计算行列式的方法总结

合集下载

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111mm x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m ni i n 11.2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解. 2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nn nn nnB A BC A •=0, nn nn nnnn nn B A B C A •=0.例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa a a n ()()βγβγβγλ--•-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D =.再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:100100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20cos 21001cos 21001cos cos 21D 111k •-=++++k k()10cos 21001cos 21001cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n=.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--•+•=n n n B A D .当1=n 时,B A +=9; 当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-11010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nnn a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ. 即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式.4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a2211210,nn n c a c a c a a b b b2211012,n nn b b b a a c a c a c 211122,121122a b b b c a c a c a n n n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n a a a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b nnn,n n n a c a c a c b b b a2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--•-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()1221112211000010000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式. 4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=10000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= , 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D=n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .5.2 逐行相加减和套用德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D .再由德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.5.3 构造法和套用德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .。

行列式的计算技巧与方法总结(修改版)

行列式的计算技巧与方法总结(修改版)

行列式的若干计算技巧与方法内容摘要1. 行列式的性质2.行列式计算的几种常见技巧和方法定义法利用行列式的性质降阶法升阶法(加边法)数学归纳法递推法3. 行列式计算的几种特殊技巧和方法拆行(列)法构造法特征值法4. 几类特殊行列式的计算技巧和方法三角形行列式“爪”字型行列式“么”字型行列式“两线”型行列式“三对角”型行列式范德蒙德行列式5. 行列式的计算方法的综合运用降阶法和递推法逐行相加减和套用范德蒙德行列式构造法和套用范德蒙德行列式行列式的性质性质1 行列互换,行列式不变.即nna a a a a a a a a a a a a a a a a an2n1n22212n12111nn n2n12n 22211n 1211= .性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即=nnn2n1in i2i1n11211k k k a a a a a a a a ak nna a a a a a a a an2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即11121111211112111221212121212.nnn n n n n n n nnn n nnn n nna a a a a a a a abc b c b c b b b c c c a a a a a a a a a +++=+ 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即k a a a ka ka ka a a a a a a nn n n in i i in i i n=21212111211nnn n in i i in i i na a a a a a a a a a a a 21212111211=0. 性质5 把一行的倍数加到另一行,行列式不变.即=+++nn n n kn k k kn in k i k i na a a a a a ca a ca a ca a a a a2121221111211nnn n kn k k in i i n a a a a a a a a a a a a 21212111211. 性质6 对换行列式中两行的位置,行列式反号.即nn n n kn k k ini i n a a a a a a a a a a a a21212111211=-nnn n in i i kn k k n a a a a a a a a a a a a21212111211.性质7 行列式一行(或列)元素全为零,则行列式为零.即00000nn1-n n,n2n1n 11-n ,11211=a a a a a a a a.2、行列式的几种常见计算技巧和方法 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nna a a a a a a a a a a a a2211nn3332232211312110000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解:m x x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111mm x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m n i i n 11.2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.降阶法将高阶行列式化为低阶行列式再求解. 2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 . 2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nnnn nn B A B C A •=0, nn nn nnnnnn B A B C A •=0. 例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa aa n ()()βγβγβγλ--•-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D=. 再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:10100000100000101111)1n D ------=(()()1n 11n --=+.数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 2000cos 21001cos 21001cos cos 21D 111k •-=++++k k()10cos 21001cos 2101cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -=()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =. 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .①若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .②若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D .在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n=.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--•+•=n n n B A D .当1=n 时,B A +=9; 当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-110010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nn n a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值.构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式. 3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ.即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法 三角形行列式 4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式. 4.1.2 计算方法 由行列式的定义可知,nn nn n n n a a a a a a a a a a a a a22113332232211312110000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. “爪”字型行列式 4.2.1 概念形如nn na c a c a cb b b a2211210,n nnc a c a c a a b b b2211012,nnn b b b a a c a c a c 211122,121122a b b b c a c a c a nn n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式.4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n aa a a a 21321. “么”字型行列式4.3.1 概念形如nn n b b b a a c a c a c 211122,n nna b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,111222a cb ac b a c b a nnn ,121122c a c a b a b c a b n nn,nn na c a c a cb b b a2211210,121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--•-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.“两线”型行列式 4.4.1 概念形如nnn a b b b a b a000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nnn n a b b b a b a0000000D 12211-=. 解:按第一列展开,得()12211122110001000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.“三对角”型行列式 4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式. 4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=10000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .Vandermonde 行列式 4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的范德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值.构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.降阶法和递推法例19 计算行列式2100012000002100012100012D =n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .逐行相加减和套用范德蒙德行列式 例20计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D . 再由范德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.构造法和套用范德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值.构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有:()()∏≤<≤-+++=ni j j i n n x x x x x D 121 .。

