行列式的计算方法
行列式的计算技巧和方法总结

行列式的计算技巧和方法总结行列式是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。
正确计算行列式有助于解决线性方程组、特征值等问题。
下面将总结行列式的计算技巧和方法。
一、行列式的定义和性质:行列式是一个数,是由方阵中元素按照一定规律排列所组成的。
设A为n阶方阵,行列式记作det(A)或,A,定义如下:det(A) = ,A, = a11*a22*...*ann - a11*a23*...*a(n-1)n +a12*a23*...*ann-1*n + ... + (-1)^(n-1)*a1n*a2(n-1)*...*ann 其中,a_ij表示A的第i行第j列的元素。
行列式具有以下性质:1. 若A = (a_ij)为n阶方阵,若将A的第i行和第j行互换位置,则det(A)变为-det(A)。
2. 若A = (a_ij)为n阶方阵,若A的其中一行的元素全为0,则det(A) = 0。
3. 若A = (a_ij)为n阶三角形矩阵,则det(A) = a11*a22*...*ann。
4. 若A = (a_ij)和B = (b_ij)为n阶方阵,则det(AB) = det(A)* det(B)。
5. 若A = (a_ij)为n阶可逆方阵,则det(A^(-1)) = 1/det(A)。
二、行列式计算的基本方法:1.二阶行列式:对于2阶方阵A = (a_ij),有det(A) = a11*a22 - a12*a212.三阶行列式:对于3阶方阵A = (a_ij),有det(A) = a11*a22*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31 - a12*a21*a33 -a11*a23*a323.高阶行列式:对于n阶方阵A,可以利用行列式按行展开的性质来计算。
选择其中一行(列)展开,计算每个元素乘以其代数余子式的和,即:det(A) = a1j*C1j + a2j*C2j + ... + anj*Cnj其中,Cij为A的代数余子式,表示去掉第i行第j列后所得子矩阵的行列式。
行列式的几种计算方法

行列式的几种计算方法
空格
行列式是线性代数的基本概念,它具有重要的应用价值。
它的计算方法也有很多,下面主要介绍几种行列式计算的方法。
一、展开式法
把行列式的每一行的元素乘以其所在的代数余子式的值,再将所有的积相加,得到的结果就是行列式的值。
这种方法理论上可以计算任何n阶的行列式,但当n阶较大时,展开比较繁琐,耗时也较长。
二、余子式法
计算第i行列式的方法是:取行列式的第i行,取其余行,去掉第i列,再找出这些行的代数余子式,再将每一行所对应的代数余子式乘以该行第i位置上的元素,再将所有的乘积之和,得到的结果就是行列式的值。
三、乘法法
若用行列式的乘法法来计算三阶行列式,则将行列式的三行分别乘以它们的代数余子式,将结果相加。
其中要用到符号乘,只要熟悉符号乘的规则,就可以简单地进行计算。
四、分块法
分块法是将行列式分解成几个临时的小行列式,再用余子式或展开式算出小行列式的值,再将小行列式的值按一定的规则组合起来,就得到原行列式的值了。
分块法优点是计算过程不复杂,缺点是分解成的小行列式的值计算比较复杂。
五、行变换法
用行变换法计算行列式的方法是:先将行列式的几行或几列进行线性变换,使行列式某一行或某一列为0,再将变换后的行列式化简为方阵或三角阵,再求解,之后再换回原行列式,则可以得出原行列式的值。
以上就是常用的几种行列式计算方法,不同的方法各有优劣,使用者可根据具体情况选择合适的方法用于行列式计算。
行列式计算方法小结

行列式计算方法小结行列式是线性代数中的一个重要概念,它为矩阵提供了一种重要的性质。
在计算行列式时,有几种常见的方法可以使用,包括拉普拉斯展开、三角形展开和直接计算等。
本文将对这几种方法进行详细介绍和比较。
