判断氧化剂和还原剂的强弱
氧化剂、还原剂强弱的比较

物质氧化性、还原性强弱的比较,实质上是物质得失电子难易程度的比较。
即物质越易夺得电子,则其氧化性越强,越难夺得电子则其氧化性越弱;反之,物质越易失去电子,则其还原性越强,越难失去电子,则其还原性越弱。
一、利用化合价,比较物质氧化性、还原性强弱由同种元素形成的不同价态物质的氧化性和还原性的强弱规律是:元素的最高价态只具有氧化性,元素的最低价态只具有还原性,元素的中间价态既有氧化性又有还原性。
例1.对铁元素组成的物质而言:氧化性:Fe<二价铁盐<三价铁盐还原性:Fe>二价铁盐>三价铁盐二、利用元素活泼性的不同,比较物质氧化性、还原性的强弱1.对金属而言,金属越活泼(金属性越强),其单质的还原性越强,其金属阳离子的氧化性越弱。
例2.对金属活动性顺序表而言:K Ca Na Mg Al Zn Fe Sn Pb(H) Cu Hg Ag Pt Au活泼性(金属性)————→减弱其单质还原性:K>Ca>Na>Mg>Al>…Hg>Ag>Pt>Au其离子氧化性:K+<Ca2+<Na+<Mg2+<Al3+<…<Hg2+<Ag+<Pt2+<Au+例3.对同主族的金属元素,从上到下活泼性依次增强。
如对ⅡA族金属元素:Be Mg Ca Sr Ba活泼性(金属性)————→增强其单质还原性:Be<Mg<Ca<Sr<Ba其阳离子氧化性:Be2+>Mg2+>Ca2+>Sr2+>Ba2+例4.对同周期金属而言,从左到右其金属活泼性(金属性)依次减弱。
如对第3周期金属而言:Na Mg Al活泼性(金属性)————→减弱其单质还原性:Na>Mg>Al其阳离子氧化性:Na+<Mg2+<Al3+2.对非金属而言,其非金属越活泼(非金属性越强),其非金属单质的氧化性越强,其阴离子的还原性越弱。
例5.对一般的非金属活动性顺序而言:F Cl Br I S活泼性(非金属性)————→减弱其单质氧化性:F2>Cl2>Br2>I2>S其阴离子还原性:F-<Cl-<Br-<I-<S2-例6.对同主族的非金属而言,从上到下非金属的活泼性依次减弱。
高中化学微专题07 氧化性和还原性强弱的实验探究及应用-备战2022年高考化学考点微专题(解析版)

微专题07 氧化性和还原性强弱的实验探究及应用氧化性和还原性的强弱比较方法一、依据反应原理判断氧化还原反应总是遵循以下规律(简称强弱律):氧化性:氧化剂>氧化产物,氧化剂>还原剂;还原性:还原剂>还原产物,还原剂>氧化剂。
方法二、根据“三表”来判断(1)根据元素在周期表中的相对位置判断(2)依据金属活动性顺序表判断(3)依据非金属活动性顺序表判断方法三、依据“两池”判断(1)两种不同的金属构成原电池的两极。
负极金属是电子流出的极,正极金属是电子流入的极。
其还原性:负极>正极。
(2)用惰性电极电解混合溶液时,在阴极先放电的阳离子的氧化性较强,在阳极先放电的阴离子的还原性较强。
在阳极阴离子放电顺序:S2−>I−>Br−>Cl−>OH−,即是还原性强弱顺序。
在阴极阳离子放电顺序:Ag+>Hg2+>Fe3+>Cu2+>H+>Pb2+>Sn2+>Zn2+>Al3+>Mg2+>Na+>Ca2+>K+,即是氧化性强弱顺序。
方法四、依据与同一物质反应的情况(反应条件、剧烈程度等)判断。
当不同的氧化剂作用于同一还原剂时,若氧化产物价态相同,可根据反应条件高、低来进行判断,反应条件越低,性质越强;若氧化产物价态不同,则价态越高,氧化剂的氧化性越强。
方法五、根据物质中元素的化合价判断。
(1)一般来讲,同一种元素的化合价越高,氧化性越强,价态越低,还原性越强。
如:氧化性:浓H2SO4> H2SO3;还原性:H2S> SO2。
又如氧化性:Fe3+> Fe2+> Fe,还原性反之。
(2)在和同一种氧化剂(或还原剂)反应时,氧化剂(或还原剂)被还原(或氧化)的程度越大,即是化合价降低(或升高)越多,还原剂(或氧化剂)的还原性(或氧化性)就越强。
如Fe和Cl2反应生成FeCl3,而Fe和S反应只生成FeS,则氧化性:Cl2>S。
关于氧化性还原性强弱的判断方法归纳