计算行列式的方法总结PPT

计算行列式的方法总结PPT

THANK YOU
感谢聆听
性质
行列式具有以下基本性质
行列式转置不变
行列式的值与其转置行列式的值相 等。
行列式按行(列)展开
行列式的值等于其任意一行(列)元 素与其对应代数余子式的乘积之和。
行列式的倍数性质
行列式中某一行(列)的所有元素 都乘以一个常数k,则行列式的值也 乘以k。
行列式的消元性质
若行列式中两行(列)成比例,则 行列式的值为0。
例题3
利用数学归纳法计算分块矩阵的行列式。对于具有某种递推关系的分块矩阵,可以利用数 学归纳法进行证明和计算。通过假设当n=k时结论成立,进而证明当n=k+1时结论也成 立,从而得出对于任意正整数n结论都成立的结论。
06
特殊类型行列式的计算方法
箭型行列式的计算
箭型行列式的定义
箭型行列式是一种具有特殊形状的行列式,其主对角线上方的元素构成了一个箭头形状。
计算方法
对于 n 阶箭型行列式,可以先将其化为上三角或下三角行列式,然后直接计算对角线元素的乘积。具体步骤包括 :利用行列式的性质,将第 1 列的 -1 倍加到其他列上,从而将箭型行列式化为上三角或下三角行列式;计算对 角线元素的乘积。
两三角型行列式的计算
两三角型行列式的定义
两三角型行列式是指行列式的上半部分和下半部分分别呈现三角形形状的行列式。
80%
典型方法
拉普拉斯展开定理,将高阶行列 式按某一行(列)展开为低阶行 列式的和。
典型例题解析
例题1
利用数学归纳法计算范德蒙德 行列式。
例题2
计算含有特定元素的行列式, 如含有三角函数、指数函数等 。
例题3
利用归纳法证明某些特殊类型 的行列式具有特定的性质,如 对称性、反对称性等。

行列式计算方法归纳总结

行列式计算方法归纳总结

2.行列式的计算方法2.1 定义法在引进行列式的定义之前,,为了更加容易的理解行列式的定义,首先介绍排列和逆序的概念.(1) n级排列:由1,2.3…n组成的一个有序数组称为一个n级排列.(2) 在一个排列中,如果一对数的前后位置与大小顺序相反,即:前面的数大于后面的数,那么它们就称为一个逆序,一个排列中逆序的总数称为这个排列的逆序数. (3) 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列.在做好这些工作之后,来引入行列式的定义:定义:n 阶行列式aaaaa a a a a a a a a a a a nnn n n nn n321333323122322211131211 <I>等于所有取自不同行不同列的n 个元素的乘积.ja j a j a j a nn332211的代数和,这里jj j j n,,,,321为1,2,3,……,n 的一个排列,每一项<Ⅱ>都按下列规则带有符号,当jj j j n,,,321是偶排列时, <Ⅱ>带有正号,当jj j j n,,,,321是奇排列时,<Ⅱ> 带有负号.例2.1证明1112131415212223242531324142515200000000a a a a a a a a a a D a a a a a a ==. 分析 观察行列式我们会发现有许多零,故直接用定义法.证明 由行列式的定义知除去符号差别外行列式一般项可表示为1212n j j nj a a a则12512125()12(1)n j j j n j j nj j j j D a a a τ=-∑. (3)其中115,,,j j j 为1,2,3,4,5的任意排列,在D 中位于后三行后三列的元素为零,而在前两行前两列中,取不同行不同列的元素只有四个,就是说(3)式中每一项至少有一个来自后三行后三列. 故D =0.注意 此方法适用于阶数较低的行列式或行列式中零的个数较多.2.2递推法无论是初等数学,还是高等数学,递推公式都有着非常广泛的运用。

行列式的计算技巧窍门情况总结

行列式的计算技巧窍门情况总结

行列式的计算技巧窍门情况总结行列式是线性代数中重要的概念之一,它在解决线性方程组、矩阵的逆等问题中起着关键作用。

本文将总结行列式的计算技巧和窍门,帮助读者更好地掌握行列式的计算方法。

1.定义行列式是一个方阵所对应的一个标量值。

对于一个n阶方阵A,它的行列式记作det(A),A,或者D(A)。

对于2阶和3阶方阵,行列式的计算较为简单,可以直接应用定义进行计算。

例如对于2阶方阵A:abcd对于3阶方阵A:abcdefghidet(A) = aei + bfg + cdh - ceg - bdi - afh。

2.初等变换法初等变换法是一种常用的计算行列式的方法。

初等变换指的是对行列式的行(或列)进行以下操作:①互换两行(列);②其中一行(列)与其它行(列)相加(或相减,可取加减系数为1和-1);③其中一行(列)乘以一个非零常数。

