山东春季高考数学试题及答案

合集下载

山东省 春季高考数学试题 含答案

山东省 春季高考数学试题 含答案

山东省2017年普通高校招生(春季)考试数学试题注意事项:1. 本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考生请在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2. 本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知全集UU={1,2}, 集合MM={1}, 则∁UU MM等于(A)∅(B){1}(C){2}(D){1,2}2.函数y=1�|xx|−2的定义域是(A) [-2, 2] (B) (−∞,−2]∪[2,+∞)(C) (-2, 2) (D) (−∞,−2)∪(2,+∞)3.下列函数中,在区间(−∞,0)上为增函数的是(A)yy=xx(B)yy=1(C)yy=1xx(D)yy=|xx|4.二次函数ff(xx)的图像经过两点 (0, 3),(2, 3)且最大值是5,则该函数的解析式是(A)ff(xx)=2xx2−8xx+11(B)ff(xx)=−2xx2+8xx−1(C)ff(xx)=2xx2−4xx+3(D)ff(xx)=−2xx2+4xx+35.等差数列{aa nn}中,aa1=−5,aa3是4与49的等比中项,且aa3<0,则aa5等于(A) -18 (B) -23 (C) -24 (D) -326.已知A(3, 0),B(2, 1),则向量AB�����⃗的单位向量的坐标是(A) (1, -1) (B) (-1,1) (C) (−√22, √22)(D) (√22,−√22)7.对于命题p,q,“pp∨qq是真命题”是“p是真命题”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件8.函数yy=cos2xx−4cos xx+1的最小值是(A) -3 (B) -2 (C) 5 (D) 69.下列说法正确的是(A)经过三点有且只有一个平面(B)经过两条直线有且只有一个平面(C)经过平面外一点有且只有一个平面与已知平面垂直(D)经过平面外一点有且只有一条直线与已知平面垂直10.过直线xx+yy+1=0与2xx−yy−4=0的交点,且一个方向向量vv⃗=(−1,3)的直线方程是(A)3xx+yy−1=0(B) xx+3yy−5=0(C)3xx+yy−3=0(D) xx+3yy+5=011.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是(A) 72 (B) 120 (C) 144 (D) 28812.若aa,bb,cc均为实数,且aa<bb<0,则下列不等式成立的是(A)aa+cc<bb+cc(B)aacc<bbcc(C)aa2<bb2(D)√−aa<√−bb13.函数ff(xx)=2kkxx, g(xx)=log3xx,若ff(−1)=g(9),则实数kk的值是(A) 1 (B) 2 (C) -1 (D) -214.如果�→aa�=3,→bb=−2→aa,那么→aa⋅→bb等于(A) -18 (B) -6 (C) 0 (D) 1815.已知角αα终边落在直线yy=−3xx上,则cos(ππ+2αα)的值是(A)35(B)45(C)±35(D)±4516.二元一次不等式2xx−yy>0表示的区域(阴影部分)是17.已知圆CC1和CC2关于直线yy=−xx对称,若圆CC1的方程是(xx+5)2+yy2=4 , 则CC2的方程是(A)(xx+5)2+yy2=2(B)xx2+(yy+5)2=4(C)(xx−5)2+yy2=2(D)xx2+(yy−5)2=418.若二项式�√xx−1xx�nn的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是(A)20 (B)-20 (C)15 (D)-15机密★启用前19.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表1-1所示,根据表中数据判断,最佳人选为 (A)甲(B)乙(C)丙(D)丁20.已知AA 1,AA 2为双曲线xx 2aa −yy 2bb =1 (aa >0,bb >0)的两个顶点,以AA 1AA 2为直径的圆与双曲线的一条渐近线交于MM ,NN 两点,若△AA 1MMNN 的面积为aa 22,则该双曲线的离心率是(A)2√23(B)2√33(C)2√53(D)2√63卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分。