一、拉普拉斯展开法拉普拉斯展开法是求解行列式的一种常用方法。
它利用行列式的定义,将行列式按照其中一行或一列展开,转化为更小的行列式的求解问题。
具体步骤如下:1.选择一个行或列,记为第i行(列);2.将第i行(列)展开为n个代数余子式的乘积,并计算每个代数余子式的数值;3.将每个代数余子式乘以对应的元素,并根据正负法则进行求和。
例如,对于一个3阶的行列式A=abdegh通过拉普拉斯展开法,我们可以选择第一行展开:det(A) = aM11 - bM12 + cM13其中,M11,M12和M13分别表示代数余子式,具体计算方法为:M11=eM22-fM23M12=dM21-fM23M13=dM21-eM22代数余子式计算完成后,再将它们代入到展开式中计算即可。
拉普拉斯展开法的优点是思路清晰,易于理解和操作,适用于2阶及以上的行列式。
但当阶数较高时,计算量较大,效率较低。
二、三角形展开法三角形展开法是另一种常用的行列式计算方法。
它通过将行列式中的元素进行重新排列,使得计算过程更加规整,从而简化计算。
具体步骤如下:1.首先确定一个元素,例如第一行第一列的元素a;2.从第一行第一列开始,按照三角形的形状依次向右下方展开,依次得到包围a的三个三角形;3.将三个三角形的元素进行乘积运算,并根据正负法则求和;4.将得到的结果乘以a。
例如,对于3阶行列式A=abdegh我们可以选择第一行第一列的元素a进行三角形展开:det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)通过三角形展开法,我们将行列式按照三角形的形状展开并进行计算,最后得到结果。
三角形展开法的优点是计算规整,清晰明了,可以简化计算过程。
行列式的计算方法总结

行列式的计算方法总结行列式是数学中一类特殊的数值,它可以用于解决各种数学问题,如线性方程组的解、二次行列式的特征根以及三角形的面积等。
它的计算方法也颇为多样,各种行列式的计算方法可以归纳总结如下:第一种是规则式子求行列式的方法,即规则式子求行列式的值。
这种方法包括常见的拆分积式法,它可以用来计算简单行列式,其解算步骤如下:把行列式的第一行和其他所有行有序的放在一起,按列乘以每列的分量,然后把乘积相加,即可求出行列式的值。
另一种常用的计算行列式的方法是运用行列式的转置法则,这也是一种简单的计算行列式的方法,它的解算步骤如下:先把行列式的行和列都交换一下,然后把交换后的新行列式进行上面第一种规则式子求行列式的求值,便可求出行列式的值。
此外,还有多元函数求行列式的方法,以及行列式求导、求偏导数的方法。
多元函数求行列式的方法就是将行列式用多元函数的形式表示出来,然后用函数定义求和解决之。
行列式求导、求偏导数的方法就是将行列式的变量替换为一个新的变量,然后进行积分,并求出偏导数,最终得到行列式的值。
最后一种常用的计算行列式的方法是拆解行列式的方法,这是一种比较复杂的行列式计算方法。
它的解算步骤如下:先把行列式拆解成几个子行列式,然后逐步把子行列式拆解为更小的子行列式,最终得到一个最小子行列式,将其值替换到初始行列式中计算,即可求出该行列式的值。
以上是行列式的计算方法总结,由于行列式的类型众多,其计算方法也多如牛毛,仅有上述几种计算方法是不够的,若想解决复杂的行列式计算,还需要运用其他更加复杂的计算方法,如克莱姆法、罗宾逊法、孟加拉法等。
此外,计算行列式还需要掌握矩阵运算的基础知识,运用高等数学知识,才能解决复杂的行列式计算问题。
总之,行列式的计算是一件非常有技巧性的事情,找到合适的计算方法,解决行列式计算的难题,有助于提高数学的解题能力。
行列式的运算法则

行列式的运算法则行列式是线性代数中的一个重要概念,它在矩阵运算和方程组求解中起着重要的作用。
行列式的运算法则是指对于不同类型的行列式,我们可以通过一系列的运算来求得其值。
本文将介绍行列式的运算法则,包括行列式的定义、性质以及常见的运算方法。