关于氧化性还原性强弱的判断方法归纳氧化还原反应是中学化学的重要内容,有关氧化性、还原性及其强弱的判断也是高考的常考考点,它也常与元素周期表、金属非金属及其化合物的性质相联系,进行学科内的小综合。
它既能考查学生对基础知识的掌握情况,又能考查学生的学习意识和能力,是学生学习的难点之一。
现对氧化性还原性的判断方法和依据归纳总结如下,供以开拓思维,培养能力。
一、依据氧化还原反应方程式判断。
氧化还原反应一般可表示为:氧化剂+还原剂→还原产物+氧化产物,只有符合强氧化剂和强还原剂反应才得以进行。
所以有:氧化性:氧化剂>氧化产物还原性:还原剂>还原产物例如:已知下列三个反应在相同条件下进行,下列判断结果正确的是:反应(1):2W-+X2=2X-+W2;反应(2)2Y-+W2=2W-+Y2;反应(3):2X-+Z2=2Z-+X2;A、还原性X-> Y-B、在Y-、X-、W-、Z-中Z还原性最强;C 、氧化性:Z2>W2;D 、2Z-+Y2=2Y-+Z2;(答案为D)二、依据金属活动性顺序判断。
1、金属的还原性:K、Ca、Na、Mg、Al、Zn、Fe、Sn、Pb(H)、Cu、Hg、Ag,从左至右金属的还原性依次减弱;2、金属离子的氧化性:K+、Ca2+、Na+、Mg2+、Al3+、Zn2+、Fe2+、H+、Cu2+、Hg2+、Fe3+、Ag+从左至右,氧化性依次增强。
三、依据元素周期表判断。
1、同主族元素对金属,如:Li、Na、K、Rb、Cs金属性依次增强,所以还原性依次增强,对应离子的氧化性依次减弱。
对非金属,如:卤素、单质的氧化性依次减弱,对应阴离子的还原性依次增强。
2、同周期从左至右,由于金属性依次减弱,非金属性依次增强。
所以,还原性依次减弱,氧化性依次增强。
四、根据元素的原子得失价电子时,放出或吸收能量的多少判断。
吸收能量少,易失电子,还原性强;放出能量多,易得电子,还原性强。
五、根据不同物质中同一元素的化合价判断,价态高氧化性强。
氧化还原反应中物质的氧化性、还原性强弱比较规律总结(精品)