2021年山东春季高考数学真题参考答案

2021年山东春季高考数学真题参考答案

山东省2021年普通高校招生(春季)考试数学答案及简要解析卷一(选择题 共60分)一、选择题1.B ʌ解析ɔȵ∁U N ={0,1,3},ʑM ɘ(∁U N )={1,3}.2.D ʌ解析ɔ要使函数有意义,须满足|x -1|-3ȡ0,ʑ|x -1|ȡ3,即x -1ɤ-3或x -1ȡ3,解得x ɤ-2或x ȡ4,ʑ定义域为(-ɕ,-2]ɣ[4,+ɕ).3.A ʌ解析ɔȵf (x )在(-ɕ,+ɕ)上是减函数,ʑ由函数单调性可知当x 越大,f (x )反而越小.ȵ-1<0<1,ʑf (1)<f (0)<f (-1).4.B ʌ解析ɔ由函数y =l o g a x 的图像可知a >1.对于函数y =(1-a )x 2+1来说,1-a <0,ʑ二次函数开口朝下,顶点坐标为(0,1),故选项B 正确.5.D ʌ解析ɔ零向量的方向是任意的,故选项A 错误;大小相等和方向相同的两个向量相等,ʑ两个单位向量不一定相等,故选项B 错误;方向相反且大小相同的两个向量互为相反向量,故选项C 错误.6.C ʌ解析ɔȵ角α的终边过点P (-1,2),ʑs i n α=-55,c o s α=255.由二倍角公式s i n 2α=2s i n αc o s α得s i n 2α=2ˑ-55æèçöø÷ˑ255=-45.7.A ʌ解析ɔ若角α是第一象限角,则s i n α>0,充分条件成立;反之,若s i n α>0,则角α可能为第一象限角或第二象限角或在y 轴正半轴上,必要条件不成立.8.C ʌ解析ɔȵ直线l 经过(1,2)和(3,1),ʑ直线l 的斜率k l =1-23-1=-12,ȵm ʅl ,ʑ直线m 的斜率k m =-1k l=2,又直线m 过点(3,1),由直线的点斜式可知直线m 的方程为2x -y -5=0.9.C ʌ解析ɔ安排四人进行接力赛,可根据有无甲运动员分为两类:第一类甲不参加接力赛,则安排方法有A 44=24种;第二类甲参加接力赛,则安排方法有C 34C 13A 33=72种.故不同的安排方法有96种.10.D ʌ解析ɔ根据表格中的对应关系知f (2)=5,f (5)=7,ʑf [f (2)]=7.11.A ʌ解析ɔ根据向量的运算法则知a b =-2m +3,ʑ-2m +3=5,则m =-1.12.C ʌ解析ɔ由图像可知,该函数不关于原点㊁y 轴对称,为非奇非偶函数,最大值为2.又T4=π3--2π3æèçöø÷=π,ʑ最小正周期是4π,ȵ2πω=4π,ʑω=12,令12ˑπ3+φ=0,则φ=-π6.13.B ʌ解析ɔ三件玩具分为三个小朋友,完成这件事的基本事件个数共有A 33=6个,其中都没有拿到自己玩具的这件事的基本事件个数共2个,故概率为26=13.14.A ʌ解析ɔȵ圆到圆上一点的距离为半径,圆经过原点,ʑ半径r =12+22=5,根据圆的标准方程可以得到标准方程为(x -1)2+(y -2)2=5.15.D ʌ解析ɔȵ点M 到抛物线对称轴的距离是4,ʑ点M 的纵坐标为4,ȵM 在抛物线上,ʑ横坐标为8p ,又点M 到准线的距离为5,ʑ8p +p2=5,解得p =2或p =8.16.B ʌ解析ɔ p :甲㊁乙㊁丙三名同学不都是共青团员,即至少有一名不是共青团员.17.C ʌ解析ɔ由图像可知直线为实线,且点(0,0)在区域内,代入(0,0)可得x +3y -3<0,在直线下方,符合要求.18.C ʌ解析ɔ由题意设该等差数列为{a n },则S 5=30,a 1+a 2=a 3+a 4+a 5,{解得a 1=8,d =-1,{ʑ甲所分小米的斤数是8斤.19.B ʌ解析ɔ由二项式的通项公式可知T m +1=C m n a n -m b m ,ʑ第二项的二项式系数为C 1n ,第五项的二项式系数为C 4n ,ȵC 1n =C 4n ,ʑn =5,则T 4=C 351x æèçöø÷2(-2)3,即系数为-80.20.B ʌ解析ɔ在正方体A B C D A 1B 1C 1D 1中,B D ʅA 1C ,B C 1ʅA 1C ,B D ɘB C 1=B ,且B D ,B C 1⊂平面B C 1D ,A 1C ⊄平面B C 1D ,ʑA 1C ʅ平面B C 1D ,又C 1P ⊂平面B C 1D ,ʑP C 1ʅA 1C .卷二(非选择题 共60分)二㊁填空题(本大题5个小题,每小题4分,共20分㊂请将答案填在答题卡相应题号的横线上)21.-1 ʌ解析ɔȵ-1ɤs i n x ɤ1,ʑ-5ɤ2s i n x -3ɤ-1,即函数y 的最大值是-1.22.1+15 ʌ解析ɔ正四棱锥的表面积由底面正方形和侧面四个等腰三角形构成,故S =1ˑ1+4ˑ12ˑ1ˑ152=1+15.23.53 ʌ解析ɔ由题意知2a 2b =32,则a b =32,故离心率e =1-b a æèçöø÷2=53.24.2 ʌ解析ɔȵ x =16(85+91+88+87+90+87)=88,ʑs 2=16[(85-88)2+(91-88)2++(87-88)2=4,则s =2.25.S =12㊃3m +2-3m +1+12㊃3mʌ解析ɔȵ点A ,B ,C 的横坐标成等差数列,且点A 的横坐标为m ,ʑ点B 的横坐标为m +1,同理,点C 的横坐标为m +2,即点A 为(m ,3m +1),B 为(m +1,3m +2),C 为(m +2,3m +2).利用割补法知әA B C 的面积为S =S әA C E -S әA B D -S 梯形B C E D ,其中S әA C E =12ˑ2ˑ(3m +2-3m ),S әA B D =12ˑ1ˑ(3m +1-3m ),S 梯形B C E D =12[(3m +1-3m )+(3m +2-3m )],故S =12㊃3m +2-3m +1+12㊃3m.三㊁解答题(本大题5个小题,共40分)26.解:(1)ȵf (4)=8,ʑ16a -8=8,则a =1.(2)设x <0,则-x >0,ʑf (-x )=x 2+2x .ȵf (x )是定义在R 上的奇函数,ʑ-f (x )=f (-x ),即f (x )=-f (-x )=-x 2-2x .综上所述,f (x )=-x 2-2x ,x <0,x 2-2x ,x ȡ0.{27.解:(1)ȵa n >0,a 1=1,2a n +1-a n =0,ʑa n +1a n=12,即数列{a n }是等比数列,a 1=1且q =12,ʑ通项公式为a n =12æèçöø÷n -1.(2)ȵb n =l o g 2a n =l o g 212æèçöø÷n -1=1-n ,ʑ数列{b n }是首项b 1=0,公差d =-1的等差数列.则S 90=90ˑ0+90ˑ892ˑ(-1)=-4005.28.解:(1)过点A 作垂线交O Q 于点E ,ȵøP O Q =30ʎ,且O A =10,ʑA E =5.又A B =52,ʑs i n øO B A =A E A B =22,即øO B A =45ʎ.(2)由(1)可知C E =B E =5,O E =53,ʑO C =O E -C E =53-5,ȵD 为O A 的中点,ʑO D =5,由余弦定理可知c o s øP O Q =O C 2+O D 2-C D 22㊃O C ㊃O D =12,ʑC D =2.6.29.解:(1)ȵS A ʅ平面A B C D ,ʑS A ʅA B ,又底面A B C D 是正方形,ʑA D ʅA B ,ȵA D ɘS A =A ,A D ,S A ⊂平面S A D ,A B ⊄平面S A D ,ʑA B ʅ平面S A D ,ȵS D ⊂平面S A D ,ʑA B ʅS D .(2)取S D 的中点G ,连接G F 和A G ,ȵG ,F 是中点,ʑG F ʊC D ,且G F =12C D .ȵ底面A B C D 是正方形,且E 是A B 的中点,ʑA E ʊC D ,且A E =12C D .则A E ʊG F ,且A F =G F ,ʑ四边形A E F G 是平行四边形,则A G ʊE F ,ʑ直线E F 与A D 所成的角为øG A D .ȵG 是S D 的中点,ʑA G =12S D ,则A G =G D ,即三角形A D G 为等腰三角形,又øS D A =60ʎ,ʑ三角形A D G 为等边三角形,则øG A D =60ʎ.30.解:(1)ȵ椭圆方程为x 25+y 24=1,ʑc =1,即左焦点为F (-1,0).ȵ双曲线左顶点与左焦点重合,ʑ双曲线中a =1,又双曲线过点P ,ʑb 2=1,即双曲线的标准方程为x 2-y 2=1.(2)设直线l :y =k (x +1),联立方程组y =k (x +1),x 25+y 24=1,ìîíïïï整理得(4+5k 2)x 2+10k 2x +5k 2-20=0,由韦达定理可知x 1+x 2=-10k 24+5k 2,ȵM ,N 在直线l 上,ʑy 1+y 2=k (x 1+1)+k (x 2+1),即y 1+y 2=-10k 34+5k 2+2k =8k 4+5k 2.ʑ线段MN 的中点坐标为-5k 24+5k 2,4k 4+5k 2æèçöø÷.由双曲线的抛物线方程可知渐近线方程为y =ʃx ,ȵMN 的中点在渐近线上,ʑ分为两种情况:①当线段MN 的中点在y =x 上时,则-5k 24+5k 2=4k4+5k 2,即k =0或k =-45;②当线段MN 的中点在y =-x 上时,则5k 24+5k 2=4k4+5k 2,即k =0或k =45.综上所述,直线l 的方程为y =0或y =ʃ45(x +1)(一般式为4x ʃ5y +4=0).。