1. 行列式的定义行列式是一个数学概念,用来描述一个方阵(即行数等于列数的矩阵)所固有的一种性质。
对于一个n阶方阵A,其行列式记作det(A),可以通过以下方法来计算:- 当n=1时,det(A) = a11,即一个1阶方阵的行列式就是它的唯一元素。
- 当n=2时,det(A) = a11 * a22 - a12 * a21,即一个2阶方阵的行列式是其主对角线上元素的乘积减去次对角线上元素的乘积。
- 当n>2时,可以通过递归的方法将n阶方阵的行列式表示为n-1阶方阵的行列式的线性组合,直到n=2时再利用上述方法计算。
2. 行列式的性质行列式具有许多重要的性质,其中包括:- 互换行列式的两行(列)会改变行列式的符号,即det(-A)= (-1)^n * det(A),其中n为方阵的阶数。
- 如果方阵A的某一行(列)全为0,则det(A) = 0。
- 如果方阵A的两行(列)成比例,则det(A) = 0。
- 如果方阵A的某一行(列)是另一行(列)的线性组合,则det(A) = 0。
- 如果方阵A的某一行(列)加上另一行(列)的k倍,行列式的值不变。
3. 行列式的运算法则在实际应用中,我们经常需要对行列式进行一系列的运算,常见的运算包括:- 行列式的加法:如果方阵A、B的行数和列数相等,则它们的行列式可以相加,即det(A + B) = det(A) + det(B)。
- 行列式的数乘:如果方阵A的行列式为det(A),则kA的行列式为k^n * det(A),其中k为常数,n为方阵的阶数。
- 行列式的乘法:如果方阵A、B的行数和列数相等,则它们的行列式可以相乘,即det(AB) = det(A) * det(B)。
行列式的几种计算方法

行列式的几种计算方法行列式是线性代数中的重要概念,通常用于计算矩阵的逆、解线性方程组等问题。
本文将介绍行列式的几种计算方法,帮助读者更好地理解和应用这一概念。
二阶行列式就是二阶矩阵的行列式,计算公式为:$$\begin{vmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$其中,$a_{11}$、$a_{12}$、$a_{21}$、$a_{22}$ 分别表示矩阵的四个元素。
计算二阶行列式时,可以直接套用上面的公式进行计算。
$$ \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} +a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12} $$其中,$a_{11}$、$a_{12}$、$a_{13}$、$a_{21}$、$a_{22}$、$a_{23}$、$a_{31}$、$a_{32}$、$a_{33}$ 分别表示矩阵的九个元素。
计算三阶行列式时,可以采用如下方法:(1)按照第一行、第一列、第二列的顺序计算,得到三个二阶行列式;(2)按照上述公式计算三个二阶行列式对应的乘积和。
3. 拉普拉斯展开法拉普拉斯展开法是一种通用的行列式计算方法。
它的基本思想是,将行列式按照一行或一列进行展开,转化为若干个小的行列式之和。
具体步骤如下:(1)选择一行或一列作为基准行(列);(2)对于基准行(列)中的每个元素,求它所在子矩阵的行列式,乘以对应的余子式(代数余子式);(3)将所有乘积相加。
行列式的计算方法总结

行列式的计算方法总结行列式是线性代数中的重要概念,它在矩阵理论、方程组求解、向量空间等许多领域都有广泛的应用。
计算行列式的方法有很多种,下面我们来总结一下常见的计算行列式的方法。
1.代数余子式法:代数余子式法是计算行列式的一种经典方法。
对于n*n阶行列式A,可以按照第一行(或第一列)的元素展开得到n个代数余子式,然后按照代数余子式定义计算行列式。
具体步骤如下:(1)选择行列式A的第一行(或第一列)的所有元素,记作a11,a12,...,a1n。
(2)计算n个代数余子式,第i个代数余子式记作A(i,1)(或A(1,i))。
