概率论与数理统计答案(华东师大魏宗舒版)
概率论与数理统计(魏宗舒)第五章答案

计算题、证明题1. 设(x 1,2x ,…,n x )及(1u ,2u ,…,n u )为两组子样观测值,它们有如下关系i u =ba x i -(ab ,0≠都为常数)求子样平均值u 与x ,子样方差2u s 与2x s 之间的关系.解: b ax a x n b b a x n u i n n u i i i -=⎪⎭⎫ ⎝⎛-=-===∑1121121 ().11122222x i i us bb a x b a x n u u n S =⎪⎭⎫ ⎝⎛---∑=-∑= 2. 若子样观测值1x ,2x ,…,m x 的频数分别为1n ,2n ,…,m n ,试写出计算子样平均值x 和子样方差2n s 的公式 (这里n =1n +2n +…+m n ).解: ∑∑∑======m j m j j j j jm j j j x f x n n x n n x 1111()()()221221x x f x x n n x x n n S j j j j m j j j n-=-=-=∑∑∑= 其中nn f j j =, m j ,,2,1 =是j x 出现的频率。
3.利用契贝晓夫不等式求钱币需抛多少次才能使子样均值ξ落在0.4到0.6之间的概率至少为0.9 ? 如何才能更精确的计算使概率接近0.9所需抛的次数 ? 是多少?解: 设需抛钱币n 次,第i 次抛钱币结果为n i i i i ,,2,101 =⎩⎨⎧=次抛出反面第次抛出正面第ξ, 则i ξ独立同分布.且有分布()1,0,21===x x P i ξ 从而41,21==i i D E ξξ。
设∑=i n ξξ1是子样均值.则n D E 41,21==ξξ. 由契贝晓夫不等式()()()().9.0410011.011.01.05.01.06.04.02=-=-≥<-=<-<-=<<nD E P P P ξξξξξ2504.0100==∴n , 即需抛250次钱币可保证()9.06.04.0≥<<εP 为更精确计算n 值,可利用中心极限定理()()..9.012.02415.06.0415.0415.04.06.04.0≥-Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛-<-<-=<<n n n n P P ξξ645.12.0≥∴n 68≥∴n . 其中()x Φ是()1,0N 的分布函数.4. 若一母体ξ的方差2σ= 4, 而ξ是容量为100的子样的均值. 分别利用契夫晓夫不等式和极限定理求出一个界限, 使得ξ-μ (μ为母体ξ的数学期望E ξ) 夹在这界线之间的概率为0.9.解:设此界限为.ε由()9.012=-≥<-εξεμξD P 由此.6325.04.0.10041.022≈=∴===εσξεnD 由中心极限定理,().9.012=-⎪⎪⎭⎫⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛<-=<-ξεξεξμξεμξD D D P P.645.1.95.0=∴=⎪⎪⎭⎫⎝⎛ΦξεξεD D .329.01004645.1=⨯=ε 5.假定1ξ和2ξ分别是取自正态母体N (μ,2σ)的容量为n 的两个子样(n 11211,,,ξξξ ),和(n 22221,,,ξξξ )的均值,确定n 使得两个子样均值之差超过σ的概率大约为0.01.解: ⎪⎪⎭⎫ ⎝⎛nN i 2,~σμξ .2,1=i 且相互独立.,所以⎪⎪⎭⎫⎝⎛-n N 2212,0~σξξ于是()01.021222222121=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛Φ-=⎪⎪⎪⎪⎪⎭⎫⎝⎛>-=>-n n n P P σσσξξσξξ .005.02=⎪⎪⎭⎫⎝⎛-Φ∴n .258.2⨯=n .14=n6.设母体ξ~N(μ,4 ),(n ξξξ,,,21 )是取自此母体的一个子样, ξ为子样均值,试问:子样容量n 应取多大,才能使 (1) E ( μξ-2)1.0≤;(2) E (μξ-)1.0≤; (3) P (μξ-1.0≤)95.0≥.解: (1)().401.04.1.042=≥∴≤==-n n D E ξμξ(2)()dxe x nE nx 422221μμπμξ--∞+∞--=-⎰=.1.0242262≤=-∞∞-⎰ndu e nπμπμ.255≥∴n(3) ().95.021.021.0≥⎪⎪⎭⎫⎝⎛≤-=≤-n n P P μεμε.96.121.0≥n 1537≥n .7. 