2021年山东省春季高考数学真题-【含答案】

2021年山东省春季高考数学真题-【含答案】
2.请将答案正确填写在答题卡上
第I卷(选择题)
评卷人
得分
一、单选题
1.假设集合 , ,那么 等于()
A. B. C. D.
2. 的解集是()
A. B.
C. D.
3.函数 的定义域为()
A. 且 B.
C. 且 D.
4.“圆心到直线的距离等于圆的半径”是“直线与圆相切”的()
A.充分没必要条件B.必要不充分条件
(1)求抛物线的标准方程;
(2)假设直线 通过点 ,与抛物线相交于 , 两点,且 ,求直线 的方程.
参考答案
1.B
【分析】
直接根据交集的定义求解即可.
【详解】
, ,
.
故选:B.
2.B
【分析】
应用公式法解绝对值不等式,即可求解集.
【详解】
由 得: ,解得 .
∴解集为 .
故选:B
3.A
【分析】
根据函数解析式有意义的要求列不等式求函数定义域.
(2)因为 的定义域是 ,
即 恒成立.
则方程 的判别式 ,即 ,
解得 ,
又因为 或 ,因此 .
代入不等式得 ,即 ,
解得 ,
因此实数 的取值范围是 .
29.(1) ;(2)证明见解析.
【分析】
(1)由题意可得 即为SA与BC所成的角,根据余弦定理计算即可;
(2)结合面面垂直的性质和线面垂直的性质即可证明.
故答案为:42
24.
【分析】
由于 是圆,可得 ,通过圆心和半径计算 ,即得解
【详解】
由于 是圆,
即:圆
其中圆心为 ,半径为4
那么椭圆的长轴长为8,即 , , ,
那么短轴长为

