柯西不等式各种形式的证明及其应用培训资料
柯西不等式各种形式的证明及其应用(一)

柯西不等式各种形式的证明及其应用(一)柯西不等式各种形式的证明及其应用1. 柯西不等式的原始形式证明•柯西不等式的原始形式为:对任意的实数序列a1,a2,...,a n和b1,b2,...,b n,有下列不等式成立:(a1b1+a2b2+...+a n b n)2≤(a12+a22+...+a n2)(b12+b22+...+b n2)•证明思路:1.定义辅助函数f(t)=(a1t+a2t+...+a n t)2−(a12t2+a22t2+...+a n2t2)。
2.利用二次函数的性质证明f(t)≥0,即可得到柯西不等式的原始形式。
2. 柯西不等式的向量形式证明•柯西不等式的向量形式为:对任意的n维向量a=[a1,a2,...,a n]和b=[b1,b2,...,b n],有下列不等式成立:|a⋅b|2≤∥a∥2⋅∥b∥2•证明思路:1.将n维向量a和b表示为列向量形式。
2. 利用矩阵转置、乘法和内积的定义证明不等式成立。
3. 柯西不等式的积分形式证明• 柯西不等式的积分形式为:对任意的可积函数f (x )和g (x ),有下列不等式成立:|∫f b a (x )g (x )dx|2≤∫|f (x )|2b a dx ⋅∫|g (x )|2ba dx• 证明思路:1. 构造辅助函数ℎ(t )=∫(f (t )x +g (t ))2b a dt −∫|f (t )|2badt ⋅∫|g (t )|2b a dt 。
2. 利用积分和函数的性质证明ℎ(t )≥0,即可得到柯西不等式的积分形式。
应用一:线性代数中的向量内积• 柯西不等式可以用于证明向量内积的性质。
• 例如,在证明向量的模长定义中,可以利用柯西不等式证明模长的非负性。
• 另外,柯西不等式也广泛应用于线性代数中的向量正交、投影等问题。
应用二:凸函数的判定• 柯西不等式可以用于判定函数的凸性。
•若函数f(x)在区间[a,b]上满足柯西不等式中的积分形式,即″(x)dx≥0,则f(x)为该区间上的凸函数。
柯西不等式的证明与推广应用

西不等式的证明过程以及其在不同领域的应用。
一、柯西不等式的证明柯西不等式的一般形式为:对于任意非负实数序列 {a_i} 和 {b_i} (i=1,2,...,n),都有(a_1^2 + a_2^2 + ... + a_n^2) * (b_1^2 + b_2^2 + ... + b_n^2) ≥ (a_1 * b_1 + a_2 * b_2 + ... + a_n * b_n)^2当且仅当 a_i/b_i (i=1,2,...,n) 为常数时,等号成立。
证明过程如下:首先,我们构造两个向量 A = (a_1, a_2, ..., a_n) 和 B = (b_1, b_2, ..., b_n)。
计算向量 A 和 B 的点积,即 A·B = a_1 * b_1 + a_2 * b_2 + ... + a_n * b_n。
根据向量的施瓦茨不等式(Schwarz Inequality),有 |A·B| ≤ ||A|| * ||B||,其中 ||A|| 和 ||B|| 分别表示向量 A 和 B 的模长。
将向量 A 和 B 的模长展开,得到||A|| = sqrt(a_1^2 + a_2^2 + ... + a_n^2)||B|| = sqrt(b_1^2 + b_2^2 + ... + b_n^2)将 |A·B|、||A|| 和 ||B|| 的表达式代入施瓦茨不等式,整理后即得柯西不等式。
二、柯西不等式的应用柯西不等式在数学、物理、工程等领域都有广泛的应用,以下列举几个例子:线性代数:在求解向量空间中的角度、长度等问题时,柯西不等式可以提供有用的界限。
分析学:在证明一些数列或函数列的收敛性时,柯西不等式可以发挥作用。
例如,利用柯西不等式可以证明实数列的部分和有界性。
找到这些统计量的上下界。
最优化理论:在求解最优化问题时,柯西不等式可以作为目标函数的一个下界或上界,从而简化问题的求解过程。
柯西不等式各种形式的证明及其应用演示版.doc

柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k nk k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
思维拓展 柯西不等式与权方和不等式的应用(新高考通用)解析版

思维拓展 柯西不等式与权方和不等式(精讲+精练)一、知识点梳理一、柯西不等式1.二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2(a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)2.二维形式的柯西不等式的变式(1)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(2)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(3)(a +b )(c +d )≥(ac +bd )2(a ,b ,c ,d ≥0,当且仅当ad =bc 时,等号成立.)3.扩展:a 21+a 22+a 23+⋯+a 2n b 21+b 22+b 23+⋯+b 2n ≥(a 1b 1+a 2b 2+a 3b 3+⋯+a n b n )2,当且仅当a 1:b 1=a 2:b 2=⋯=a n :b n 时,等号成立.注:有条件要用;没有条件,创造条件也要用.比如,对a 2+b 2+c 2,并不是不等式的形状,但变成13•12+12+12 •a 2+b 2+c 2 就可以用柯西不等式了.二、权方和不等式权方和不等式:若a ,b ,x ,y >0,则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by 时,等号成立.