设母体()p b ,1~ξ (两点分布), (n ξξξ,,,21 )是取自此母体的一个子样, ξ为子样均值,若P =0.2,子样容量n 应取多大,才能使(1)P ()1.0≤-p ξ;75.0≥ (2)E (丨p -ξ丨2).01.0≤若P ()1.0∈为未知数,则对每个p ,子样容量n 应取多大才能使E (丨p -ξ丨2).01.0≤解: (1) 要()().75.03.01.01.02.0≥≤≤=≤-ξξP P当n 10=时,∑=ni i1ξ服从二项项分布().2.0,10,k b 查二项分布表知().75.07717.01074.08791.0313.01.0101>=-=⎪⎭⎫⎝⎛≤≤=≤≤∑=i i P P ξξ所以n 应取10.(2) ()np p D P E -==1.ξξ当2.0=p 时().16.01.016.02≥∴≤==-n n D p E ξξ(3) 当P 未知时,()()01.012≤-==-np p D p E ξξ由此知, ()p p n -≥1100, 要对一切()1,0∈p 此时均成立. 只要求p 值使()p p -1最大, 显然当21=p , ()411=-p p 最大,.所以当2541100=⨯≥n时,对一切p 的不等式均能成立.8 设母体ξ的k 阶原点矩和中心矩分别为k v =E ξk ,k μ=E()k E ξξ-,k =1,2,3,4,k 1ξ和k m 分别为容量n 的子样k 阶原点矩和中心矩, 求证:(1) E ()31νξ-=23nμ; (2) E()41νξ-=223nμ+32243nμμ-.解:()()()()()1213113311313[11νξνξνξνξνξ--+-=⎥⎦⎤⎢⎣⎡-=-∑∑∑≠==j i j i n i i n i E n n E E ++()()()]111γξγξγξ---∑k j iE注意到n ξξξ,,,21 独立, 且()0111=-=-νννξi E .,,2,1n i = 所以().13231μνξnE =- ()()()()()()+--+--+-=-∑∑∑≠≠=2121131414144134[1νξνξνξνξνξνξj i ji j i j i i i E E n E ()()()()()()()]111111216νξνξνξνξνξνξνξ----+---∑∑≠≠≠≠≠l k j ilk j i k j ikj i E E=().3313132242222443n n n n n n μμμμμ-+=-+ 9. 设母体ξ~N ()2,σμ,子样方差2n S =n1()21∑=-ni iξξ, 求E 2n S ,D 2n S 并证明当n 增大时,它们分别为2σ+⎪⎭⎫ ⎝⎛n 1ο和n 42σ+⎪⎭⎫⎝⎛n 1ο.解: 由于().1~222-n nS nχσ所以()()()121.1122-=--=-n n DX n n E χ⎪⎭⎫ ⎝⎛+=-=⎪⎪⎭⎫ ⎝⎛=∴2222222101n n n nS E n ES n nσσσσ().10212244222242⎪⎭⎫ ⎝⎛+=-=⎪⎪⎭⎫ ⎝⎛=n n n n nS D n DS n nσσσσ .10. 设()21,ξξ为取自正态母体ξ~N ()2,σμ的一个子样, 试证: ξ1 +ξ2, ξ1-ξ2是相互独立的. 证:(1)()()()()()()()().,cov 21212221212121212121ξξξξξξξξξξξξξξξξξξ-+--=-+--+=-+E E E E E E E由于ξ1, ξ2 ~N ()2,σμ, 所以. E 212221,ξξξξE E E ==即()0,cov 2121=-+ξξξξ 又()2212,2~σμξξN + ,().2.0~221σξξN -所以由两个变量不相关就推出它们独立. (2)11.设母体ξ的分布函数为F ()x ,()n ξξξ,,,21 是取自此母体的一个子样,若F ()x 的二阶矩存在, ξ为子样均值,试证ξ1--ξ与ξj --ξ的相关系数ρ=11--n ,j i ≠,.,,2,1,n j i = 证 由于ξ的二阶矩存在,不妨设.μξ=E 2σξ=D()()()()()j i D E D i j i i j i ≠---=---=,,cov ξξξξξξξξξξξξρ()()().11111122222221σσξξξξξξnn n n n D n D n n n D D ji j in i i i i -=-+-=+-=⎪⎭⎫ ⎝⎛-=-∑∑≠=()()n E n E E E E E n j j i j i j i j i 221222σμξξμξξξξξξξξξξξ++⎪⎪⎭⎫ ⎝⎛-=+--=--∑= ()[]n n n n E E E n n j i i j i 22222222212222σμσμσμξξξσμ-=-++-+=⎪⎪⎭⎫ ⎝⎛+-+=∑≠ .11122--=--=∴n nn n σσρ12. 