这些操作不改变行列式的值。

通过使用初等变换,可以将行列式转化为更简单的形式,从而更容易计算。

例如,在计算3阶行列式时,我们可以使用初等变换将行列式化为上三角形式,这样计算起来会更加简便。

3.拆分法则行列式有一个重要的性质,即它是线性的。

也就是说,如果将一个方阵的其中一行(列)按一定的方式进行拆分并相加(或相减),则行列式的值不变。

这个性质对于简化行列式的计算非常有帮助。

例如,在计算3阶行列式时,可以选择将第一列按照一定方式进行拆分,然后相加或相减。

这样可以将行列式化简为两个2阶行列式的形式,从而更容易计算。

4.分块矩阵法对于大规模的方阵,计算行列式将变得较为复杂。

分块矩阵法是一种较为高效的计算行列式的方法。

分块矩阵法的基本思想是将一个大的方阵分割为若干个小的方阵,并利用分块矩阵的性质进行计算。

这样可以将复杂的计算问题化简为对小方阵的计算问题,从而降低了计算的难度和复杂度。

5.逆序数法逆序数法是一种计算行列式的方法,它利用了逆序数和奇偶性的关系。

逆序数是指在一个排列中,逆序对的个数。

行列式的几种计算方法

行列式的几种计算方法

行列式的几种计算方法行列式是线性代数中的重要概念,是一种用于描述矩阵特征的数学工具。

在数学和工程领域中,行列式的计算是非常重要的,它与矩阵的性质及相关运算具有密切的关系。

本文将介绍关于行列式的几种计算方法,希望能够帮助读者更好地理解和应用行列式。

一、行列式的定义在了解行列式的计算方法之前,我们首先来了解行列式的定义。

行列式是一个用方括号表示的数学量,它是一个矩阵所代表的线性变换对“面积”或“体积”的伸缩因子。

对于一个n阶方阵A,它的行列式记作det(A),其中n表示方阵的阶数。

行列式的计算方法有很多种,下面我们将介绍其中的几种常见方法。

二、拉普拉斯展开法拉普拉斯展开法是一种常见的行列式计算方法。

在使用拉普拉斯展开法计算行列式时,首先需要选择一个行或列,然后将行列式展开成以该行或列元素为首元素的一系列代数余子式的和。

具体步骤如下:1. 选择一个行或列,我们以第一行为例;2. 对第一行的每个元素,计算它的代数余子式,代数余子式的计算方法是去掉对应行和列的元素后计算得到的行列式;3. 计算每个元素的代数余子式,然后与对应元素相乘再相加,得到最终的行列式值。

对于一个3阶矩阵A```a b cd e fg h i```使用拉普拉斯展开法,选择第一行进行展开,计算行列式的方法如下:```det(A) = a*det(A11) - b*det(A12) + c*det(A13)```其中A11、A12、A13分别为:A11 =```e fh i```A12 =```d fg i```A13 =```d eg h```通过计算A11、A12、A13的行列式值,再按照上述公式计算,即可得到矩阵A的行列式值。

三、性质法行列式的性质法是一种简单而有效的计算方法,它是通过一些行列式的基本性质来简化和计算行列式的值。

行列式的基本性质包括以下几条:1. 对调行或列,行列式变号;2. 行或列成比例,行列式为0;3. 行列式中有两行、两列相同,行列式为0;4. 两行或两列互换,行列式变号;5. 行列式中某一行或列乘以一个数,等于这个数与行列式的乘积。

行列式的几种求法

行列式的几种求法

行列式的求法有多种,以下简单进行总结。

一、逆序定义法行列式的逆序法定义如下:1212121112121222(,,......,)12,,......,12(1)......n n nn n j j j j j nj j j j n n nna a a a a a a a a a a a τ=-∑这里,12,,......,n j j j 为1,2,...,n 的任一排列,12(,,......,)n j j j τ为该排列的逆序数,求和是对所有的排列求的,因此,该和式一共有!n 项,每项都是n 个数相乘,并得计算逆序数,计算量巨大。

因此,一般而言,逆序法定义具有理论上研究的意义,而比较少用于求行列式。

但是,如果行列式的项中有大量的0,那么用逆序法计算可能会很简单。

以下举例如下:例1:求1122nna a a。

解答:1212121122(,,......,)12,,......,(1)......n n nj j j j j nj j j j nna a a a a a τ=-∑只当11j =,22j =,……,n j n =,其项才可能非零。

因此,1122(1,2,......,)01,12,2,1,12,2,1,12,2,(1)......(1)............n n n n n n nnna a a a a a a a a a a a τ=-=-=例2、求12nd d d 。

解答:12121212(,,......,)12,,......,(1)......n n nj j j j j nj j j j nd d a a a d τ=-∑只当1j n =,21j n =-,……,1n j =,其项才可能非零。