证明1:∵a ,b ,x ,y >0要证a 2x +b 2y ≥(a +b )2x +y 只需证ya 2+xb 2xy ≥(a +b )2x +y即证xya 2+y 2a 2+x 2b 2+xyb 2≥xya 2+2xyab +xyb 2故只要证y 2a 2+x 2b 2≥2xyab (ya −xb )2≥0当且仅当ya −xb =0时,等号成立即a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by时,等号成立.证明2:对柯西不等式变形,易得a 2x +b 2y(x +y )≥(a +b )2在a ,b ,x ,y >0时,就有了a 2x +b 2y ≥(a +b )2x +y当a x =by时,等号成立.推广1:a 2x +b 2y +c 2z ≥(a +b +c )2x +y +z ,当a x =b y =c z时,等号成立.推广:2:若a i >0,b i >0,则a 21b 1+a 22b 2+⋯+a 2nb n ≥(a 1+a 2+⋯+a n )2b 1+b 2+⋯+b n,当a i =λb i 时,等号成立.推广3:若a i >0,b i >0,m >0,则a m +11b m 1+a m +12b m 2+⋯+a m +1nb m n≥(a 1+a 2+⋯+a n )m +1b 1+b 2+⋯+b nm,当a i =λb i 时,等号成立.二、题型精讲精练1实数x 、y 满足x 2+y 2=4,则x +y 的最大值是.解:x 2+y 2 12+12 ≥x +y 2,则8≥x +y 2所以x +y ≤22,当且仅当x =y =2时等号成立.答案:222设x ,y ,z ∈R ,且x +y +z =1.(1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.【分析】(1)根据条件x +y +z =1,和柯西不等式得到(x -1)2+(y +1)2+(z +1)2≥43,再讨论x ,y ,z 是否可以达到等号成立的条件.(2)恒成立问题,柯西不等式等号成立时构造的x ,y ,z 代入原不等式,便可得到参数a 的取值范围.【详解】(1)[(x -1)2+(y +1)2+(z +1)2](12+12+12)≥[(x -1)+(y +1)+(z +1)]2=(x +y +z +1)2=4故(x -1)2+(y +1)2+(z +1)2≥43等号成立当且仅当x -1=y +1=z +1而又因x +y +z =1,解得x =53y =-13z =-13时等号成立,所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)因为(x -2)2+(y -1)2+(z -a )2≥13,所以[(x -2)2+(y -1)2+(z -a )2](12+12+12)≥1.根据柯西不等式等号成立条件,当x -2=y -1=z -a ,即x =2-a +23y =1-a +23z =a -a +23 时有[(x -2)2+(y -1)2+(z -a )2](12+12+12)=(x -2+y -1+z -a )2=(a +2)2成立.所以(a +2)2≥1成立,所以有a ≤-3或a ≥-1.3已知a >1,b >12,且2a +b =3,则1a -1+12b -1的最小值为()A.1B.92C.9D.12【详解】因为2a +b =3,所以4a +2b =6由权方和不等式a 2x +b 2y ≥(a +b )2x +y可得1a -1+12b -1=44a -4+12b -1=224a -4+122b -1≥2+1 24a -4+2b -1=9当且仅当24a -4=12b -1,即a =76,b =23时,等号成立.【答案】C【题型训练-刷模拟】1.柯西不等式一、单选题4(2024·全国·模拟预测)柯西不等式最初是由大数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的.而后来有两位数学家Buniakowsky 和Schwarz 彼此独立地在积分学中推而广之,才能将这一不等式应用到近乎完善的地步.该不等式的三元形式如下:对实数 a 1,a 2,a 3 和 b 1,b 2,b 3 ,有a 21+a 22+a 23 b 21+b 22+b 23 ≥a 1b 1+a 2b 2+a 3b 3 2等号成立当且仅当a 1b 1=a 2b 2=a3b 3已知 x 2+y 2+z 2=14 ,请你用柯西不等式,求出 x +2y +3z 的最大值是()A.14 B.12C.10D.8【答案】A 【分析】利用柯西不等式求出即可.【详解】由题干中柯西不等式可得x +2y +3z 2≤x 2+y 2+z 2 12+22+32 =14×14=196,所以x +2y +3z 的最大值为14,当且仅当x =1,y =2,z =3时取等号.故选:A5(23-24高二下·山东烟台·阶段练习)已知空间向量OA =1,12,0 ,OB =1,2,0 ,OC =0,1,12,OP =xOA +yOB +zOC ,且x +2y +z =2,则OP 的最小值为()A.2B.3C.2D.4【答案】B【分析】由空间向量的坐标表示计算OP =xOA +yOB +zOC ,然后由柯西不等式求解即可.【详解】因为OP =xOA +yOB +zOC =x 1,12,0 +y 1,2,0 +z 0,1,12 =x +y ,12x +2y +z ,12z ,所以OP 2=x +y 2+12x +2y +z 2+12z 2=13x +y 2+12x +2y +z 2+12z 2 1+1+1 ≥13x +y +12x +2y +z +12z2=1332x +3y +32z 2=34x +2y +z 2=3,当且仅当x +y =12x +2y +z =12z 时等号成立,即x =2,y =-1,z =2时等号成立.