(完整版)山东省春季高考数学试题及答案

(完整版)山东省春季高考数学试题及答案

山东省 2019 年一般高校招生(春天)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120 分,考试时间120 分钟。

考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试同意使用函数型计算器,凡使用计算器的题目,除题目有详细要求外,最后结果精准到。

卷一(选择题共60 分)一、选择题(本大题 20 个小题,每题 3 分,共 60 分。

在每题列出的四个选项中,只有一项切合题目要求,请将切合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知会合 M={0,1} ,N={1,2},则 M∪ N 等于()A. {1}B. {0,2}C. {0,1,2}D.2. 若实数 a, b 知足 ab>0 , a+b>0 ,则以下选项正确的选项是()A. a>0 , b>0B. a>0 , b<0yC. a<0 , b>0D. a<0 , b<03. 已知指数函数y=a x,对数函数 y=log b x的图像如下图,则以下关系式正确的选项是(y)y=log b y=a xA. 0<a<b<1B. 0<a<1<bO x C. 0<b<1<a D. a<0<1<b4. 已知函数 f(x)=x 3 +x ,若 f(a)=2 ,则 f(-a) 的值是()第 3 题图A. -2B. 2C. -10D. 105. 若等差数列 {a n }的前 7 项和为 70 ,则 a 1+a 7等于()A. 5B. 10C. 15D. 20uuur uuur6. 如下图,已知菱形ABCD 的边长是 2 ,且∠ DAB =60 °,则AB AC 的值是()A. 4B. 4 2 3C. 6D. 4 2 3DA CB第 6 题图7. 对于随意角α,β,“ α = β ”是“ sinα =sin β”的()A. 充足不用要条件B. 必需不充足条件C. 充要条件D. 既不充足也不用要条件8. l⊥ OP ,则直线 l 的方程是(y如下图,直线)A. 3x - 2y=0B. 3x+2y - 12=0 3PC. 2x - 3y+5=0D. 2x+3y - 13=0 O2 x9. 在( 1+x )n的二项睁开式中,若全部项的系数之和为64 ,则第 3 项是(第 8 题图)A. 15x 3B. 20x 3C. 15x 2D. 20x 210. 在 RtV ABC 中,∠ ABC =90 °,AB=3 , BC=4 , M 是线段 AC 上的动点 . 设点 M 到 BC 的距离为 x ,V MBC的面积为y,则y对于x的函数是()A. y=4x , x ∈(0, 4]B. y=2x , x ∈(0,3]C. y=4x , x ∈(0, )D. y=2x , x ∈(0,)11.现把甲、乙等 6 位同学排成一排,若甲同学不可以排在前两位,且乙同学一定排在甲同学前方(相邻或不相邻均可),则不一样排法的种树是()A. 360B. 336C. 312D. 24012. 设会合 M={-2 , 0 , 2 , 4} ,则以下命题为真命题的是()A. a M , a 是正数B. b M , b是自然数C. c M , c 是奇数D. d M , d 是有理数13. 已知 sin1α的值是()α=,则 cos22A. 8B. 8C. 7D. 79 9 9 914. 已知 y=f(x) 在 R 上是减函数,若f(| a|+1)<f(2) ,则实数 a 的取值范围是()A. (-∞,1 )B. (-∞, 1 )∪( 1 ,+∞)C. (- 1 , 1 )D.(-∞,- 1 )∪( 1, +∞)15.已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x2 +y 2=2 相切于点 A ,且 |AO|=|AM| ,则点 M 的横坐标是()A. 2B.2C.22D. 416.如下图,点E、F、 G、 H 分别是正方体四条棱的中点,则直线EF 与 GH 的地点关系是()A. 平行B. 订交C.异面D. 重合FGHE第16 题图x y 2 ≥017.如下图,若x,y知足线性拘束条件x ≤0,y≥1则线性目标函数z=2x-y获得最小值时的最优解是()A. ( 0 , 1 )B. ( 0 , 2 )C. ( -1 ,1 ) D . ( -1 , 2 )18. 箱子中放有 6 张黑色卡片和 4 张白色卡片,从中任取一张,恰巧获得黑色卡片的概率是()A. 1B. 1C. 2D. 36 3 5 519. 已知抛物线的极点在座标原点,对称轴为坐标轴,若该抛物线经过点 M( -2 ,4 ),则其标准方程是()A. y 2=-8xB. y 2= - 8x 或 x2=yC. x 2=yD. y 2=8x 或 x2 = - y20. 已知V ABC的内角A,B,C的对边分别是a,b,c,若a=6,sinA=2cosBsinC ,向量 m = ( a, 3b) , 向量 n =( - cosA , sinB) ,且 m ∥ n ,则V ABC 的面积是()A. 18 3B. 9 3C. 3 3D. 3卷二(非选择题共 60 分)二、填空题(本大题 5 个小题,每题 4 分,共 20 分。

