B)= ; 6 2 2 1 (3) A、B同时发生的概率 P(AB)= 6 3 ;
解: 设 A 表示取得木球 B 表示取得白球 6 (1) P ( A) 10 (2) 所求概率称为
白 木 塑 小计 4 3 7
红 2 1 3
小计 6 4 10
在事件B发生的条件下事件 A发生的 条件概率 记作 P( A | B)
4 P( A B) 7
例1.4.2 某人外出旅游两天, 需知道两天的天气情 况, 据预报, 第一天下雨的概率为 0.6,第二天下 雨的概率为0.3, 两天都下雨的概率为0.1. 求 第 一天下雨时, 第二天不下雨的概率. 解: 设A与B 分别表示第一天与第二天下雨
由题意 P( A) 0.6 P ( B) 0.3 P( AB) 0.1
P ( AB ) P ( A) P ( AB ) 故 P ( B A) P ( A) P ( A)
0.6 0.1 5 P ( B ) 0.7 0.6 6
第一章 计数原理
北师大(珠海)附中
推广:
( P ( B ) 0)
P ( ABC ) P ( A) P ( B A) P ( C AB) ( P ( AB) 0)
第一章 计数原理 例3:1005人中用系统抽样抽出10人,求其中甲被抽中 的概率。
北师大(珠海)附中
例1.4.1
白球 红球 小计 古 4 2 6 木球 典 概 3 1 4 塑球 型 7 3 10 小计 现从袋中任意取一球, 问 ( 1 )它是木球的概率是多 少? ( 2 )若已知取到的球是白 球,问它是 木球的概率是多少?