设ξ和2n S 分别是子样()n ξξξ,,,21 的子样均值和子样方差,现又获得第n +1个观测值,试证: (1) ξn+1=ξn +11+n (ξn+1-ξn ); (2) 12+n S=()⎥⎦⎤⎢⎣⎡-++++212111n n n n S n n ξξ.证 (1) ()()n n n n n n i i n n n n n ξξξξξξξ-++=++=+=+++=+∑11111111111()()()()2111211121112111111111)2(⎥⎦⎤⎢⎣⎡-+--+=-+-+=-+=++-++-++-+∑∑∑n n n i n i n n n i n i n i n i n n n n n S ξξξξξξξξξξ()()()()()()()21211121211112{11nn n n n n n i n i n n n i ni n n n n ξξξξξξξξξξξξ-+++-⨯⎥⎦⎤⎢⎣⎡-+-+--+-+=+++-+-∑∑=()().112122n n n n n S n n ξξ-++++ 13. 从装有一个白球、两个黑球的罐子里有放回地取球, 令ξ=0表示取到白球, ξ=1表示取到黑球.求容量为5的子样()51,,ξξ 的和的分布,并求子样均值ξ和子样方差2n S 的期望值.解: i ξ相互独立都服从二点分布,32;1⎪⎭⎫⎝⎛b E i ξ=.32 D .92=i ξ 5,2,1 =i 所以,32=ξE .4589212=⨯-=n n ES n 521ξξξη+++= 服从二项分布.32;5⎪⎭⎫ ⎝⎛b 其分布列().313255kkk k p -⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==η.5,2,1,0 =k14. 设母体ξ服从参数为λ的普哇松分布, ()n ξξξ,,,21 是取自此母体的一个子样,求: (1)子样的联合概率分布列:(2)子样均值ξ的分布列、E ξ、D ξ、和E 2n S 。
概率论与数理统计答案 魏宗舒

第六章习题1.设是取自总体X的一个样本,在下列情形下,试求总体参数的矩估计与最大似然估计:(1),其中未知,;(2),其中未知,。
2.设是取自总体X的一个样本,其中X服从参数为的泊松分布,其中未知,求3.设是取自总体X的一个样本,其中X服从区间的均匀分布,其中未知,求的矩估计。
4.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计。
5.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计和最大似然估计。
6.设是取自总体X的一个样本,总体X服从参数为的几何分布,即,其中未知,,求的最大似然估计。
7. 已知某路口车辆经过的时间间隔服从指数分布,其中未知,现在观测到六个时间间隔数据(单位:s):1.8,3.2,4,8,4.5,2.5,试求该路口车辆经过的平均时间间隔的矩估计值与最大似然估计值。
8.设总体X的密度函数为,其中未知,设是取自这个总体的一个样本,试求的最大似然估计。
9. 在第3题中的矩估计是否是的无偏估计?解故的矩估计量是的无偏估计。
10.试证第8题中的最大似然估计是的无偏估计。
11. 设为总体的样本,证明都是总体均值的无偏估计,并进一步判断哪一个估计有效。
12.设是取自总体的一个样本,其中未知,令,试证是的相合估计。
13.某车间生产滚珠,从长期实践中知道,滚珠直径X服从正态分布,从某天生产的产品中随机抽取6个,量得直径如下(单位:mm):14.7,15.0,14.9,14.8,15.2,15.1,求的0.9双侧置信区间和0.99双侧置信区间。
14.假定某商店中一种商品的月销售量服从正态分布,未知。
为了合理的确定对该商品的进货量,需对和作估计,为此随机抽取七个月,其销售量分别为:64,57,49,81,76,70,59,试求的双侧0.95置信区间和方差的双侧0.9置信区间。
15.随机地取某种子弹9发作试验,测得子弹速度的,设子弹速度服从正态分布,求这种子弹速度的标准差和方差的双侧0.95置信区间。
《概率论与数理统计教程》魏宗舒 课后习题解答答案 1 8章

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,, =A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
概率论与数理统计教学教程(魏宗舒第二版)4章答案解析

(2 − 2)!!
法, 故可知2根绳子能接成环形的概率为
.
(2 − 1)!!
或者我们也看如下计算. 设有2根绳子时, 尾部两两相接共有 ()种接法, 而成环形的接法有()种.