2024年山东省春季高考数学试题及答案

2024年山东省春季高考数学试题及答案

2024年山东省春季高考真题一、选择题:1.下列关系式正确的是( )A.Z N ⊆B.Q ∈2C.{}∅=0D.N ∉02.已知0,0><b a ,则下列不等式成立的是( )A.0<+b aB.0<-b aC.0>+b aD.0>-b a3.圆()()43222=++-y x 的圆心坐标是( ) A.()3,2 B.()3,2- C.()3,2- D.()3,2--4.不等式2<-m x 的解集是()3,1-,则实数m 的值为( )A. 0B.1C.2D.35.如图所示,C B A '''∆是用斜二测画法画的水平放置的ABC ∆的直观图,则在平面直角坐标系中,最长的线段是( )A.OCB.OBC.ACD.AB 6.函数()()R b a bx ax x f ∈++=,22是偶函数的充要条件是( )A.0=bB.0=aC.0≠bD.0≠a 7.已知,α是第二象限角,β是第三象限角,下列说法正确的是( )A.0sin sin >βαB.0cos cos <βαC.0cos sin <βαD.0sin cos <βα8.如图所示,在ABC ∆中,三条边长均为1,D 、E 、F 分别是AB 、BC 、CA 的中点,则下列运算结果为单位向量的是( )A.DF DE AD ++B.DE AD +C.DF DE AD +-D.DE AD -9.已知2tan =α,5tan =β,则()=+βαtan ( )A.97B.117C.97-D.113- 10.已知()x f 是定义在R 上的减函数,若()()132f x f >-,则x 的取值范围为( )A.()+∞,2B.()2,∞- C.()+∞-,1 D.()1-∞-, 11.如果a ,b 除以m (*∈N m )所得的余数相同,则称整数a ,b 关于模m 同余,记作()m b a ≡,若()m 5992≡,则m 可能的取值是( )A.2B.11C.22D.3112.已知直线l 与直线13+=x y 垂直,则直线l 的斜率是( ) O ' C 'A 'B 'A B C D E Fx O y x O yx O y xO y A.3 B.3- C.33 D.33- 13.某人驾驶汽车出行,在途中休息一段时间后继续驾驶直达目的地,假设途中汽车匀速行驶,则汽车行驶的路程y 关于时间x 的函数的图象大致是( )A. B. C. D.14.在62⎪⎭⎫ ⎝⎛-x x 的二项式展开式中,常数项是( ) A.20- B.20 C.160- D.16015.已知命题p 、q ,若()q p ∨⌝是真命题,则下列结论正确的是( )A.p 、q 都是真命题B.p 是真命题,q 是假命题C.p 、q 都是假命题D.p 是假命题,q 是真命题16.某学校甲、乙两名教师和3名学生站在一排照相,如果教师甲位于教师乙的左边(可相邻,可不相邻),则至少有2名学生相邻的概率是( )A.101B.103C.107D.109 17.已知抛物线()022>=p px y 的焦点为F ,过F 作垂直于x 轴的直线与抛物线交于M 、N 两点,若4=MN ,则焦点F 到准线的距离是( )A.1B.2C.4D.618.二元一次不等式组⎩⎨⎧≥+-<-+0102y x y x 所表示的平面区域用阴影区域表示是( )A. B. C. D.19.某学校安排甲、乙等6名同学到三个社区开展服务活动,每个社区均安排2名同学,其中甲乙二人必须安排在同一社区,则不同的安排的方法的个数为( )A.6B.18C.36D.9020.如图所示,正三棱锥ABC S -的棱长都是2,D 是SC 的中点,则下列结论:①BD SA //;②SC AB //;③SC 与平面ABC 所成的角是︒60;④正三棱锥ABC S -的体积是322;x O y x O yx O y x O y其中正确的结论的序号是( )A.①②B.①③C.③④D.②④二、填空21.在等差数列{}n a中,a2=4,a4=2,则a7=____________22.椭圆x 28+y26=1的离心率是_________23.|a⃗|=3,|b⃗⃗|=2√3,<a⃗,b⃗⃗>=90°,a⃗∙(a⃗−b⃗⃗)=_________24.一组数9,13,12,13,10平均数为x̅,每个数都减x̅,方差为_________25.f(x)=√3sinωx+cosωx,(ω>0)与y=1有交点,两个相邻交点的最小值为π3,将f(x)的x值缩小为原来的12,y值不变,再向左平移φ(0<φ<π2)为g(x),g(π4)=-1,则g(3π8)=_________三、解答题(本大题共5小题,共40分)26.(本小题共7分)已知f(x)=log a x,过点(4,2)(1)求a(2)g(x)=f(x2−2x+m)的定义域为R,求m的值27.(本小题共8分)等比数列q>1,a1+a3=10,a2=4(1)求a n(2)b n=a2n+1−a2n,求S6(本小题共8分)长方体中A1A=4,AB=AD=3,E、F分别是AD1和CD1的中点(1)证明EF⊥BD(2)求AD1与BD所成角的大小(精确到1°)29.(本小题共8分)三角形ABC中D为BC上一点,BD=6,⊥B=45°,sin⊥BAD=35(1)求AD(2)若2BD=3CD,求AC30. (本小题共9分)双曲线x 2a 2−y 2b 2=1(a>0,b>0),圆D x 2+y 2=r 2,双曲线与圆交于M (3,4),双曲线的一条渐近线为y =√2x(1)求双曲线的方程(2)点P 为圆与y 轴正半轴交点,过点P 的直线l 交双曲线于A 、B 两点,且PB⃗⃗⃗⃗⃗⃗=2BA ⃗⃗⃗⃗⃗⃗,求l 的方程答案:一、选择题:ABCBD ACACB BDACC DBDBD二、填空题:21. -1; 22. 21; 23. 9; 24. 3;25. 3。