所以OP ≥3,所以OP 的最小值为 3.故选:B二、填空题6(2024·山西·二模)柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a=x 1,y 1 ,b =x 2,y 2 ,由a ⋅b ≤a b 得到x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =9,则2a +4+b +1的最大值为.【答案】6【分析】令x 1=2,y 1=1,x 2=a +2,y 2=b +1,代入公式即可得解.【详解】令x 1=2,y 1=1,x 2=a +2,y 2=b +1,又a ≥0,b ≥0,a +b =9,所以2a +4+b +1 2≤2+1 a +2+b +1 =3×12=36,所以2a +4+b +1≤6,当且仅当2⋅b +1=a +2,即a =6,b =3时取等号,所以2a +4+b +1的最大值为6.故答案为:67(22-23高二下·浙江·阶段练习)已知x 2+y 2+z 2=1,a +3b +6c =16,则x -a 2+y -b 2+z -c 2的最小值为.【答案】9【分析】根据柯西不等式求解最小值即可.【详解】∵a +3b +6c =16≤12+32+6 2a 2+b 2+c 2=4a 2+b 2+c 2∴a 2+b 2+c 2≥4,当且仅当a 1=b 3=c6时等号成立,即a =1,b =3,c =6,∵x -a 2+y -b 2+z -c 2=1-2xa +by +cz +a 2+b 2+c 2≥1-2x 2+y 2+z 2a 2+b 2+c 2+a 2+b 2+c 2=1-2a 2+b 2+c 2+a 2+b 2+c 2=a 2+b 2+c 2-1 2≥9,当且仅当a x =b y =c z 时等号成立,可取x =14,y =34,z =64故答案为:98(22-23高一·全国·课堂例题)若不等式x +y ≤k 5x +y 对任意正实数x ,y 都成立,则实数k的最小值为.【答案】305/1530【分析】运用柯西不等式进行求解即可.【详解】由柯西不等式的变形可知5x +y =x 215+y21≥x +y15+1,整理得x +y5x +y≤305,当且仅当x15=y 1,即y =25x 时等号成立,则k 的最小值为305.故答案为:3059(22-23高三上·河北衡水·期末)若⊙C :x -a 2+y -b 2=1,⊙D :x -6 2+y -8 2=4,M ,N 分别为⊙C ,⊙D 上一动点,MN 最小值为4,则3a +4b 取值范围为.【答案】15,85【分析】先根据MN 的最小值求出CD =7,即a -6 2+b -8 2=49,再使用柯西不等式求出取值范围.【详解】由于MN 最小值为4,圆C 的半径为1,圆D 的半径为2,故两圆圆心距离CD =4+1+2=7,即a -6 2+b -8 2=49,由柯西不等式得:a -6 2+b -8 2 ⋅32+42 ≥3a -6 +4b -8 2,当且仅当a -63=b -84,即a =515,b =685时,等号成立,即3a +4b -50 2≤25×49,解得:15≤3a +4b ≤85.故答案为:15,8510已知正实数a ,b ,c ,d 满足a +b +c +d =1,则1a +b +c +1b +c +d +1c +d +a +1d +a +b的最小值是.【答案】163/513【分析】利用配凑法及柯西不等式即可求解.【详解】由题意可知,1a +b +c +1b +c +d +1c +d +a +1d +a +b=133a +b +c +d ×1a +b +c +1b +c +d +1c +d +a +1d +a +b=13a +b +c +b +c +d +c +d +a +d +a +b ×(1a +b +c +1b +c +d +1c +d +a +1d +a +b)≥131+1+1+1 2=163,当且仅当a =b =c =d =14时取“=”号.所以原式的最小值为163.故答案为:163.三、解答题11(2024·四川南充·三模)若a ,b 均为正实数,且满足a 2+b 2=2.(1)求2a +3b 的最大值;(2)求证:4≤a 3+b 3 a +b ≤92.【答案】(1)26(2)证明见解析【分析】(1)利用柯西不等式直接求解;(2)由分析法转化为求证4≤4+2ab -2a 2b 2≤92,换元后由函数单调性得证.【详解】(1)由柯西不等式得:a 2+b 2 22+32 ≥2a +3b 2,即2a +3b 2≤26,故2a +3b ≤26,当且仅当3a =2ba 2+b 2=2 ,即a =22613b =32613时取得等号,所以2a +3b 的最大值为26.(2)要证:4≤a 3+b 3 a +b ≤92,只需证:4≤a 4+b 4+ab a 2+b 2 ≤92,只需证:4≤a 2+b 2 2+ab a 2+b 2 -2a 2b 2≤92,即证:4≤4+2ab -2a 2b 2≤92,由a ,b 均为正实数,且满足a 2+b 2=2可得2=a 2+b 2≥2ab ,当且仅当a =b 时等号成立,即0<ab ≤1,设ab =t ∈(0,1],则设f t =-2t 2+2t +4,t ∈0,1 ,∵f (x )在0,12 上单调递增,在12,1 上单调递减,又f (0)=f (1)=4,f 12=94,∴4≤f t ≤92,即4≤a 3+b 3 a +b ≤92.12(2024·四川·模拟预测)已知a ,b ,c 均为正实数,且满足9a +4b +4c =4.(1)求1a +1100b-4c 的最小值;(2)求证:9a2+b2+c2≥1641.