快速成型技术中的数据处理流程.
快速成型与快速模具制造技术及其应用课程作业

1、立体光固化(SLA) 该方法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速
二、 STL数据文件及处理
快速成型制造设备目前能够 接受诸如STL,SLC,CLI, RPI,LEAF,SIF等多种数 据格式。其中由美国3D Systems公司开发的STL文 件格式可以被大多数快速成
型机所接受,因此被工业界
认为是目前快速成型数据的
准标准,几乎所有类型的快 速成型制造系统都采用STL 数据格式。
五、CT图像数据处理软Mimics
Mimics软件简介
Mimics软件是比利时Materialise公司面向医 学CT或MRI数据模型处理的运行在Windows 操作 系统环境下的高度集成的三维图像处理软件,该软 件能在几分钟内将CT或MRI数据转换成三维CAD或 快速成型所需的模型文件。其主要功能特点如下:
成型方法。
SLA技术原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫 描,被扫描区域的树脂薄层(约十分之几毫米)产生光聚合反应而固化,形 成零件的一个薄层。工作台下移一个层厚的距离,以便固化好的树脂表面再 敷上一层新的液态树脂,进行下一层的扫描加工,如此反复,直到整个原型 制造完毕。由于光聚合反应是基于光的作用而不是基于热的作用,故在工作 时只需功率
3、选择性激光烧结(SLS)
研究SLS的有DIM公司、EOS公司、北京隆源公司。该法采用C02激光器作 能源,目前使用的造型材料多为各种粉末材料。在工作台上均匀铺上一层很薄 的粉末,激光束在计算机控制下按照零件分层轮廓有选择性地进行烧结,一层 完成后再进行下一层烧结。全部烧结完后去掉多余的粉末,再进行打磨、烘干 等处理便获得零件。目前,成熟的工艺材料为蜡粉及塑料粉,用金属粉或陶瓷 粉进行粘接烧结的工艺还正在实验研究阶段。该技术具有原材料选择广泛、多 余材料易于清理、应用范围广等优点,适用于原型及功能零件的制造。在成形 过程中,激光工作参数以及粉末的特性和烧结气氛是影响烧结成形质量的重要 参数,原理如图4所示。
简述3d打印快速成型的流程

简述3d打印快速成型的流程3D打印,也被称为快速成型技术,是一项充满创新力的制造方法,它可以通过逐层构建物体来创建三维实体。
下面将介绍3D打印快速成型的完整流程。
1. 设计和建模:首先需要一个设计师或工程师来制作一个三维模型。
设计者可以使用计算机辅助设计(CAD)软件来创建模型,或者从现有的3D模型数据库中选择一个合适的模型。
设计人员还可以从零开始创建自己的模型,或者修改现有的模型以满足特定需求。
2. 准备打印:一旦模型完成,接下来需要将其转换为可被3D打印机读取的文件格式,通常使用的是.STL(Standard Tessellation Language)格式。
此文件格式将三维模型转化为一系列小的三维三角形,以便于打印机理解和执行。
3. 选择打印材料:根据打印对象的需求以及打印机的类型,选择适合的打印材料。
3D打印技术使用的材料种类繁多,包括塑料、金属、陶瓷等。
每种材料都有其特定的优势和限制,需要根据打印对象的用途和性能需求进行合理选择。
4. 设定打印参数:根据打印材料和模型的要求,设置打印参数。
这些参数包括打印温度、打印速度、层高、填充密度等。
正确设置这些参数,可以保证打印过程的顺利进行,并获得高质量的打印结果。
5. 开始打印:将准备好的模型文件加载到3D打印机中,并正确安装和调整打印材料和喷嘴。
确认一切准备就绪后,启动打印机开始打印。
3D打印机将按照预定的参数逐层将材料加热熔化并堆叠在一起,逐步构建出完整的物体。
6. 打印完成和后处理:一旦打印完成,取下打印好的物体,进行后处理。
后处理可以包括去除支撑结构、去除打印物体上的不必要材料、打磨和润滑等。
这些步骤的目的是使打印出来的物体达到预期的外观和性能要求。
通过以上几个步骤,我们可以完整地完成一次3D打印快速成型的流程。
快速成型技术为我们提供了一种灵活、高效、创新的制造方法,无论是在产品设计、原型制作、医疗器械、航空航天还是其他领域,都有着广泛的应用前景。
快速成型技术