因此,1(1)2(,1, (1)21,2,1,112(1) (1)......n n n n n n n n nd d a a a d d d d τ---=-=- 。

例3、求121n nd d d d -。

行列式的计算技巧及方法总结总结修改版本.doc

行列式的计算技巧及方法总结总结修改版本.doc

行列式的若干计算技巧与方法内容摘要1.行列式的性质2.行列式计算的几种常见技巧和方法2.1定义法2.2利用行列式的性质2.3降阶法2.4升阶法(加边法)2.5数学归纳法2.6递推法3.行列式计算的几种特殊技巧和方法3.1拆行(列)法3.2构造法3.3特征值法4.几类特殊行列式的计算技巧和方法4.1三角形行列式4.2 “爪”字型行列式4.3 “么”字型行列式4.4 “两线”型行列式4.5 “三对角”型行列式4.6范德蒙德行列式5.行列式的计算方法的综合运用5.1降阶法和递推法5.2逐行相加减和套用范德蒙德行列式5.3构造法和套用范德蒙德行列式1.2行列式的性质性质 1行列互换,行列式不变.即a11a12a1na11a21an1a 21a22a2na12a22an2.a n1a n2a nn a1n a2n a nn性质 2一个数乘行列式的一行(或列),等于用这个数乘此行列式.即a11a12a1n a11a12a1nk a i1k a i2ka in k ai1ai2ain.an1an2annan1an2ann性质 3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即a 11 a12 Ka1na11a12 Ka1na11a12 Ka1nM MMM M M M M M M M Mb1 c1 b2 c2 K b n c n b1 b2 K b n c1 c2 K c n . M MMM M M M M M M M Man1 an2 Kannan1an2 Kannan1an2 Kann性质 4如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即a11a12a1na11a12a1na i1a i 2a in a i 1a i 2a ink=0. ka i1ka i 2ka in a i 1a i 2a inan1an 2annan1an 2ann性质 5把一行的倍数加到另一行,行列式不变.即a 11 a12a1na11a12a1nai1cak1ai 2cak2ain ca knai1ai 2ain.ak1 ak2aknak1ak2aknan1 an2annan1an2ann性质 6 对换行列式中两行的位置,行列式反号. 即a11 a12 a1n a11 a12 a1na i 1 a i 2 a in a k1 a k 2 a knak1 ak 2akn=- ai 1 a i 2 a in .a n1a n 2a nn a n1a n2a nn性质 7行列式一行(或列)元素全为零,则行列式为零.即a11a12a1,n-1a1n00000 .a n1a n2a n, n-1a nn2、行列式的几种常见计算技巧和方法2.1定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.0 0 0 1例 10 0 2 0计算行列式3 0.0 04 0 0 0解析:这是一个四级行列式,在展开式中应该有4! 24项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是a1 j1a2 j2a3 j3a4 j4.显然,如果 j 14 ,那么 a 1 j 1 0 ,从而 个 就等于零.因此只 考 j 1 4 的 ,同理只 考j 2 3, j 3 2, j 4 1的 些 , 就是 ,行列式中不 零的 只有a 14 a 23 a 32 a 41 ,而43216 ,所以此 取正号.故0 0 0 10 2 0= 1 4321a 14 a 23 a 32 a 41 24 .0 3 0 040 0 02.2 利用行列式的性即把已知行列式通 行列式的性 化 上三角形或下三角形. 方法适用于低 行列式.2.2.1 化三角形法上、下三角形行列式的形式及其 分 如下:a11a12 a13a1na110 0 0 a22a23 a2n a21a220 0 a33a 3na 11a 22ann,a31a 32a 33a 11a 22a nn.annan1an2 an3ann1 a 1a 2 a n 例 21 a 1 b 1 a 2a n算行列式 D n 1.1 a 1 a2 a n b n解析: 察行列式的特点, 主 角 下方的元素与第一行元素 相同,故用第一行的1倍加到下面各行便可使主 角 下方的元素全部 零.即:化 上三角形.解:将 行列式第一行的1 倍分 加到第 2,3 ⋯(n1)行上去,可得1 a 1 a2 K a nDn 10 b 10 0 0b 1b 2 K b n.M M M O M0 00 Kb n2.2.2 加法行列式的特征是行列式某行(或列)加上其余各行(或列)后,使 行(或列)元素均相等或出 多零,从而 化行列式的 算. 算行列式的方法称 加法.例3解:2.2.3x1 m x2 x n计算行列式 D nx1 x2 m x n.x1 x2 x n mnx i m x2 x ni 1nD nx i m x2 m x ni 1nx i m x2 x n mi 11 x2 x n 1 x2 x nn 1 x2 m x n n 0 m 0x i m x i mi 1 i 11 x2 x n m 0 0 mm n 1 n x i m .i 1滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.1 2 3 n 1 n2 1 2 n 2 n 1例 4 计算行列式 D n 3 2 1 n 3 n 2 n 2 .n n 1 n 2 2 1解:从最后一行开始每行减去上一行,有1 2 3 n 1 n 1 2 3 n 1 n1 1 1 1 12 0 0 0 2D n 1 1 1 1 1 2 2 0 0 21 111 1 1 1 11 11 2 3 n 1 n 11 0 0 0 01 n 1 n 12 n 2.2 n 2 1 1 0 0 01 1 1 1 02.