【答案】(1)12 5(2)证明见解析【分析】(1)结合已知等式,将1a+1100b-4c化为1a+9a+1100b+4b-4,利用基本不等式,即可求得答案;(2)利用柯西不等式,即可证明原不等式.【详解】(1)因为a,b,c均为正实数,9a+4b+4c=4,所以1a+1100b-4c=1a+1100b+9a+4b-4=1a+9a+1100b+4b-4≥21a×9a+21100b ×4b-4=125,当且仅当1a=9a1100b=4b,即a=13,b=120,c=15时等号成立.(2)证明:根据柯西不等式有9a2+b2+c232+42+42≥(9a+4b+4c)2=16,所以9a2+b2+c2≥16 41.当且仅当3a3=b4=c4,即a=441,b=c=1641时等号成立,即原命题得证.13(2024高三·全国·专题练习)已知实数a,b,c满足a+b+c=1.(1)若2a2+b2+c2=12,求证:0≤a≤2 5;(2)若a,b,c∈0,+∞,求证:a21-a +b21-b+c21-c≥12.【答案】(1)证明见解析(2)证明见解析【分析】(1)由题意可得b+c=1-a,又12-2a2=b2+c2,结合基本不等式可得12-2a2≥1-a22,化简求得0≤a≤25,得证;(2)法一,由已知条件得a21-a +1-a4≥2a21-a⋅1-a4=a,同理可得b21-b+1-b4≥b,c21-c+1-c 4≥c,三式相加得证;法二,根据已知条件可得121-a+1-b+1-c=1,所以a21-a+b2 1-b +c21-c=121-a+1-b+1-ca21-a+b21-b+c21-c,利用柯西不等式求解证明.【详解】(1)因为a+b+c=1,所以b+c=1-a.因为2a2+b2+c2=1 2,所以12-2a2=b2+c2≥b+c22=1-a22,当且仅当b=c时等号成立,整理得5a2-2a≤0,所以0≤a≤2 5.(2)解法一:因为a+b+c=1,且a,b,c∈0,+∞,所以1-a>0,1-b>0,1-c>0,所以a21-a+1-a4≥2a21-a⋅1-a4=a,同理可得b21-b+1-b4≥b,c21-c+1-c4≥c,以上三式相加得a21-a+b21-b+c21-c≥54a+b+c-34=12,当且仅当a=b=c=13时等号成立.解法二:因为a+b+c=1,且a,b,c∈0,+∞,所以1-a>0,1-b>0,1-c>0,且121-a+1-b+1-c=1,所以a21-a+b21-b+c21-c=121-a+1-b+1-ca21-a+b21-b+c21-c≥121-a⋅a1-a+1-b⋅b1-b+1-c⋅c1-c2=12a+b+c2=12,当且仅当a=b=c=13时等号成立.2.权方和不等式一、填空题14已知x>-1,y>0且满足x+2y=1,则1x+1+2y的最小值为.【答案】9 2【分析】由x>-1知:x+1>0,为保证分母和为定值,对所求作适当的变形1x+1+2y=1x+1+42y,然后就可以使用权方和不等式了.【解析】1a-2b +4b=1a-2b+123b≥1+122a-2b+3b=14+46(等号成立条件,略).15已知x>0,y>0,且x+y=1则x2x+2+y2y+1的最小值是.【答案】1 4【解析】x2x+2+y2y+1≥x+y2x+y+3=14当xx+2=yy+1,即x=23,y=13时,等号成立.16已知a >0,b >0,且2a +2+1a +2b=1,则a +b 的最小值是.【答案】12+2【解析】1=2a +2+1a +2b ≥2+1 22a +2b +2当2a +2=1a +2b,即a =2,b =12时,等号成立,a +b min =12+2.17(23-24高一上·辽宁沈阳·阶段练习)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a ,b ,x ,y >0,则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =b y 时等号成立.根据权方和不等式,函数f x =2x +91-2x 0<x <12的最小值.【答案】25【分析】由f x =2x +91-2x =42x +91-2x ,再利用权方和不等式即可得解.【详解】由0<x <12,得1-2x >0,由权方和不等式可得f x =2x +91-2x =42x +91-2x ≥2+3 22x +1-2x=25,当且仅当22x =31-2x ,即x =15时取等号,所以函数f x =2x +91-2x 0<x <12的最小值为25.故答案为:25.18(2023高三·全国·专题练习)已知正数x ,y ,z 满足x +y +z =1,则x 2y +2z +y 2z +2x +z 2x +2y 的最小值为【答案】13【分析】根据权方和不等式可得解.【详解】因为正数x ,y 满足x +y +z =1,所以x 2y +2z +y 2z +2x +z 2x +2y ≥x +y +z 2y +2z +z +2x +x +2y =13,当且仅当x y +2z =y z +2x =z x +2y 即x =y =z =13时取等号.故答案为:13.19(2023高三·全国·专题练习)已知x +2y +3z +4u +5v =30,求x 2+2y 2+3z 2+4u 2+5v 2的最小值为【答案】60【分析】应用权方和不等式即可求解.【详解】x 2+2y 2+3z 2+4u 2+5v 2=x 21+2y 22+3z 23+4u 24+5v 25≥x +2y +3z +4u +5v 21+2+3+4+5=30215=60当且仅当x =y =z =u =v 时取等号故答案为:6020(2023高三·全国·专题练习)已知θ为锐角,则1sin θ+8cos θ的最小值为.【答案】55【分析】利用权方和不等式:b n +1a n +d n +1c n ≥b +d n +1a +cn求解.