2021年山东省春季高考数学试卷(word版含答案)

2021年山东省春季高考数学试卷(word版含答案)

山东省2021年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟,考生请在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01.卷一(选择题 共60分)一.选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合{}0,1,2,3,4U =,集合{}{}12324M N ==,,,,,则()U MN C 等于( )A.{}2B.{}1,3C.{}0,1,3D.{}0,1,2,32.函数|1|3y x =--的定义域是( ) A.(2,4)- B.(,2)(4,)-∞-+∞ C.[2,4]- D. (,2][4,)-∞-+∞3.已知函数()f x 在(,)-∞+∞上是减函数,则下列关系正确的是( ) A.(1)(0)(1)f f f <<- B. (0)(1)(1)f f f <-< C. (1)(0)(1)f f f -<< D. (0)(1)(1)f f f <<-4.已知函数log (01)a y x a a =>≠且的图像如图所示,则函数2(1)1y a x =-+的图像大致是( )5.下列命题正确的是( )A.零向量没有方向B.两个单位向量相等C.方向相反的两个向量互为相反向量D.若//AB AC ,则,,A B C 三点共线6.角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边过点(1,2)P -,则sin 2α等于( )A.35- B.35 C. 45- D. 457.“角α是第一象限角”是“sin 0α>”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.如图所示,已知直线m l ⊥,则直线m 的方程为( ) A.210x y --= B.210x y -+=C.250x y --=D.250x y -+=9.某运动员队准备参加4100⨯米接力赛,队中共有5名运动员,其中甲运动员不能跑第一棒,教练从这5人中安排4人分别跑第一至第四棒,则所有不用安排方法的种数是( ) A.48 B.60 C.96 D.120 10.已知函数()f x 的对应值图下表所示:函数的对应值表 x0 1 2 3 4 5y 3 6 5 42 7则等于( )A.4B.5C.6D.7 11.已知向量(2,3),(,1)a b m =-=,若5a b =,则实数m 的值是( ) A.1- B.4- C.32 D.7312.函数sin()(0,0,||)2y A x A πωϕωϕ=+>><的部分图像如图所示,则下列说法正确的是( )A.该函数为偶函数B.该函数的最大值为1C.该函数的最小正周期为4πD.ϕ的值为3π-13.在幼儿园“体验分享,快乐成长”的活动中,有三位小朋友都把自己的一件玩具交给老师,老师再把这三件玩具随机发给他们,每人一件,则这三位小朋友都没有拿到自己玩具的概率是( )A.12 B.13 C.14 D.1614.已知过原点的圆,其圆心坐标为(1,2),则该圆的标准方程为( )A.22(1)(2)5x y -+-= B. 22(1)(2)4x y -+-= C.22(1)(2)5x y +++= D. 22(1)(2)4x y +++=15.已知点M 在抛物线22(0)y px p =>上,若点M 到抛物线对称轴的距离为4,到准线的距离为5,则p 的值是( )A.2或4B.4或6C.6或8D.2或8 16.已知命题:p 甲、乙、丙三名同学都是共青团员,则p ⌝为( ) A.甲、乙、丙三名同学都不是共青团员B.甲、乙、丙三名同学至少有一名不是共青团员C.甲、乙、丙三名同学至少有两名不是共青团员D.甲、乙、丙三名同学至多有一名不是共青团员17.在下列不等式中,能表示如图所示区域(阴影部分)的是( )A.330x y +-<B. 330x y +->C. 330x y +-≤D. 330x y +-≥18.在《九章算术》中有如下问题:“有甲、乙、丙、丁、戊五人分30斤小米,其中甲、乙两人所分小米的斤数之和与丙、丁、戊三人所分小米的斤数之和相等,且甲、乙、丙、丁、戊五人所分小米的斤数成等差数列,问每人各分多少斤。

2021山东春季高考数学真题(含答案)

2021山东春季高考数学真题(含答案)

2021山东春季高考数学真题(含答案)山东省2021年普通高校招生(春季)考试数学问题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.本考试允许使用函数计算器。