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.a1 a1 0 0 00 a2 a2 0 0例 5 计算行列式 D 0 0 a3 0 0.0 0 0 a n a n1 1 1 1 1解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:a1 0 0 0 00 a2 0 0 0D0 0 a3 0 00 0 0 a n 01 2 3 n n 11 2n2 1 n n 1 a a an 1 n n 1 a a a .1 2 1 2 n2.3 降阶法将高阶行列式化为低阶行列式再求解.2.3.1按某一行(或列)展开x 1 0 0 00 x 1 0 0例 60 0 x 0 0 解行列式 D n .0 0 0 x 1a nan 1an 2 a2 a1解:按最后一行展开,得D n a1 x n 1 a2 x n 2 a n 1 x a n.2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式 D 中任意选定了k 1 k n - 1 个行.由这k行元素所组成的一切 k 级子式与它们的代数余子式的乘积的和等于行列式 D. 即D M 1A 1 M 2 A 2 M n A n ,其中 A i 是子式 M i对应的代数余子式.即Ann 0A nn ?B nn ,Cnn BnnAnn CnnA nn ?B nn.0 Bnna a a ab例 7 解行列式 D n b .b解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得a a a abD n 0 0 00 0 0 0n 1 a a a ab n 20 0 0 00 0 0 0n 1 a 0 0n 2 n 1 ab n 2b n?2.2.4升阶法就是把 n 阶行列式增加一行一列变成n+1 阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子, 那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.0 1 1 1 11 0 1 1 1例 81 1 0 1 1 解行列式 D= .1 1 1 0 11 1 1 1 0解:使行列式 D 变成n 1 阶行列式,即1 1 1 1 10 0 1 1 10 1 0 1 1.D0 1 1 0 10 1 1 1 0再将第一行的 1 倍加到其他各行,得:1 1 1 1 11 1 0 0 01 0 1 0 0D= .1 0 0 1 01 0 0 0 1从第二列开始,每列乘以 1 加到第一列,得:( n 1) 1 1 1 10 1 0 0 0D0 0 1 0 00 0 0 1 00 0 0 0 11 n 1 n 1 .2.5 数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.cos 1 0 0 01 2 cos 1 0 0例 9 计算行列式 D n 0 1 2 cos 0 0.0 0 0 2 cos 10 0 0 1 2 cos解 : 用数学归纳法证明 .当 n 1 时,D1cos.当 ncos 12cos2 1 cos2 .2 时, D21 2 cos猜想, D n cosn.由上可知,当n 1 , n 2 时,结论成立.假设当 n k 时,结论成立.即: D k cos k .现证当n k 1时,结论也成立.cos 1 0 0 01 2 cos 1 0 0当 n k0 1 2 cos 0 01时,D k 1 .0 0 0 2cos 10 0 0 1 2 cos将 D k 1按最后一行展开,得cos 1 0 01 2 cos 1 0 Dk 1 1 k 1 k 1 ? 2 cos 0 1 2 cos 00 0 0 2 coscos 1 0 01 k 1 k1 2cos 1 0 0 1 2cos 0000 12 cos D k D k 1.因为D k cosk,D k 1cos k 1cos k cosk cos sin k sin,所以D k 1 2 cos D k D k 12 cos cosk cos k cos kcos1.cos k cossin k sinsin k sin这就证明了当n k 1时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立.即: D n cosn.2.6递推法技巧分析:若n 阶行列式D满足关系式aD n bD n 1cD n 20 .则作特征方程ax 2 bx c 0 .① 若0,则特征方程有两个不等根,则D n Ax1n 1 Bx2n 1.② 若0,则特征方程有重根x1 x2,则 D n A nB x1n 1.在①②中, A , B 均为待定系数,可令n 1, n 2 求出.9 5 0 0 0 0 04 95 0 0 0 00 4 9 5 0 0 0例 10 计算行列式 D n .0 0 0 0 4 9 50 0 0 0 0 4 9解:按第一列展开,得D n 9D n 1 20D n 2.即D n9D n 120D n 20 .作特征方程x 29x 200 .解得x14, x25 .则D n A ? 4 n 1B ? 5n 1.当 n 1 时, 9 A B ;当 n 2 时, 61 4A 5B .解得A16, B25 ,所以D n 5 n 1 4 n 1.3、行列式的几种特殊计算技巧和方法3.1拆行(列)法3.1.1概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和.3.1.2例题解析1 a1 a2 0 0 01 1 a2 a3 0 0例 110 1 1 a3 0 0计算行列式 D n .0 0 0 1 a n 1 a n0 0 0 1 1 a n解:把第一列的元素看成两项的和进行拆列,得1 a1 a2 0 0 01 0 1 a2 a3 0 00 0 1 1 a 3 0 0D n0 0 0 0 1 a n 1 a n0 0 0 0 1 1 a n1 a2 0 0 01 1 a2 a3 0 00 1 1 a3 0 00 0 0 1 an 1 a n0 0 0 1 1 a na1 a2 0 0 00 1 a2 a3 0 00 1 1 a3 0 0.0 0 0 1 a n 1 a n0 0 0 1 1 a n上面第一个行列式的值为1,所以1 a2 a3 0 01 a3 0 0D n 1 a10 0 1 a n 1 a n0 0 1 1 a n1a1 D n 1.