【详解】1sin θ+8cos θ=132sin 2θ12+432cos 2θ12≥1+432sin 2θ+cos 2θ12=532=55当且仅当1sin 2θ=4cos 2θ即sin θ=55,cos θ=255时取“=”.故答案为:5521(2023高三·全国·专题练习)已知正实数x 、y 且满足x +y =1,求1x 2+8y 2的最小值.【答案】27【分析】设x =cos 2α,y =sin 2α,α∈0,π2 ,由权方和不等式计算可得.【详解】设x =cos 2α,y =sin 2α,α∈0,π2,由权方和不等式,可知1x 2+8y 2=13cos 2α 2+23sin 2α 2≥1+2 3cos 2α+sin 2α2=27,当且仅当1cos 2α=2sin 2α,即x =13,y =23时取等号,所以1x 2+8y 2的最小值为27.故答案为:2722(2024高三·全国·专题练习)已知a >1,b >1,则a 2b -1+b 2a -1的最小值是.【答案】8【分析】利用权方和不等式求解最值即可.【详解】令a +b -2=t >0,则a 2b -1+b 2a -1≥a +b 2a +b -2=t +2 2t =t +4t +4≥24+4=8,当a +b -2=2a b -1=ba -1时,即a =2,b =2时,两个等号同时成立,原式取得最小值8.故答案为:823(2023高三·全国·专题练习)已知实数x ,y 满足x >y >0,且x +y =2,M =3x +2y +12x -y的最小值为.【答案】85/1.6【分析】巧妙运用权方和不等式求解和式的最小值问题,关键是找到所求式的两个分母与题设和式的内在联系.【详解】要求最小值,先来证明权方和不等式,即:∀a >0,b >0,x >0,y >0,有a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by时取等号.证明:利用柯西不等式:m ,n ,x ,y >0,(m 2+n 2)(x 2+y 2)≥(mx +ny )2,当且仅当m x =ny时取等号,要证a 2x +b 2y ≥(a +b )2x +y ,只须证(x +y )a 2x +b 2y≥(a +b )2,因a >0,b >0,x >0,y >0,则(x +y )a 2x +b 2y =[(x )2+(y )2]ax2+b y2≥x ⋅a x +y ⋅by2=(a +b )2,当且仅当xax=yby时,即a x =by时取等号.不妨令m (x +2y )+(2x -y )=n (x +y ),整理得(m +2)x +(2m -1)y =nx +ny ,则m +2=n 2m -1=n,解得m =3n =5 ,则M =3x +2y +12x -y =93x +6y +12x -y =93x +6y +12x -y=323x +6y +122x -y ≥(3+1)25(x +y )=85,当且仅当33x +6y =12x -y 时等式成立,由33x +6y =12x -y x +y =2解得:x =32y =12,即当x =32,y =12时,M =3x +2y +12x -y 的最小值为85.故答案为:85.24(2024高三·全国·专题练习)已知x ,y >0,1x +22y=1,则x 2+y 2的最小值是.【答案】33【分析】利用权方和不等式求解最值即可.【详解】由题意得,1=1x +22y=132x 212+232y 212≥1+232x 2+y 212=33x 2+y2.(权方和的一般形式为:a m +11b m 1+a m +12b m 2+a m +13b m 3+⋯+a m +1nb m n ≥a 1+a 2+a 3+⋯+a n m +1b 1+b 2+b 3+⋯+b nm,a i >0,b i >0,当且仅当a i =λb i 时等号成立)当1x 2=2y 21x +22y=1,即x =3,y =32时,x 2+y 2取得最小值33.故答案为:3325(2023高三·全国·专题练习)已知正数x ,y 满足4x +9y =1,则42x 2+x +9y 2+y的最小值为【答案】118【分析】运用权方和不等式求和式的最小值,关键在于找到所求和式的两个分母与题设和式之间的联系,满足条件则迅速求解.【详解】要求最小值,先来证明权方和不等式,即:∀a >0,b >0,x >0,y >0,有a 2x +b 2y ≥(a +b )2x +y ,当且仅当ax =by时取等号.证明:利用柯西不等式:m ,n ,x ,y >0,(m 2+n 2)(x 2+y 2)≥(mx +ny )2,当且仅当m x =ny时取等号,要证a 2x +b 2y ≥(a +b )2x +y ,只须证(x +y )a 2x +b 2y≥(a +b )2,因a >0,b >0,x >0,y >0,则(x +y )a 2x +b 2y =[(x )2+(y )2]ax2+b y2≥x ⋅a x +y ⋅by2=(a +b )2,当且仅当xax=yby时,即a x =by时取等号.故由42x 2+x +9y 2+y =4242x 2+x +929y 2+y =42x 28+4x +92y 29+9y ≥4x +9y24x +9y+17=118当且仅当4x8+4x =9y9+9y 时取等号.由4x +9y =14x 8+4x =9y 9+9y,解得:x =172y =17 ,即当x =172,y =17时,42x 2+x +9y 2+y的最小值为118.故答案为:118.。
柯西不等式的证明及变形

≥
∴ ≥
变式2设ai,bi同号且不为0(i=1,2,…,n)则 ≥
证明:∵( )( )≥
∴ ≥
柯西不等式证明及其变形
柯西(Cauchy)不等式
等号当且仅当 或 时成立(k为常数, )现将它的证明介绍如下:
证明1:构造二次函数
=
恒成立
即
当且仅当 即 时等号成立
证明(2)数学归纳法
(1)当 时左式= 右式=
显然左式=右式