物质氧化性、还原性强弱比较规律总结方法归纳:物质氧化性、还原性强弱的比较,实质上是物质得失电子难易程度的比较。
即物质越易得到电子,则其氧化性越强,越难得到电子则其氧化性越弱;反之,物质越易失去电子,则其还原性越强,越难失去电子,则其还原性越弱。
★越易失电子的物质,失后就越难得电子;越易得电子的物质,得后就越难失去电子。
一. 利用化合价,比较物质氧化性、还原性的强弱由同种元素形成的不同价态物质的氧化性和还原性的强弱规律:元素的最高价态只具有氧化性(如:Fe 3+、KMnO 4等),元素的最低价态只具有还原性(如S 2-、I -等),元素的中间价态既具有氧化性又具有还原性,但主要呈现一种性质(如SO 2一还原性为主)。
如:由铁元素组成的物质,氧化性:Fe Fe Fe <<++23;还原性:Fe Fe Fe >>++23。
二、依据元素周期表1.同周期,如:Na 、Mg 、Al 、Si 、P 、Cl 从左到右,还原性逐渐减弱,氧化性逐渐增强。
2.同主族,从上到下,还原性逐渐增强(如:Li 、Na 、K 、Rb 、Cs ),氧化性逐渐减弱(如:F 、Cl 、Br 、I 、At)。
三、利用元素活泼性的不同,比较物质氧化性、还原性的强弱1. 对金属而言,金属越活泼(金属性越强),其单质的还原性越强,其金属阳离子的氧化性越弱。
如:对金属活动性顺序表而言:K 、Ca 、Na 、Mg 、Al 、Zn 、Fe 、Sn 、Pb (H )、Cu 、Hg 、Ag 、Pt 、Au ,其活泼性(金属性)依次减弱;单质的还原性 K>Ca>Na>Mg>Al>Zn>Fe>Sn>Pb>(H 2)>Cu> Hg>Ag>Pt>Au ;离子的氧化性:K +<Ca 2+<Na +<Mg 2+<Al 3+<Zn 2+<Fe 2+<Sn 2+<Pb 2+<(H +)<Cu 2+< Hg 2+<Ag +<Pt 2+<Au +2.对非金属而言,非金属越活泼(非金属性越强),其非金属单质的氧化性越强,其阴离子的还原性越弱。
氧化还原反应的基本规律及氧化性和还原性强弱的判定15

氧化性:
O2 >S
例3.某FeCl2溶液中有FeI2,根据已知反应 ①.2FeCl3 + 2KI == 2FeCl2 + 2KCl + I2 ②.2FeCl2 + Cl2 == 2FeCl3 ③.F2 + 2KI(熔融) == 2KF + I2 ③.F2 + 2KCl(熔融) == 2KF + Cl2 中的一些有关事实,要除去其中的FeI2,应 选用的试剂是( C ) A.F2 C.FeCl3 B.过量的Cl2 D.FeCl2
3. 认为同种元素不同价态的化合物的氧化性 (还原性)强弱只与元素化合价的高低有关。 实际上,除此之外还与化合物的稳定性有关。
如:
——次氯酸中氯的价态比高氯酸中氯的 价态低,但次氯酸不稳定,氧化性却比高氯 酸强。 酸性: HClO4>HClO3 >HClO2 >HClO
氧化性: HClO>HClO2 >HClO3 >HClO4
4. 认为同一种还原剂(氧化剂)与多种氧化剂 (还原剂)反应是同时进行的。 实验证明:氧化剂的氧化性(还原剂的还原性)越 强的越先反应,并非几个反应同时进行。 即“先强后弱”
将铁粉加入CuCl2和FeCl3的混合液中。 先反应的是: Fe 2 FeCl3 3FeCl2
后反应的是: Fe CuCl 2 FeCl 2 Cu 将氯水滴加到NaBr和KI的混合液中。
D.Cl2 > BrO3- > ClO3- > IO3-
例2、已知
均有还原性,它们在 酸性溶液中还原性的强弱顺序为: 则下列反应不能发生的是 ( )
C、D
2.根据金属活动顺序表来判定
K Ca Na Mg Al Zn Fe Sn Pb H Cu Hg Ag Pt Au
如何比较氧化性还原性的强弱