这个式子在对于任何n n 2 都成立,因此有D n1a1 D n 11 a1 1 a2 D n 2 1 a1 a1a2 1 n 1 a1a2 a nn i i1 1 a j.i 1 j 13.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值.3.2.2 例题解析1 1 1x1 x2 x n例 12x12 x22 x n2求行列式 D n .x1n 2 x2n 2 x n n 2x1n x2n x n n解:虽然 D n不是范德蒙德行列式,但可以考虑构造n 1 阶的范德蒙德行列式来间接求出 D n的值.构造 n 1 阶的范德蒙德行列式,得1 1 1 1x1 x2 x n xx12 x22 x n2 x 2f x .x1n 2 x2n 2 x n n 2 x n 2x1n 1 x2n 1 x n n 1 x n 1x1n x2n x n n x n将 f x 按第 n 1 列展开,得f x A1,n 1A2, n 1xA n,n 1 x n 1 A n 1,n 1 x n,其中, x n 1的系数为A n, n 1n n 11 D n D n.又根据范德蒙德行列式的结果知f xx x1 x x2x x n x i x j.1 j i n由上式可求得x n 1的系数为x 1x 2x nx ix j.1 j i n故有D nx 1 x 2x nx i x j .1 j i n3.3 特征值法3.3.1 概念及计算方法设1, 2,n 是 n 级矩阵 A 的全部特征值,则有公式A 1 2n. 故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例 13 若1, 2,n 是 n 级矩阵 A 的全部特征值, 证明: A 可逆当且仅当它的特征值全不为零.证明:因为A 1 2n ,则A 可逆A1 2n 0i 0 i 1,2 n .即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念a 11a12a13a1na11a 22a23 a2 na21a22形如a33a3n, a 31a32a33这样的行列式,形状像个三角形,a nna n1 a n2 a n3 a nn故称为“三角形”行列式.4.1.2 计算方法由行列式的定义可知,a11 a12a13a1na11 0 0 00 a22 a23 a2n a21 a22 0 00 0 a 33 a3n a11a22 a nn ,a31 a32 a33 0 a11a22 a nn.000a nn a n1a n 2a n 3a nn4.2“爪”字型行列式4.2.1概念a0 b1 b2 b n b n b2 b1 a0 c n a nc1 a1 a1 c1形如 c2 a2 ,a2 c2 , c2 a2 ,c1 a1c n a n a n c n a0 b1 b2 b na n c na2 c2 这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式.a1 c1b n b2 b1 a04.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线” ,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横.4.2.3 例题解析a1 1 1 11 a2例 14 计算行列式 1 a3 ,其中 a i 0, i 1,2, n.1a n分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第i (i 2,3,n.) 列元素乘以1后都加到第一列上,原行列式可化为三角形行列式.a ia 11 11n 11a 11 11 a 2i 2a i0 a 2解 : 1a 3a 31a na nn1a 2 a 3 a n a 1.i2a i4.3 “么”字型行列式4.3.1 概念c n a na 0 c 1b nb 2 b 1a 0b 1 a 1c 2a 1 c 1形如c 2 a 2, b 2a 2,a 2 c 2,c 1 a 1c na 0b 1b 2b n b na n a n c na nb nb n a n a 0 b 1 b 2 b nc nc nc 1 a 1a 2b 2 , b 2a 2 ,c 2 a 2,c 2a 1b 1 b 1 a 1c 2c 1 a 0a 0c 1c n a na n c nc 1 a 0c 2 a 1 b 1a 2 c 2 ,a 2b 2 这样的行列式,形状像个“么”字,因此常a 1 c 1 c nb 1 b nb 2b 1 a 0a nb n称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用a n 消去 c n ,然后再用 a n 1 消去 c n 1 ,依次类推.4.3.3 例题解析1111b 1例 15计算 n1 阶行列式 D n 1.11bn 11b n解:从最后一行开始后一行加到前一行(即消去第一撇),得n1b in i 11b in n 1 nDn 1i 11?n211b ii 11bn 1b n 1b n1n n 3n21b ii 1.4.4 “两线”型行列式4.4.1 概念a 1b 1 0 0 0 a 2b 2 0形如这样的行列式叫做“两线型”行列式.0 0 b n 1 b na n4.4.2 计算方法对于这样的行列式,可通过直接展开法求解.4.4.3 例题解析a 1b 1 0 0a 2b 2 0例 16求行列式 D n.0 0 0 b n 1b na n解:按第一列展开,得a2 b2 0 b1 0 0Dn 1 a10 0b n 1 n 1a2 b2 0 