=
10000
(︂ )︂4
9
1−
.
10
1.8 有5双不同的鞋, 从中任取4只, 问没有一双配对的概率.
4
解: 方法一: 从5双鞋中任取4只, 共有10
中取法. 4只鞋中恰有两双的取法有52 种, 4只鞋中恰有一双的
取法为: 先从5双中取一双, 再以以下方式取剩余的两只: 1) 从剩余的左脚或者右脚中任取两只; 2)或者从剩
事件 表示该学生是运动员.
(1) 叙述事件 ¯ 的意义.
(2) 在上面条件下 = 成立?
(3) 上面时候关系式 ⊂ 是正确的.
(4) 什么时候¯ = 成立?
解: (1). ¯ 表示被选的学生是三年级不是运动员的男生.
(2). = ⇔ ⊂ , 所以 = 成立, 当且仅当运动员都是三年级男生.
.
黑球有种情况, 故所求的概率为
+
4.10 任取一个正数, 求下列事件的概率:
(1)该数的平方的末位数字是1;
(2)该数的四次方的末位数字是1;
(3)该数的立方的最后两位数字都是1.
解: (1). 一个数的末位数上的数字有10种情况. 要使平方后的末位数字是1, 则该数的末位是1或者9, 所
2
= 80. 故所求概率为 = 8/10
= 8/21.
《概率论与数理统计教程》魏宗舒 课后习题解答答案 1 8章

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,, =A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
魏宗舒版概率论与数理统计教程课后习题解答_副本

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 ,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1 ,2 ,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则 {1 ,2 ,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) A {1 ,2 } (ⅱ) B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC 成立? (3)什么时候关系式B C 是正确的? (4) 什么时候B A 成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC 等价于AB C ,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i 1)。
用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
解 (1) ni i A 1 ; (2) n i i n i i A A 11 ; (3) n i nij j j i A A 11)]([ ;(4)原事件即“至少有两个零件是合格品”,可表示为 nji j i j i A A 1,;1.4 证明下列各式: (1)A B B A ; (2)A B B A(3) C B A )()(C B A ; (4) C B A )()(C B A (5) C B A )( )(C A )(C B (6)ni ini i A A 11证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。
魏宗舒 概率论与数理统计教程第二章答案

≤
������)
=
������
∑︁
������
(������
=
������)
=
������
∑︁
7������
������−7.
������!
������=0
������=0
由于������ (������ ≤ 15) = 0.998 < 0.999, 而������ (������ ≤ 16) = 0.99904, 所以可知每月月初进该商品16件, 可以以0.999的概 率保证不脱销.
2.8 两名篮球队员轮流投篮, 直到某人投中时为止, 如果第一名队员投中的概率为0.4, 第二名队员投中 的概率为0.6, 求每名队员投篮次数的分布列.
解:用������表示第一名运动员的投篮次数, ������表示第二名运动员的投篮次数. 那么{������ = ������} = { “前������ − 1次两 运动员都没有投中, 第������次第一名运动员投中了} ∪ { 第一名运动员前������次都没投中, 而第二名直到第������次才投 中}. 所以:
概率都是
2 5
,
设������为途中遇到红灯的次数,
求随机变量������的分布列.
解:因为总共有三个红灯,
每次是否遇到红灯是相互独立的,
故������服从参数为������
=
3, ������
=
2 5
的二项分布.