当 时,右式 右式
仅当即 即 时等号成立
故 时不等式成立
(2)假设 时,不等式成立
即
当 ,k为常数, 或 时等号成立
设
则
当 ,k为常数, 或 时等号成立
即 时不等式成立
综合(1)(2)可知不等式成立
接近于0,则相关程度越小。
证明(3)配方法
作差:因为
所以 ,即
即
当且仅当
即 时等号成立。
证明(3)用向量法证明
设 维空间中有二个向 , ,其中 为任意两组实数。
由向量的长度定义,有 |,
又由内积的定义, ,其中 是 , 的夹角,
且有 。
因| | ,故 ,于是
| |≤ 即
当且仅当| | 时,即 与 共线时等号成立。
由 , 共线可知
即
由以上,命题得证。
5) 利用均值不等式
当 =0时不等式显然成立
当 ≠0柯西不等式可化为
1 ≥ 。
由均值不等式可知 ≤ = =1即1≥ 当且仅当 时等号成立。
柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用
1.柯西不等式的证明:
柯西不等式的最常见的证明是基于构造内积的思路。
假设有两个n维
向量a=(a1,a2,…,an)和b=(b1,b2,…,bn),我们可以定义它们的内积为a·b=a1b1+a2b2+…+anbn。
柯西不等式就是说,对于任意两个向量a和b,有,a·b,≤,a,b。
这个不等式可以通过构造内积的平方来进行证明。
具体的证明过程可以参考高等数学相关教材或参考资料。
2.柯西不等式的应用:
-线性代数:柯西不等式可以用来证明向量范数的性质,如欧几里得
范数和曼哈顿范数的非负性、三角不等式等。
-概率论:柯西不等式可以用来证明概率论中的一些重要定理,比如
马尔可夫不等式、切比雪夫不等式等。
-信号处理:柯西不等式可以用来证明信号处理中的一些重要性质,
比如能量守恒定理、奇异值分解等。
-函数分析:柯西不等式可以用来证明函数分析中的一些重要定理,
比如巴拿赫空间的完备性定理等。
-矩阵论:柯西不等式可以用来证明矩阵论中的一些重要性质,比如
矩阵的条件数、病态度等。
总之,柯西不等式是一条十分重要的不等式,具有广泛的应用价值。
它不仅是高等数学中的重要工具,还可以应用于其他学科的研究中。
通过
了解柯西不等式的证明和应用,我们可以更好地理解和运用它,进一步深
化数学和相关学科的学习。
柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用1.柯西不等式的证明:(x1,y1) + (x2,y2) + ... + (xn,yn),≤ √(,x1,^2 + ,x2,^2 + ... + ,xn,^2)√(,y1,^2 + ,y2,^2 + ... + ,yn,^2)证明:设向量(x1,x2,...,xn)与(y1,y2,...,yn)的内积为A,则有:A = x1y1 + x2y2 + ... + xnyn考虑不等式(,x1,^2/,A, + ,x2,^2/,A, + ... + ,xn,^2/,A,) * (,y1,^2A + ,y2,^2/,A, + ... + ,yn,^2/,A,) ≥ 1根据乘法交换律,可以将上式化简为:(,x1,^2 + ,x2,^2 + ... + ,xn,^2) * (,y1,^2 + ,y2,^2 + ... + ,yn,^2) ≥ ,A,^2由于A是内积,其绝对值不超过向量的模的乘积,即,A,≤ √(,x1,^2 + ,x2,^2 + ... + ,xn,^2)√(,y1,^2 + ,y2,^2 + ...+ ,yn,^2)将不等式化简可得:(x1,y1) + (x2,y2) + ... + (xn,yn),≤ √(,x1,^2 + ,x2,^2 + ... + ,xn,^2)√(,y1,^2 + ,y2,^2 + ... + ,yn,^2)2.柯西不等式的应用:2.1内积空间中的角度和长度:根据柯西不等式,可以得出两个向量的内积的绝对值小于等于它们的模的乘积,即,A,≤ ,x,y,其中x和y是向量。
从而可以推出内积与向量的模的乘积的乘积的cosine值不超过1,即cosθ ≤ 1,其中θ是x和y之间的角度。
这表明柯西不等式可以用于计算向量的夹角。
2.2线性无关的证明:假设有n个非零向量(x1,x2,...,xn),如果存在n维向量(a1,a2,...,an),使得a1x1 + a2x2 + ... + anx_n = 0,其中a1,a2,...,an不全为零,则称向量组(x1,x2,...,xn)线性相关。
柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用(a1b1 + a2b2 + … + anbn),≤ √(a1^2 + a2^2 + … + an^2) * √(b1^2 + b2^2 + … + bn^2)其中a1, a2, …, an和b1, b2, …, bn为实数或者复数。
下面将介绍几种柯西不等式的证明以及其应用。
证明1:使用向量的点乘形式证明柯西不等式。
设有两个n维向量A = (a1, a2, …, an)和B = (b1, b2, …, bn),则根据向量的点乘定义:A·B, = ,a1b1 + a2b2 + … + anbn,≤ ,a1,b1, + ,a2,b2,+ … + ,an,bn根据向量的模的定义,有:A·B,≤ √(a1^2 + a2^2 + … + an^2) * √(b1^2 + b2^2 + …+ bn^2)这就是柯西不等式的一种证明方法。
证明2:使用函数的积分形式证明柯西不等式。
设函数f(x)和g(x)在区间[a,b]上连续,那么根据积分的定义,有:∫[a,b] (f(x)g(x)) dx ≤ √(∫[a,b] (f^2(x)) dx) * √(∫[a,b] (g^2(x)) dx)假设f(x) = 1,g(x) = sqrt(1/x),那么有:∫[1,2] (sqrt(1/x)) dx ≤ √(∫[1,2] (1^2) dx) * √(∫[1,2] (sqrt(1/x))^2 dx)化简得:√(ln 2) ≤ √(∫[1,2] (1/x) dx)继续化简得:√(ln 2) ≤ √(ln 2)这也是柯西不等式的一种证明方法。