bn 10 0 a n 0 0 bn 1a1 a2 a n 1 n 1 b1b2 b n.4.5“三对角”型行列式4.5.1概念a b ab 0 0 0 0 01 a b ab 0 0 0 00 1 a b ab 0 0 0形如这样的行列式,叫做“三对角型”行0 0 0 0 0 a b ab0 0 0 0 0 1 a b列式.4.5.2计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明.4.5.3例题解析a b ab 0 0 0 0 01 a b ab 0 0 0 00 1 a b ab 0 0 0例 17 求行列式 D n .0 0 0 0 0 a b ab0 0 0 0 0 1 a b解:按第一列展开,得ab 0 0 0 0 01 a b ab 0 0 00 1 a b ab 0 0D n a b D n 1a ba b D n 1 abD n 2.0 0 0 0 a b ab0 0 0 0 1 a b变形,得D n aD n 1 b D n 1 aD n 2.由于D 1a b, D 2a 2 ab b 2 ,从而利用上述递推公式得D n aD n 1b D n 1aD n 2b 2 D n 2aD n 3b n 2 D 2aD 1 b n.故D n aD n 1 b n a aD n 2b n 1b na n 1D 1a n 2b 2ab n 1 b na na n1ab n1b n.b4.6 Vandermonde 行列式 4.6.1 概念1 1 11a 1a 2 a 3 a n形如 a 12a 22a 32a n2这样的行列式,成为 n 级的范德蒙德行列式.a 1n 1 a 2n 1 a 3n 1a n n 14.6.2计算方法1 1 1 1a 1a 2a 3 a n通过数学归纳法证明,可得a 2a 2a 2a 2a ia j .123n1 j i1a 1n 1a 2n 1 a 3n 1a n n 14.6.3例题解析1 1 1x 1 x 2x n 例 18求行列式 D nx 12x 22x n 2.x 1n 2 x 2n 2 x n n 2x 1nx 2nx n n解:虽然 D n 不是范德蒙德行列式, 但可以考虑构造 n 1 阶的范德蒙德行列式来间接求出D n 的值.构造 n 1 阶的范德蒙德行列式,得1 1 1 1x1 x2 x n xx12 x22 x n2 x 2f x .x1n 2 x2n 2 x n n 2 x n 2x1n 1 x2n 1 x n n 1 x n 1x1n x2n x n n x n将 f x 按第 n 1 列展开,得f x A A x An, n 1 x n 1 A x n,1,n 1 2,n 1 n 1, n 1其中, x n 1的系数为A n, n 1 1 n n 1 D n D n.又根据范德蒙德行列式的结果知f x x x1 x x2 x x n x i x j.1 j i n由上式可求得x n 1的系数为x1 x2 x n x i x j,1 j i n故有D n x1 x2 x n x i x j.1 j i n5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1降阶法和递推法2 1 0 0 01 2 1 0 00 1 2 0 0例 19 计算行列式 D n .0 0 0 2 10 0 0 1 2分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到n 1阶的形式.解:将行列式按第一行展开,得 D n 2D n 1 D n 2.即D n D n 1 D n 1 D n 2.∴D n Dn 1 D n 1 D n 2 D 2 D1 3 2 1 .∴ D n 1 D n 1 1 1 1 Dn n 1n 1 2 n 1.5.2逐行相加减和套用范德蒙德行列式例 20计算行列式1 1 11 sin 1 1 sin2 1 sin 3Dsin 2 sin sin 2 sin sin 2 sin 1 1 2 2 3 3 sin 2 1 sin 3 1 sin 2 2 sin3 2 sin 2 3 sin 3 3一行开始,依次用上一行的 1 倍加到下一行,进行逐行相加,得11 sin 4解:从第sin sin 24 4sin 2 4 sin 3 41 1 1 1sin 1 sin 2 sin 3 sin 4.Dsin2 sin2 sin2sin2 1 2 3 4sin3 1 sin3 2 sin3 3 sin3 4再由范德蒙德行列式,得1 1 1 1sin 1 sin 2 sin 3 sin 4sin i sin j. Dsin2 sin2 sin2sin2 1 2 3 4 1 j i 4sin3 1 sin3 2 sin3 3 sin3 45.3构造法和套用范德蒙德行列式1 1 1x 1 x 2x n 例 21x 12x 22x n 2求行列式 D n.x 1n 2 x 2n 2x n n 2x 1nx 2nx n n解:虽然 D n 不是范德蒙德行列式, 但可以考虑构造 n 1 阶的范德蒙德行列式来间接求出D n 的值.构造 n1 阶的范德蒙德行列式,得1 1 1 1 x 1 x2 x n xx 12x 22x n 2x 2f x.x 1n 2 x 2n 2 x n n 2 x n 2x 1n 1 x 2n 1 x n n 1 x n 1x 1nx 2nx n nx n将 f x 按第 n1 列展开,得f x AAx Ax n 1A1x n ,1,n 12, n 1n,n 1 n 1,n其中, x n 1 的系数为A n, n 11 n n 1 D nD n .又根据范德蒙德行列式的结果知f xx x 1x x 2x x nx i x j .1 j i n由上式可求得 x n 1的系数为x 1 x 2x nx ix j .1 j i n故有: D nx 1 x 2x nx ix j .1 j i n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算行列式的方法总结
行列式(Determinant)是线性代数中的一个重要概念,它是一个与方阵相关
的数值。