快速成型技术(RP)的成型过程
快速成型技术(RP)的成型过程:
首先建立目标件的三维计算机辅助设计(CAD 3D)模型,
设计
设计
快
铸造 锻压 焊接
模具
模具
速
毛坯
成
去
(大于工件)
形
除
半成品
加
半成品
工
工件
样品
模具
a)
b)
传统加工与快速成型比较
快速成型技术(RP)的定义
快速成型技术(Rapid Prototyping & Manufacturing, 缩写为(RP) 技术,又叫快速原型技术。
RP技术是将计算机辅助设计(CAD) 、计算机辅助制造(CAM) 、计 算机数控技术(CNC) 、材料学和激光结合起来的综合性造型技术。
快速成型技术 (RP)
快速成型技术(RP)的起源
1979年,东京大学的中川威雄教授利用分层技术制造了金属冲裁模、 成形模和注塑模。
20世纪70年代末到80年代初,美国3M公司的AlanJ. Hebert(1978 年)、日本的小玉秀男(1980年)、美国UVP公司的Charles W. Hull (1982年)和日本的丸谷洋二(1983年),各自独立地首次提出了RP的 概念,即利用连续层的选区固化制作三维实体的新思想。 Charles W. Hull在UVP的资助下,完成了第1个RP系统Stereo lithography Apparatus (SLA),并于1986年获得专利,这是RP发展的一个里程碑。随后许多 快速成形概念、技术及相应的成形机也相继出现。
快速成型技术简介

立体光固化成形(SLA)
• 是目前最为成熟和广泛应用的一种快速成型制造 工艺。这种工艺以液态光敏树脂为原材料,在计 算机控制下的紫外激光按预定零件各分层截面的 轮廓轨迹对液态树脂逐点扫描,使被扫描区的树 脂薄层产生光聚合(固化)反应,从而形成零件的 一个薄层截面。完成一个扫描区域的液态光敏树 脂固化层后,工作台下降一个层厚,使固化好的 树脂表面再敷上一层新的液态树脂然后重复扫描、 固化,新固化的一层牢固地粘接在一层上,如此 反复直至完成整个零件的固化成型。
• LOM工艺是将单面涂有热溶胶的纸片通过 加热辊加热粘接在一起,位于上方的激光 切割器按照CAD分层模型所获数据,用激 光束将纸切割成所制零件的内外轮廓,然 后新的一层纸再叠加在上面,通过热压装 置和下面已切割层粘合在一起,激光束再 次切割,如此反复逐层切割、粘合、切 割……直至整个模型制作完成 。
• 是通过将丝状材料如热塑性塑料、蜡或金 属的熔丝从加热的喷嘴挤出,按照零件每 一层的预定轨迹,以固定的速率进行熔体 沉积。每完成一层,工作台下降一个层厚 进行迭加沉积新的一层,如此反复最终实 现零件的沉积成型。
(5)三维印刷法(3DP,Three Dimensional Printing )
• 利用喷墨打印头逐点喷射粘合剂来粘结粉 末材料的方法制造原型。3DP的成型过程与 SLS相似,只是将SLS中的激光变成喷墨打 印机喷射结合剂。
成型过程示意图
• 快速成型工艺的优势:
------使模型或模具的制造时间缩短数倍甚至数十倍,大大缩 短新产品研制周期; ------使复杂模型的直接制造成为可能,提高了制造复杂零件 的能力; ------可以及时发现产品设计的错误,做到早找错、早更改, 避免更改后续工序所造成的大量损失,显著提高新产品 投产的一次成功率; ------使设计、交流和评估更加形象化,使新产品设计、样品 制造、市场定货、生产准备、等工作能并行进行,支持 同步(并行)工程的实施; ------节省了大量的开模费用,成倍降低新产品研发成本。
快速成型技术的工作原理