应用1:在实数范围内,柯西不等式可以用于证明其他不等式的成立。
例如,可以利用柯西不等式证明三角不等式,即,a+b,≤,a,+,b。
应用2:柯西不等式可以推导出协方差不等式,协方差是一种度量两个变量之间线性关系紧密程度的指标。
根据柯西不等式的形式,对于任意两个随机变量X和Y,有:Cov(X, Y)^2 ≤ Var(X) * Var(Y)其中Cov(X, Y)表示X和Y的协方差,Var(X)和Var(Y)分别表示X和Y的方差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柯西不等式各种形式的证明及其应用柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //==扩展:()()()222222222123123112233n n n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立222111n nn k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑三角形式ad bc=等号成立条件:三角形式的证明:()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明: ()()123123112233112233=,,,,,,,,,cos ,,cos ,1n n n n n n m a a a a n b b b b m n a b a b a b a b m n m nm nm n a b a b a b a b =⋅=++++==≤∴++++≤u r rL L u r r u r r u r r L u r rQ L 令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k n k k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
一般形式的证明:211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k n k k b a b a证明:()()()()()222222=/2=/2i j j i i i j j j j i i a b a b n a b a b a b a b n +++⋅+⋅++≥L L L L 不等式左边共项不等式右边共项用均值不等式容易证明,不等式左边不等式右边,得证。
推广形式(卡尔松不等式):卡尔松不等式表述为:在m*n 矩阵中,各行元素之和的几何平均数不小于各列元素之积的几何平均之和。
11111231111,mmmmmmmmi i i in i i i i x x x x m n N ====+⎛⎫⎛⎫⎛⎫⎛⎫≥++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∈∏∏∏∏L 其中,或者:111111,mmmnnmij ij j i j i ij x x m n N x R ====++⎡⎤⎛⎫⎛⎫≥⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦∈∈∑∑∏∏其中,, 或者()()()()()11221111n n nn n n x y x y x y x y x x y ++++++⎡⎤≥++⎢⎥⎣⎦∏∏∏L L L L L L 注:表示,,,x 的乘积,其余同理 推广形式的证明: 推广形式证法一:111222112112121212112112121212112,,+n n n n nn n n n n n nn n n n n nn A x y A x y A x y x x x x A A A x x x n A A A A A A y y y yA A A y y y n A A A A A A n x A A A =++=++=+++++⎛⎫⎛⎫≥= ⎪ ⎪ ⎪⎝⎭⎝⎭+++⎛⎫⎛⎫≥= ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫≥ ⎪ ⎪⎝⎭∏∏∏L L L L L L L L L L L L L LL 记由平均不等式得同理可得上述个不等式叠加,得1()()()()()()()()()()1121111112112211+nn nn nn n nn n n nn ny A A Ax y A A A x y x y x y x y x y ⎛⎫ ⎪ ⎪⎝⎭≥++⎡⎤++⎢⎥⎣⎦++++++⎡⎤≥++⎢⎥⎣⎦∏∏∏∏∏∏∏L L LL L L L L LL 即即,证毕或者推广形式证法二:事实上涉及平均值不等式都可以用均值不等式来证, 这个不等式并不难,可以简单证明如下:1112111111111111111mjnjimjnjimjnnjjiimmnjknk jjiimjkjm njiijxmxjixmxjixmxxxxx============≤≤≤⎛⎫⎪⎪≤⎪⎪⎝⎭⎛⎛⎫⎪⎝⎭⎝∑∑∑∑∑∑∑∏∑∏∑∏L L以上各式相加得上式也即11111111,1mnkm mn n mjk jik ij jx xm=====⎫⎪⎪≤⎪⎪⎭⎛⎫⎡⎤⎛⎫≤⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦∑∑∑∏∏该式整理,得:得卡尔松不等式,证毕付:柯西(Cauchy)不等式相关证明方法:()22211nnbababa+++Λ()()222221222221nnbbbaaa++++++≤ΛΛ()niRbaiiΛ2,1,=∈等号当且仅当021====naaaΛ或iikab=时成立(k为常数,niΛ2,1=)现将它的证明介绍如下:证明1:构造二次函数()()()2222211)(nnbxabxabxaxf++++++=Λ=()()() 