A(i,1)等于元素a1i所在行与列组成的n-1阶子行列式的行列式值。
(3)用代数余子式计算行列式,行列式的值等于各代数余子式与元素a1i的乘积之和:det(A) = a11*A(1,1) - a12*A(2,1) + a13*A(3,1) - ... + (-1)^(n+1)*a1n*A(n,1)。
2.拉普拉斯展开法:拉普拉斯展开法也是计算行列式的一种常用方法。
具体步骤如下:(1)选择行列式A的其中一行(或其中一列),记作第k行(或第k列)。
(2)计算代数余子式,第i行第j列元素所对应的代数余子式记作A(i,j)(或A(j,i))。
A(i,j)等于元素aij所在行与列组成的n-1阶子行列式的行列式值。
(3)用代数余子式计算行列式,行列式的值等于各代数余子式与元素aij的乘积之和:det(A) = a1k*A(1,k) - a2k*A(2,k) + a3k*A(3,k) - ... + (-1)^(k+1)*ank*A(n,k)。
3.克莱姆法则:克莱姆法则是计算线性方程组的一个重要方法,也可以用来计算行列式。
对于n个未知数的n个线性方程组Ax = b,其中A是一个n*n阶矩阵,x和b都是n维列向量。
如果矩阵A是非奇异的(即行列式det(A)≠0),则可以用克莱姆法则求解方程组。
具体步骤如下:(1)将线性方程组的系数矩阵A按列分成n个子矩阵A1,A2,...,An,其中第i个子矩阵Ai将系数矩阵A的第i列替换为等号右边的向量b。
行列式的几种计算方法7篇

行列式的几种计算方法7篇第1篇示例:行列式是线性代数中的一个重要概念,它是一个方阵中的一个数值,可以帮助我们判断矩阵的性质,计算行列式的值是线性代数中的基础技能之一。
下面我们将介绍几种行列式的计算方法以及其应用。
一、直接展开法计算行列式最基本的方法就是直接展开法。
以3阶行列式为例,一个3阶方阵的行列式可以表示为:\[\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix}\]通过公式展开,可以得到:\[\begin{aligned}\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix} & = aei + bfg + cdh - ceg - bdi - afh \\& = a(ei - fh) - b(di - fg) + c(dh - eg)\end{aligned}\]这样就可以直接计算出行列式的值。
但是这种方法比较繁琐,不适用于高阶行列式的计算。
二、拉普拉斯展开法\[\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{vmatrix}\]以第一行为例,可以按照以下公式展开:\[ \text{det}(A) = a_{11}C_{11} + a_{12}C_{12} + \cdots +a_{1n}C_{1n} \]C_{ij}表示元素a_{ij}的代数余子式,通过递归计算代数余子式,最终可以得到行列式的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题讲座五行列式的计算方法
1.递推法
例1求行列式的值:
(1)
的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方
第一条次对角线的元全为1,其余元全为0;即为三对角线型。
又右下角的(n)表示行列式为n阶。
解把类似于,但为k阶的三对角线型行列式记为。
把(1)的行列式按第一列展开,有两项,一项是
另一项是
上面的行列式再按第一行展开,得乘一个n– 2 阶行列式,这个n– 2 阶行列式和原行列式的构造相同,于是有递推关系:
(2)
移项,提取公因子β:
类似地:
(递推计算)
直接计算
若;否则,除以后移项:
再一次用递推计算:
∴,当β≠α(3)
当β = α,从
从而。