快速成型技术的工作原理快速成型技术(Rapid Prototyping Technology,RPT),也称为快速制造技术(Rapid Manufacturing Technology,RMT),是指采用计算机辅助设计(CAD)、数控加工(CNC)和分层制造技术(SLM)等手段,快速制作出具有复杂内部结构的三维实物模型或器件的一种先进制造技术。
快速成型技术主要包括三个方面的内容:现代制造方式、CAD技术和快速成型技术。
快速成型技术的工作原理是将设计图或CAD模型转为STL文件,再将STL文件通过计算机化控制系统控制加工设备的动作,并以逐层堆积、覆盖、切割、加压等方式将逐层依次进行制造,直至完成所需产品的加工制造。
其具体工作流程如下:1.设计阶段首先,使用计算机辅助设计(CAD)软件将所需产品的三维模型绘制出来。
CAD绘图是快速成型技术的关键环节,决定了产品的实际制造效果和制造成本,需要使用专业的CAD软件进行设计。
2.模型处理阶段CAD设计完成后,需要进行一系列的模型处理。
主要包括增补模型壳体、提高模型强度、修复模型错误等。
这一阶段的处理对制造成型的质量和效率有直接的影响。
3.数据修复阶段接下来进入数据修复阶段,对CAD绘制过程中的错误进行修复和清理,以确保STL文件的精度和准确性,避免在制造过程中出现数据错乱和失真等问题。
4.切片阶段STL文件经过数据处理后,需要切成非常小的层面,比如0.1mm,这个过程称为切片。
通过这个过程将模型切成多个水平层面形成多个切片。
每层镶嵌在一起就变成了整个模型。
5.加工阶段加工阶段就是将切片依次导入数控加工机中,喷射实现逐层累加和压实,也就是通常所说的“逐层堆叠”过程。
这个过程就是快速成型技术的核心技术。
6.后处理阶段最后的后处理阶段可以将产品进行研磨、喷漆、涂料处理等等。
完成整个产品制造的过程。
总之,快速成型技术极大地缩短了从概念到产品推向市场的时间。
快速成型技术的高效加工和制造过程为设计师提供更好的自由度,可以随意尝试和实验不同的设计方案,以最快的速度推向市场产品。
快速成型技术-第六章

6.1 快速成型技术前期处理精度
1、三维建模的形体表达方法 随着计算机辅助设计技术的飞速发展,出现了许多三维建模的形体表达方 法,目前常见的有以下几种: (1) B-Rep法(Boundary Representation,边界表达法), B-Rep法是根据顶 点、边和面所构成的表面来精确地描述三维实体模型的,其优点是能快速 地绘制出立体或线框模型;缺点是由于其数据是以表格的形式出现的,因 此空间的占用量较大,描述不一定是唯一的,所得到的实体有时不很精确, 有可能会出现错误的孔洞和颠倒现象。 (2) CSG法(Constructive Solid Geometry,构造实体几何法),CSG法又称 为 BBG (Building-Block Geometry,积木块几何法),这种方法采用的是布 尔运算法则,将一些较简单的如立方体、圆柱体等体元进行组合,得到复 杂形状的三维实体模型。其最大优点是数据结构简单,无冗余的几何信息, 实体模型也较真实有效,且可以随时修改;缺点是该实体算法很有限,构成 图形的计算量较大而且费时。
(Solid Modeling)和表面造型(Surface Modeling)功能,后者对构造复杂的自由曲面有 着重要的作用。常用三维建模软件种类及特点已在第五章详细论述,目前用得最多 的是Pro/E软件,由于此软件具有强大的实体造型和表面造型功能,可以构造任意复 杂的模·型,因此被广泛使用。
(1) Pro/E软件。Pro/E是美国参数技术公司(Parametric Technology Corporation, PTC)研发的一个非常成功的建模软件。Pro/E软件彻底改变了机械CAD, CAM等传 统观念,采用参数化、数字化特征进行产品的三维建模,目前它已成为当今世界机械 领域的新标准。利用Pro/E软件进行产品的建模设计,能将设计至生产全过程进行有 机地集成,让所有用户都同时参与进行同一产品的设计与制造工作。
简述3d打印快速成型的工艺过程