22222121122122n nn n n na a a x ab a b a b x b b b+++++++++++L L L2212nna a a+++≥Q L()0f x∴≥恒成立()()()2222211221212440n nn n n na b a b a b a a a b b b∆=+++-++++++≤Q L L L即()()()2222211221212nn n n n n a b a b a b a a a b b b +++≤++++++L L L当且仅当()01,2i i a x b x i n +==L 即1212n na a ab b b ===L 时等号成立 证明(2)数学归纳法(1)当1n =时 左式=()211a b 右式=()211a b 显然 左式=右式当 2n =时, 右式 ()()()()2222222222121211222112a a b b a b a b a b a b =++=+++()()()2221122121212222a b a b a a b b a b a b ≥++=+=右式 仅当即 2112a b a b = 即1212a ab b =时等号成立 故1,2n =时 不等式成立(2)假设n k =(),2k k ∈N ≥时,不等式成立即 ()()()2222211221212kk k k k k a b a b a b a a a b b b +++≤++++++L L L当 i i ka b =,k 为常数,1,2i n =L 或120k a a a ====L 时等号成立设22212k a a a A ====L 22212k b b b B ====L1122k k C a b a b a b =+++L则()()2222211111k k k k k a b b a b +++++A +B +=AB +A + ()22221111112k k k k k k C Ca b a b C a b ++++++≥++=+ ()()22222222121121k k k k a a a a b b b b ++∴++++++++L L()2112211k k k k a b a b a b a b ++≥++++L当 i i ka b =,k 为常数,1,2i n =L 或120k a a a ====L 时等号成立 即 1n k =+时不等式成立 综合(1)(2)可知不等式成立二、柯西不等式的应用 1、巧拆常数证不等式例1:设a 、b 、c 为正数且互不相等。
求证:2222a b b c a c a b c++++++f. a b c Q 、、均为正数()()()()()111292=a b c a b b c a c a b c a b b c a c ∴⎛⎫++++ ⎪+++⎝⎭+++++++f 为证结论正确,只需证:而为证结论正确,只需证: 又29(111)=++Q ∴只需证:()()()()()211121111119a b c a b b c a c a b b c a c a b b c a c ⎛⎫++++=⎪+++⎝⎭⎛⎫+++++++⎡⎤ ⎪⎣⎦+++⎝⎭≥++=又a b c Q 、、互不相等,所以不能取等∴原不等式成立,证毕。
2、求某些特殊函数最值例2:y =求函数 函数的定义域为[5,9],0y f5*2106.44y x =≤===函数仅在时取到3、用柯西不等式推导点到直线的距离公式。
已知点()00,x y P 及直线:l 0x y C A +B += ()220A +B ≠ 设点p 是直线l 上的任意一点, 则0x x C A +B += (1)12p p =(2)点12p p 两点间的距离12p p 就是点p 到直线l 的距离,求(2)式有最小值,有()()0101x x y y ≥A -+B -()0011x y C x y C A +B +-A +B + 由(1)(2)得:1200p p x y C ≥A +B +g 即12p p ≥(3)当且仅当 ()()0101:y y x x B --=A12p p l ⊥ (3)式取等号 即点到直线的距离公式即12p p =4、证明不等式例 3已知正数,,a b c 满足1a b c ++= 证明 2223333a b c a b c ++++≥证明:利用柯西不等式()23131312222222222ab ca ab bc c ⎛⎫++=++ ⎪⎝⎭[]222333222a b c a b c ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥≤++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()2333a b c a b c =++++ ()1a b c ++=Q又因为 222a b c ab bc ca ++≥++ 在此不等式两边同乘以2,再加上222a b c ++得:()()2223a b c a b c ++≤++()()()22223332223a b c a b c a b c ++≤++•++Q故2223333a b c a b c ++++≥5、解三角形的相关问题例 4设p 是ABC V 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC V 外≤证明:由柯西不等式得,=≤记S 为ABC V 的面积,则2242abc abcax by cz S R R++===g≤=≤故不等式成立。