所
以������的分布列为:
������
(������
=
������)
=
������3������
������ (������
=
������)
魏宗舒 概率论与数理统计课后习题答案,第三章起

第三章 连续型随机变量3.1 设随机变数ξ的分布函数为)(x F ,试以)(x F 表示下列概率: (1))(a P =ξ;(2))(a P ≤ξ;(3))(a P ≥ξ;(4))(a P >ξ 解:(1))()0()(a F a F a P -+==ξ; (2))0()(+=≤a F a P ξ; (3))(a P ≥ξ=1-)(a F ; (4))0(1)(+-=>a F a P ξ。
3.2 函数211)(x x F +=是否可以作为某一随机变量的分布函数,如果(1)∞<<∞-x π(2)0∞<<x ,在其它场合适当定义; (3)-0<<∞x ,在其它场合适当定义。
解:(1))(x F 在(-∞∞,)内不单调,因而不可能是随机变量的分布函数; (2))(x F 在(0,∞)内单调下降,因而也不可能是随机变量的分布函数; (3))(x F 在(-)0,∞内单调上升、连续且)0,(-∞F ,若定义⎩⎨⎧≥<<∞-=010)()(~x x x F x F则)(~x F 可以是某一随机变量的分布函数。
3.3 函数x sin 是不是某个随机变数ξ的分布密度?如果ξ的取值范围为 (1)]2,0[π;(2)],0[π;(3)]23,0[π。
解:(1)当]2,0[π∈x 时,0sin ≥x 且⎰20sin πxdx =1,所以x sin 可以是某个随机变量的分布密度; (2)因为⎰xxdx 0sin =21≠,所以x sin 不是随机变量的分布密度;(3)当]23,[ππ∈x 时,0sin ≤x ,所以x sin 不是随机变量的分布密度。
3.4 设随机变数ξ具有对称的分布密度函数)(x p ,即),()(x p x p -=证明:对任意的,0>a 有(1)-=-=-21)(1)(a F a F ⎰adx x p 0)(;(2)P (1)(2)-=<a F a ξ; (3)[])(12)(a F a P -=>ξ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计答案(华东师大魏宗舒版)第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
解 (1) n i i A 1=; (2) n i i n i i A A 11===; (3) n i nij j j i A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为 nji j i j i A A ≠=1,;1.4 证明下列各式: (1)A B B A ⋃=⋃; (2)A B B A ⋂=⋂(3)=⋃⋃C B A )()(C B A ⋃⋃; (4)=⋂⋂C B A )()(C B A ⋂⋂ (5)=⋂⋃C B A )(⋃⋂)(C A )(C B ⋂ (6) ni i ni i A A 11===证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。
1.5 在分别写有2、4、6、7、8、11、12、13的八张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率。
解 样本点总数为7828⨯=A 。
所得分数为既约分数必须分子分母或为7、11、13中的两个,或为2、4、6、8、12中的一个和7、11、13中的一个组合,所以事件A “所得分数为既约分数”包含6322151323⨯⨯=⨯+A A A 个样本点。
于是 14978632)(=⨯⨯⨯=A P 。
1.6 有五条线段,长度分别为1、3、5、7、9。
从这五条线段中任取三条,求所取三条线段能构成一个三角形的概率。
解 样本点总数为1035=⎪⎪⎭⎫⎝⎛。
所取三条线段能构成一个三角形,这三条线段必须是3、5、7或3、7、9或多或5、7、9。
所以事件A “所取三条线段能构成一个三角形”包含3个样本点,于是103)(=A P 。
1.7 一个小孩用13个字母T T N M M I I H E C A A A ,,,,,,,,,,,,作组字游戏。
如果字母的各种排列是随机的(等可能的),问“恰好组成“MATHEMATICIAN ”一词的概率为多大?解 显然样本点总数为!13,事件A “恰好组成“MATHEMATICIAN ”包含!2!2!2!3个样本点。
所以!1348!13!2!2!2!3)(==A P 1.8 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以相互吃掉的概率。
解 任意固定红“车”的位置,黑“车”可处于891109=-⨯个不同位置,当它处于和红“车”同行或同列的1789=+个位置之一时正好相互“吃掉”。
故所求概率为8917)(=A P1.9 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客。
电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率。
解 每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79。
事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”。
所以包含79A 个样本点,于是7799)(A A P =。
1.10 某城市共有10000辆自行车,其牌照编号从00001到10000。