由(3)式,若。
∴
注递推式(2)通常称为常系数齐次二阶线性差分方程. 注1仿照例1的讨论,三对角线型的n阶行列式
(3)
和三对角线型行列式
(4)
有相同的递推关系式
(5)
(6)
注意
两个序列
和
的起始值相同,递推关系式(5)和(6)的构造也相同,故必有
由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。
前面算出,故
例2 计算n阶范德蒙行列式行列式
解:
即n阶范德蒙行列式等于这n个数的所有可能的差的乘积2.拆元法
例3:计算行列式
解
①×(x + a)
②×(x – a)
3.加边法
例4计算行列式
分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法. 解
4.数学归结法
例5计算行列式
解:
猜测:
证明
(1)n = 1, 2, 3 时,命题成立。
假设n≤k– 1 时命题成立,考察n=k的情形:
故命题对一切自然数n成立。
5.消去法求三对角线型行列式的值
例6求n阶三对角线型行列式的值:
(1)
的构造是:主对角线元全为2,主对角线上方第一条次对角线与下方第一条次对角线的元全为1,其余的元全为0。
解用消去法,把中主对角线下方第一条次对角线的元1全部消成0:首先从第二行减去第一行的倍,于是第二行变为
其次从第三行减去第二行(指新的第二行,以下同)的倍,则第三行变为
再从第四行减去第三行的倍,则第四行变为
类似地做下去,直到第n行减去第n– 1行的倍,则第n行变为
最后所得的行列式为
(2)
上面的行列式是三角型行列式,它的主对角线元顺次为
93)
又主对角线下方的元全为0。
故的值等于(3)中各数的连乘积,即。
注3一般的三对角线型行列式
(4)
也可以按上述消去法把次对角线元全部消去,得到一个三角型行列式,它的值等于该三角型行列式的主对角线元的连乘积。
6 乘以已知行列式
例7求行列式的值:
称为循环行列式,各行自左到右均由循环排列而得,并使主对角线元全为解设1的立方根为,即
其中i是虚数单位,又
右乘以行列式
则
(1)
用,得
故(1)的行列式的第一列可由提出公因子,提后的元顺次为,类似地,(1)的行列式的第二列和第三列可提出公因子
和
于是
因互不相等,帮它们所构成的凡德蒙行列式的值不为零,可以从上式的左右两边约去,得。
注4在n阶的一般情形,设1的n次方根为
则得行列式的值为
这里的是由构成的n阶循环行列式:
7 利用线性代数方程组的解
例8求n阶行列式的值:
(1)
的构造是:第i行的元顺次为
又第n行的元顺次为。
解(1)的行列式与凡德蒙行列式
(2)
的比值可以看成线性代数方程组
(3)
的解。
如能解出,乘以凡德蒙行列式(2),即是原行列式
但方程组(3)又可以看成n次多项式方程
(4)
(t是未知数,看作系数)有n个根
用根与系数的关系,即得
∴
8 递推方程组方法
例9求行列式的值:
(1)
是n阶行列式(在右下角用(n)表示),其结构是:主对角线元全为x ;主对角线上方的元全为y , 下方的元全为z 。
解从(1)的行列式的第一列减第二列,第二列减第三列,…,第n – 1列减第n列,得
(2)
上面的行列式按第一行展开,有两项,一项是(x – y)乘一个n– 1阶行列式,这个n –1阶
行列式和(2)中的n阶行列式的构造相同,即上述展开的第一项可表示为;展开的另一项是
故递推式
(3)
若z = y,则上式化为
(4)
类似地有
又
故可对(4)式递推计算如下:
上面得到原行列式当z = y时的值。
下面讨论z≠y的情形。
把(1)的行列式的y与z对调,这相当于原行列式的行与列互换,这样的做法,行列式的值不变。
于是y和z对调后,的值不变,这时(3)式变为
(5)
从(3)与(5)(递推方程组)消去,即(3)式乘以(x – z),(5)乘以(x – y),相减得
∴
注5当z = y时,行列式也可以用极限计算:
又行列式当z = y时可以用余式定理来做。