简述3d打印快速成型的工艺过程3D打印,也称为快速成型技术,是一种通过逐层堆积材料来制造物体的先进制造技术。
它可以直接将数字模型转化为实体物体,具有高效、灵活、精确的特点。
本文将详细介绍3D打印的工艺过程。
1. 数字建模3D打印的第一步是数字建模,即使用计算机辅助设计(CAD)软件创建三维模型。
这个过程可以通过绘制、扫描或使用三维扫描仪来完成。
在数字建模过程中,设计师可以根据需求对模型进行调整和优化,以确保最终打印出的物体具有所需的形状和尺寸。
2. 切片处理一旦完成了数字建模,下一步是将模型切片。
切片是指将三维模型切割成一系列薄片,每个薄片的厚度通常为几毫米。
切片可以使用特定的切片软件完成。
在切片过程中,还可以选择打印参数,如层高、填充密度等。
3. 打印准备完成切片后,需要将切片转换为适合3D打印机使用的文件格式。
最常用的文件格式是.STL(Standard Tessellation Language)格式。
这个过程可以使用切片软件完成,将切片转化为3D打印机可以识别的指令。
4. 打印过程在打印准备完成后,将转换后的文件导入到3D打印机中,并设置打印参数。
3D打印机会根据文件中的指令逐层堆积材料来制造物体。
常用的打印技术包括熔融沉积建模(FDM)和光固化。
在FDM打印中,热塑性材料通过喷嘴加热熔化,并通过移动喷嘴在每一层上方堆积。
而在光固化打印中,液态光敏材料通过紫外线固化成为固体。
5. 后处理完成打印后,物体可能需要一些后处理步骤。
这取决于所使用的打印技术和材料。
例如,在FDM打印中,打印出的物体可能需要去除支撑结构,并进行表面处理,如打磨、喷漆等。
而在光固化打印中,打印出的物体可能需要进行清洗和固化。
通过以上步骤,3D打印技术可以实现快速成型,将设计师的创意转化为实体物体。
它在各个领域都有广泛的应用,如汽车制造、医疗、航空航天等。
3D打印的工艺过程简单明了,但在实际应用中仍然需要不断改进和优化,以满足不同行业的需求。
快速成型(RP)的原理方法及应用

快速成型(RP)的原理方法及应用快速成型(RP)的原理方法及应用快速成型(RP)技术是一种集计算机、数控、激光和材料技术于一体的先进制造技术。
本文通过介绍快速成型系统的原理方法和特点,阐述其工艺特点及开发和应用,探讨快速成型技术在现代制造业中起到的重要作用和产生的巨大效益,分析快速成型技术的优点和缺点,并提出快速成型技术未来的发展方向和深远意义。
1前言当今时代,制造业市场需求不断向多样化、高质量、高性能、低成本、高科技的方向发展,一方面表现为消费者兴趣的短时效和消费者需求日益主体化、个性化和多元化;另一方面则是区域性、国际市场壁垒的淡化或打破,要求制造业的厂商必须着眼于全球市场的激烈竞争。
因此快速地将多样化、性能好的产品推向市场成为了制造业厂商把握市场先机的关键,由此导致了制造价值观从面向产品到面向顾客的重定位,制造战略重点从成本与质量到时间与响应的转移,也就是各国致力于CIMS(ComputerIntegratedManufactureSystem)、并行工程、敏捷制造等现代制造模式的研究与实践的原因。
快速成型(RapidPrototyping)技术正是在这种时代的需求下应运而生的。
它是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。
它集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
2快速成型的原理及特点快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按照一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。
再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。
实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底到顶完成零件的制作过程。
它是计算机辅助设计与制造技术、逆向工程技术、分层制造技术、材料去除成形、材料增加成形技术以及它们的集成的总称。