问事件“偶然遇到一辆自行车,其牌照号码中有数字8”的概率为多大?解 用A 表示“牌照号码中有数字8”,显然44109100009)(⎪⎭⎫⎝⎛==A P ,所以 1)(=A P -4410911000091)(⎪⎭⎫⎝⎛-=-=A P 1.11 任取一个正数,求下列事件的概率:(1)该数的平方的末位数字是1; (2)该数的四次方的末位数字是1; (3)该数的立方的最后两位数字都是1;解 (1) 答案为51。
(2)当该数的末位数是1、3、7、9之一时,其四次方的末位数是1,所以答案为52104=(3)一个正整数的立方的最后两位数字决定于该数的最后两位数字,所以样本空间包含210个样本点。
用事件A 表示“该数的立方的最后两位数字都是1”,则该数的最后一位数字必须是1,设最后第二位数字为a ,则该数的立方的最后两位数字为1和3a 的个位数,要使3a 的个位数是1,必须7=a ,因此A 所包含的样本点只有71这一点,于是。
1.12 一个人把6根草掌握在手中,仅露出它们的头和尾。
然后请另一个人把6个头两两相接,6个尾也两两相接。
求放开手以后6根草恰好连成一个环的概率。
并把上述结果推广到n 2根草的情形。
解 (1)6根草的情形。
取定一个头,它可以与其它的5个头之一相接,再取另一头,它又可以与其它未接过的3个之一相接,最后将剩下的两个头相接,故对头而言有135⋅⋅种接法,同样对尾也有135⋅⋅种接法,所以样本点总数为2)135(⋅⋅。
用A 表示“6根草恰好连成一个环”,这种连接,对头而言仍有135⋅⋅种连接法,而对尾而言,任取一尾,它只能和未与它的头连接的另4根草的尾连接。
再取另一尾,它只能和未与它的头连接的另2根草的尾连接,最后再将其余的尾连接成环,故尾的连接法为24⋅。
所以A 包含的样本点数为)24)(135(⋅⋅⋅,于是158)135()24)(135()(2=⋅⋅⋅⋅⋅=A P (2) n 2根草的情形和(1)类似得1.13 把n 个完全相同的球随机地放入N 个盒子中(即球放入盒子后,只能区别盒子中球的个数,不能区别是哪个球进入某个盒子,这时也称球是不可辨的)。
如果每一种放法都是等可能的,证明(1)某一个指定的盒子中恰好有k 个球的概率为⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫⎝⎛---+n n N k n k n N 12,n k≤≤0(2)恰好有m 个盒的概率为⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛n n N m N n m N 111,1-≤≤-N m n N(3)指定的m 个盒中正好有j 个球的概率为⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫⎝⎛---+-⎪⎪⎭⎫ ⎝⎛--+n n N j n j n m N m j m 1111,.0,1N j N m ≤≤≤≤解 略。
1.14 某公共汽车站每隔5分钟有一辆汽车到达,乘客到达汽车站的时刻是任意的,求一个乘客候车时间不超过3分钟的概率。
解 所求概率为53)(=A P1.15 在ABC ∆中任取一点P ,证明ABC ABP ∆∆与的面积之比大于nn 1-的概率为21n。
解 截取CD nD C 1=',当且仅当点P 落入B A C ''∆之内时ABC ABP ∆∆与的面积之比大于nn 1-,因此所求概率为22)(CD D C ABC C B A A P '=∆''∆=的面积有面积2221CDD C n '=21n =。
1.16 两艘轮船都要停靠同一个泊位,它们可能在一昼夜的任意时刻到达。
设两船停靠泊位的时间分别为1小时与两小时,求有一艘船停靠泊位时必须等待一段时间的概率。
解 分别用y x ,表示第一、二艘船到达泊位的时间。
一艘船到达泊位时必须等待当且仅当10,20≤-≤≤-≤x y y x 。
因此所求概率为121.0242221232124)(2222≈⨯-⨯-=A P 1.17 在线段AB 上任取三点321,,x x x ,求: (1) 2x 位于31x x 与之间的概率。
(2) 321,,Ax Ax Ax 能构成一个三角形的概率。
解 (1) 31)(=A P (2) 211213131)(=⨯⨯-=B P 1.18 在平面上画有间隔为d 的等距平行线,向平面任意地投掷一个三角形,该三角形的边长为c b a ,,(均小于d ),求三角形与平行线相交的概率。
解 分别用321,,A A A 表示三角形的一个顶点与平行线相合,一条边与平行线相合,两条边与平行线相交,显然.0)()(21==A P A P 所求概率为)(3A P 。
分别用bc ac ab c b a A A A A A A ,,,,,表示边c b a ,,,二边bc ac ab ,,与平行线相交,则=)(3A P ).(bc ac ab A A A P ⋃⋃显然)(a A P )()(ac ab A P A P +,=)(b A P )()(bc ab A P A P +,=)(c A P )()(bc ac A P A P +。
所以21)(3=A P [+)(a A P +)(b A P )(c A P ])(22c b a d ++=π)(1c b a d ++=π (用例1.12的结果)1.19 己知不可能事件的概率为零,现在问概率为零的事件是否一定为不可能事件?试举例说明之。
解 概率为零的事件不一定是不可能事件。
例如向长度为1的线段内随机投点。
则事件A “该点命中AB 的中点”的概率等于零,但A 不是不可能事件。
1.20 甲、乙两人从装有a 个白球与b 个黑球的口袋中轮流摸取一球,甲先取,乙后取,每次取后都有不放回,直到两人中有一人取到白球时停止。