对于使用计算器的问题,除非对问题有具体要求,否则最终结果精确到0.01。

卷一(选择题,共60分)一、多项选择题(这道主题有20个子题,每个子题有3分,总共60分。

在每个子题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)B2,3?, 1.已知集合a??1,3?,然后是a?B等于()a.?b.?1,2,3?c.?1,2?d.?3?[答:]B[分析]因为a??1,3?, B2,3?, 那是一个?B1,2,3?. 2.如果集合a和B已知,那么“a?B”是()a.充分不必要条件b.必要不充分条件c、充分必要条件D.既不充分也不必要条件【答案】b【解析】?a?b?a?b,又a?b?a?b或a?b,?“a?b”是“a?b”的必要不充分条件.3.不等式x?2?3的解集是()A.5.1.B5,1? C1.5.D1,5?【答案】a【解析】x?2?3x?2?3?x?1,即不等式的解集为x?2??3?x??5,?51,.4.奇数函数y?F十、哪里0如果屏幕上的图像如图所示,则该函数位于,0上的图像可能是()第4题图gd21gd22gd23gd24gd25【答案】d【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选d.5.如果实数a>0,则以下等式成立()a.??2??2?4b.2a?3??210?2c.??2a3??1?1??1d.?a4??A.4.在【答案】d【分析】A??2.110? 3.B中的2a?23,C??2.1.因此,D选项是正确的。

4A6已知序列?一是等比序列,其中A3?2,a6?16,那么序列的公共比率Q等于()a.14b。

山东省春季高考数学模拟试题(二)及答案(最新整理)

山东省春季高考数学模拟试题(二)及答案(最新整理)

山东省春季高考数学模拟试题(二)2019.4.16注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷一、选择题(本大题共20小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1、设集合M={n },则下列各式中正确的是( )A B C D n M ⊆n M ∈n M =n M ∉2、“”是“”的( )1x >2x x >A 充分不必要条件 B 必要不充分条件C 充要条件D 既不充分也不必要条件3、函数的定义域为( )y =A BC D [4,1]-[4,0)-(0,1][4,0)(0,1]-⋃4、从篮球队中随机选出5名队员,其身高分别为(单位:cm ):180、188、200、195、187、则身高的样本方差为( )A 47.6B 190C 51D 425、若偶函数在区间上是增函数,且有最小值5,则在区间上是()f x [3,7]()f x [7,3]--( )A 增函数,最小值是 5B 增函数,最大值是5--C 减函数,最小值是5D 减函数,最大值是56是与的等比中项,则等于( )3a3ba b +A 8B 4C 1 D147、已知角与单位圆的交点为,则的值为( )α(1,0)P -sin αA 0B C D 112-128、已知为等差数列,且,则公差d 等于( ){}n a 74321,0a a a -=-=A B C D 22-12-129、过点且与直线垂直的直线方程为( )(1,2)P -310x y +-=A B350x y -+=350x y --=CD 350x y ++=350x y -+=10、平面向量与的夹角为,,,则( )a b 60(2,0)a = ||3b = |2|a b -= A 2B 1C 5D 2511、若函数在上是增函数,则满足的条件为( )2()(1)xf x a =-(0,)+∞a ABC D ||1a>||a<||a >1||a <<12、函数的最大值为( )2sin 4sin 3y x x =-+-A 1 B 2 C 3 D 013、在等差数列中,若 , ,则前10项的和等{}n a 13518a a a ++=24624a a a ++=10S 于( )A 110B 120C 130D 14014、已知,则的值是2621201212(1)x x a a x a x a x -+=++++ 01212a a a a ++++ ( )A 1B 2C -1D 015、在中,若,,面积是( )ABC ∆3a =60B ∠=S =ABC ∆A 等腰直角三角形 B 直角三角形C 等边三角形 D 钝角三角形16、如图所示,表示阴影部分的二元一次不等式组是( )A .B .232600y x y x ≥-⎧⎪-+>⎨⎪<⎩232600y x y x >-⎧⎪-+≥⎨⎪≤⎩C .D .232600y x y x >-⎧⎪-+>⎨⎪≤⎩232600y x y x >-⎧⎪-+<⎨⎪<⎩17、若直线与圆相切,则等于( )0x y m -+=(0)m >222x y +=m AB C 2 D 2-±18、若某学校要从5名男生和2名女生中选出3人作为青年志愿者,则选出的志愿者中男女生均不少于1名的概率为( )AB C D 57102135174219、如果方程表示焦点在y 轴上的椭圆,则k 的取值范围是( )222x ky +=A BCD (0,)+∞(0,2)(1,)+∞(0,1)20、已知双曲线的左、右焦点分别是、,其一条渐近线方程为2221(0)2x y b b-=>1F 2F y x =,点在双曲线上,则( )0)P y 12PF PF ⋅=A BC 0D412-2-第Ⅱ卷二、填空题(本题共5个小题,每题3分,共15分)21、已知,则____________________()2xf x x =+(1)f x +=22、函数的最小正周期是____________________22(cos sin )tan 2y x x x =-23、若椭圆的两个焦点将长轴三等分,则该椭圆的离心率等于________________________24、已知正方体的外接球的体积为,那么正方体的棱长等于______323π25、将3个人分到4个不同的班级,则不同的分发种数是________三、解答题(本题共5题,共45分)26、已知二次函数满足条件:,且在轴上截得的线段()f x (0)5,(2)(2)f f x f x =+=-x 长为6求:(1)的解析式;(2)求在区间上的最大值和最小值()f x ()f x [1,1]-28、已知政府收购某种产品的原价格为每担200元,其中征税标准为每100元征10元(即税率为10%),并计划收购a 万担,为了减轻农民负担,现决定将税率降低x 各百分点,预计收购量可增加2x 个百分点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省2017年普通高校招生(春季)考试
数学试题
注意事项:
1.本试卷分卷一(选择题)和卷二(非选择题)两部分。

