快速成型技术及其发展综述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机集成制造技术与系统——读书报告

题目名称:

专业班级:

学号:

学生姓名:

指导老师

快速成型技术及其发展

摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。

关键词:快速成型烧结固化叠加发展服务

1 快速成形技术的产生

快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。

自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。

2基本原理

快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。

1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。

2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。

3快速成型技术特点

RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。

RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。

RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者

通过逆向工程所采集的几何数据,建立数字化模型,这是完成快速成型制造的一项基本条件,借助现有的主流三维设计软件建立三维模型,再经过三维CAD导出相应的文件格式输入快速成型机当中,通过逐点、逐面进行三维的立体堆积,部件完成后,再经过必要的后续处理,使完成的部件在性能、形状尺寸、外观上等方面达到设计要求。

RP技术的特点

从原理上说,应用RP技术来进行产品制造,可以忽略产品部件的外形复杂程度(这也是与传统机械加工方式制造产品的最大区别之一),原材料的利用率接近100%,制造精度最高可达0.01mm。

RP技术的主要特点有:

3.1 制造快速

RP技术是并行工程中进行复杂原型或者零件制造的有效手段,能使产品设计和模具生产同步进行,从而提高企业研发效率,缩短产品设计周期,极大的降低了新品开发的成本及风险,对于外形尺寸较小,异形的产品尤其适用。

3.2 CAD/CAM技术的集成

设计制造一体化一直来说是现在的一个难点,计算机辅助工艺(CAPP)在现阶段由于还无法与CAD、CAM完全的无缝对接,这也是制约制造业信息化一直以来的难点之一,而快速成型技术集成CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,使得设计制造一体化的概念完美实现。

3.3 完全再现三维数据

经过快速成型制造完成的零部件,完全真实的再现三维造型,无论外表面的异形曲面还是内腔的异形孔,都可以真实准确的完成造型,基本上不再需要再借助外部设备进行修复。3.4 成型材料种类繁多

到目前为止,各类RP设备上所使用的材料种类有很多,树脂、尼龙、塑料、石蜡、纸以及金属或陶瓷的粉末,基本上满足了绝大多数产品对材料的机械性能需求。

3.5 创造显著的经济效益

与传统机械加工方式比较,开发成本上节约10倍以上,同样,快速成型技术缩短了企业的产品开发周期,使的在新品开发过程中出现反复修改设计方案的问题大大减少,也基本上消除了修改模具的问题,创造的经济效益是显而易见的。

3.6 应用行业领域广

RP技术经过这些年的发展,技术上已基本上形成了一套体系,同样,可应用的行业也逐渐扩大,从产品设计到模具设计与制造,材料工程、医学研究、文化艺术、建筑工程等等都逐渐的使用RP技术,使得RP技术有着广阔的前景。

4现阶段主流的RP工艺方法介绍

4.1 SLA(立体光造型技术)

立体光造型技术是典型的逐层制造法,采用光敏树脂(聚丙烯酸脂)为原料,紫外激光在工控机的控制下根据零件的分层截面信息,在光敏树脂等相应材料的液面进行逐点扫描,被扫描区域的树脂经过光聚合反应而固化,形成零件的一个分层截面,一层固化好后工作平台下降一个分层厚的距离,以便在先前固化好的零件分层截面是重新涂抹一层新的液态树脂,然后工控机控制激光再扫描下一分层截面,层与层之间也因此而紧密连接在一起没有缝隙。如此反复直至整个零件成型。

国外的SLA技术以美国的3D SYSTEM公司为代表,设备技术都较为成熟,同时日本德国以色列都也有各自具有特色比较成熟的SLA快速成型技术。国内是以西安交大的设备较为成熟,现已开发出一整套SLA快速成型机,成型速度、零件精度都已接近国外先进技术。总体来说SLA技术的优势是成型零件精度高,表面质量好,原材料利用率高,而且可以制

相关文档
最新文档