计算行列式可以帮助我们解决线性方程组、求解特征值等问题。

在数学和工程领域中,行列式经常被使用到。

本文将对计算行列式的几种常见方法进行总结和介绍。

1. 定义
首先,我们需要了解行列式的定义。

对于一个n阶方阵A,它的行列式记作|A|或det(A)。

行列式的值是根据方阵的元素通过一定的规则计算而得,可以表示为:
|A| = a11 * a22 * ... * ann + a12*a23*...*ann*a21 + ... + ann*a1n*a2
n*...*an-1n
- a1n*a22*...*an-1n*a21 - ... - ann*a1n*a2n*...*a(n-1)(n-1)其中,a(ij)表示方阵A的第i行第j列的元素。

2. 公式法
公式法是计算行列式的常见方法之一,它适用于二阶和三阶方阵。

对于二阶方
阵A,其行列式计算公式为:
|A| = a11*a22 - a12*a21
对于三阶方阵A,其行列式计算公式为:
|A| = a11*a22*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31 - a11*a2
3*a32 - a12*a21*a33
通过这些行列式的公式,我们可以方便地计算二阶和三阶方阵的行列式。

3. 初等行变换
初等行变换是通过对行进行一系列操作来变换方阵的形式从而简化行列式的计算。

我们常用的初等行变换操作有三种:交换两行、某一行乘以非零常数、某一行加上另一行的倍数。

例如,对于一个三阶方阵A,如果我们想计算其行列式但是发现有一个行是0,那么我们可以通过交换两行的操作,将该行移到最后一行。

这样,原方阵的行列式就等于新方阵的行列式。

同时,通过某一行乘以非零常数和某一行加上另一行的倍数的操作,可以将方阵变为上三角阵或下三角阵,进一步简化行列式的计算。

4. 拆线法
拆线法是计算高阶方阵的行列式常用的方法,对于n阶方阵,其行列式可以通过n-1阶方阵的行列式来计算。

具体步骤如下:
1.选定第i行(或第i列)作为公因子行(或公因子列),其中i取值
范围为1到n。

2.以公因子行(或列)为基准,将原方阵划分为n个n-1阶子方阵。

3.对这n个n-1阶子方阵计算行列式,然后乘以公因子行(或列)对
应元素的符号,最后相加得到行列式的值。

通过拆线法,我们可以逐步将高阶方阵的行列式转化为低阶方阵的行列式,从而简化计算的复杂度。

5. 其他方法
除了上述几种常见的方法外,还有其他一些方法可以计算行列式。

例如,拉普拉斯展开定理(Laplace Expansion)可以递归地求解方阵的行列式;特殊方阵的行列式计算方法,如对角方阵、三角方阵和对称方阵。

这些方法在特定情况下可以提供更加简洁和高效的计算方式。

6. 总结
计算行列式是线性代数中的一个重要计算过程,它涉及到了多种不同的方法。

公式法适用于二阶和三阶方阵,初等行变换和拆线法适用于更高阶的方阵。

不同的方法在不同的场景下有着不同的优劣势。

掌握这些方法对于解决实际问题和理论研究有着重要的意义。

相关文档
最新文档