满分120分,考试时间为120分钟。

考生请在答题卡上答题。

考试结束后,去诶能够将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。

卷一(选择题,共60分)
一、选择题(本大题20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的字母选项代号选出,并填涂在答题卡上。


1.已知全集{}1,2U =,集合{}1M =,则U C M 等于 ( )
(A )∅ (B ) {}1 (C ) {}2 (D ){}1,2
2.函数
y =的定义域是( )
(A )[2,2]- (B ) (,2][2,,2)-∞-+∞- (C )(2,2)- (D )(,2)(2,,2)-∞-+∞-
3.下列函数中,在区间(,0)-∞上为增函数的是( )
(A )y x = (B ) 1y = (C )1y x
= (D )y x = 4.已知二次函数()f x 的图像经过两点(0,3),(2,3),且最大值是5,则该函数的解析式是
( )
(A )2()2811f x x x =-+ (B ) 2()281f x x x =-+-
(C )2()243f x x x =-+ (D )2()243f x x x =-++
5. 在等差数列{}n a 中, 15a =-,3a 是4和49的等比中项,且30a <,则5a 等于( )
(A )18- (B ) 23- (C )24- (D )32-
6. 已知(3,0),(2,1)A B ,则向量AB 的单位向量的坐标是 ( )
(A )(1,1)-
(B ) (1,1)-
(C )( (D ) 7. 对于命题,p q ,“p q ∨”是真命题是“p 是真命题”的 ( )
(A )充分比必要条件 (B ) 必要不充分条件
(C )充要条件 (D )既不充分也不必要条件
8.函数2cos 4cos 1y x x =-+的最小值是( )
(A )3- (B ) 2- (C )5 (D )6
9.下列说法正确的是( )
(A )经过三点有且只有一个平面
(B ) 经过两条直线有且只有一个平面
(C )经过平面外一点有且只有一个平面与已知平面垂直
(D )经过平面外一点有且只有一条直线与已知平面垂直
10. 过直线10x y ++=与240x y --=的交点,且一个方向向量(1,3)v =-的直线方程是 ( )
(A )310x y +-= (B ) 350x y +-=
(C )330x y +-= (D )350x y ++=
11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是( )
(A )72 (B ) 120 (C )144 (D )288
12.若,,a b c 均为实数,且0a b <<,则下列不等式成立的是( )
(A )a c b c +<+ (B )ac bc < (C )22a b < (D )a b -<- 13. 函数3()2,()log kx f x g x x ==,若(1)(9)f g -=,则实数k 的值是( )
(A )1 (B )2 (C )-1 (D )-2
14. 如果3,2a b a ==-,那么a b ⋅等于( )
(A )-18 (B )-6 (C )0 (D )18
15. 已知角α终边落在直线3y x =-上,则cos(2)πα+的值是( )
(A )35 (B )45 (C )35± (D )45± 16. 二元一次不等式20x y ->表示的区域(阴影部分)是( )
(A ) (B ) (C ) (D )
17. 已知圆1C 和2C 关于直线y x =-对称,若圆1C 的方程是22(5)4x y ++=,则2C 的方程是( )
(A )22(5)2x y ++= (B )22(5)4x y ++=
(C )22(5)2x y -+= (D )22(5)4x y +-=
18. 若二项式1()n x x
的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是( )
(A )20 (B )-20 (C )15 (D )-15
19. 从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在相同条件下经过多轮测试测试,成绩分析如表1—1所示,根据表中数据判断,最佳人选为( )
表1—1 成绩分析表
(A )甲 (B )乙 (C )丙 (D )丁
20. 已知12,A A 为双曲线22
221x y a b
-=(0,0)a b >>的两个顶点,以12,A A 为直径的圆与双曲线的一条渐近线交于,M N 两点,若△1A MN 的面积为2
2
a ,则该双曲线的离心率是( ) (A )
23 (B )233 (C )253 (D )263
卷二(非选择题,共60分)
二、填空题(本大题5个小题,每小题4分,共20分。

请将答案填在答题卡相应题号的横线上)
21.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于________.
22. 在△ABC 中,2,3,a b ==∠B =∠2A ,则cos A 等于________.
23. 已知12,F F 是椭圆22
11636
x y +=的两个焦点,过1F 的直线交椭圆于,P Q 两点,则△2PQF 的周长等于________。

24.某博物馆需要志愿者协助工作,若从6名志愿者中任选出3名,则其中甲、乙两名志愿者恰好同时被选中的概率是________。

25.对于实数,m n ,定义一种运算:,,m m n m n n m n ≥⎧*=⎨<⎩
,已知函数()x f x a a =*,其中01a <<,若(1)(4)f t f t ->,则实数t 的取值范围是________。

三、解答题:(本大题共5个小题,共40分)
26.(本小题7分)
已知函数22()log (3)log (3)f x x x =+--。

(1)求函数()f x 的定义域,并判断函数()f x 的奇偶性;
(2)已知(sin )1f α=,求α的值。

相关文档
最新文档