如何比较氧化性还原性的强弱----e336edba-715a-11ec-9685-7cb59b590d7d如何比较氧化性还原性的强弱?答:氧化剂的氧化能力(获得电子的能力)和还原剂的还原能力(失去电子的能力)的强度是物质本身的属性。
借助于材料结构和反应事实,我们可以分析该性质的相对强度解析①与原子结构的关系:原子半径大、最外层电子少,则该原子的单质易失电子,还原性强;原子半径小,最外层电子多,则该原子的单质易得电子,氧化性强.如在元素周期表中同周期元素和同族元素原子结构与金属性、非金属性的关系就是如此.② 与反应方向的关系:因此我们可以从任何一个已知的氧化还原反应中判断出两个顺序:氧化剂的氧化性强于氧化产物的氧化性,还原剂的还原性强于还原产物的还原性.③ 与浓度的关系:一般来说,氧化剂浓度越高,其氧化作用越强。
例如,浓硝酸的氧化作用比稀硝酸强,浓硫酸的氧化作用强,而稀硫酸的氧化作用不强盐酸的还原性强于稀盐酸,所以在实验室制cl2时,由于mno2的氧化性不够强,需要增加还原剂的还原性,即用浓盐酸与mno2共热.④ 与pH值的关系:硝酸的氧化性与H+浓度有关,H+浓度越高,含氧量越大了强氧化性.在有机物的性质实验中,通常用“酸化的高锰酸钾溶液”来证明有机物的不饱和性或还原性(如ch2=ch2,ch≡ch,ch3cho等均能使酸化的kmno4溶液褪色).这是因为kmno4酸化之后氧化性增强,使实验现象迅速、明显.⑤ 与温度的关系:许多氧化和还原反应在加热条件下进行。
可以看出,加热可以增强氧化剂的氧化性和还原剂的还原性(少数例外)。
特别是,H2、CO和C只能在加热或高温条件下显示其“功率”,如熔炼金属、水和气体、氢气等如:3h2+wo33co+fe2o32fe+3co22c+sio2si+2co↑⑥根据化合价判断:同一元素,一般是化合价越高氧化性越强.(但氧化性hclo>hclo3>hclo4)⑦ 根据金属活性顺序表,金属位置越低,其原子还原越弱,阳离子氧化越强(但氧化Fe3+>Cu2+)⑧根据反应速度、反应条件判断:反应速度越快,反应条件越易,则氧化性或还原性就越强.所以判断氧化性还原性强弱的依据是电子得失的难易而非多少.⑨ 它与电池电极的名称和电解过程中的放电顺序有关。
物质氧化性、还原性强弱的判断

物质氧化性、还原性强弱的判断物质氧化性(得电子的能力)、还原性(失电子的能力)的强弱取决于物质得失电子的难易,与得失电子的数目无关,但也与外界因素(如反应条件、反应物浓度、酸碱性等)有关,具体判断方法如下:1.依据氧化还原反应原理判断(1)氧化性强弱:氧化剂>氧化产物。
(2)还原性强弱:还原剂>还原产物。
2.依据“二表、一律”判断(1)依据元素周期表判断①同主族元素对应单质的氧化性从上到下逐渐减弱,对应阴离子的还原性逐渐增强。
②同周期元素对应单质的还原性从左到右逐渐减弱,氧化性逐渐增强。
Na Mg Al Si P S Cl2还原性减弱,氧化性增强――――――――――――――――――――――――→(2)依据金属活动性顺序表判断(3)依据元素周期律判断①非金属元素的最高价氧化物对应水化物的酸性越强,其对应单质的氧化性越强。
如酸性:HClO4>H2SO4>H3PO4>H2CO3>H2SiO3,则氧化性:Cl2>S>P>C>Si。
②金属元素的最高价氧化物对应水化物的碱性越强,其对应单质的还原性越强。
如碱性:NaOH>Mg(OH)2>Al(OH)3,则还原性:Na>Mg>Al。
3.依据产物中元素价态的高低判断(1)相同条件下,不同氧化剂作用于同一种还原剂,氧化产物价态高的其氧化性强。
例如:(2)相同条件下,不同还原剂作用于同一种氧化剂,还原产物价态低的其还原性强。
例如:4.依据反应条件判断[细练过关]题点(一)氧化性、还原性强弱判断与应用1.根据下列反应,判断有关物质的氧化性由强到弱的顺序正确的是()①Cl2+2KI===2KCl+I2②2FeCl2+Cl2===2FeCl3③2FeCl3+2HI===2FeCl2+2HCl+I2④H2S+I2===S↓+2HIA.H2S>I2>Fe3+>Cl2B.Cl2>Fe3+>I2>SC.Fe3+>Cl2>H2S>I2D.Cl2>I2>Fe3+>H2解析:选B由反应①可知氧化性:Cl2>I2,由反应②可知氧化性:Cl2>Fe3+,由反应③可知氧化性:Fe3+>I2;由反应④可知氧化性:I2>S,则氧化性:Cl2>Fe3+>I2>S。
物质氧化性,还原性强弱判断规律及其运用

物质氧化性、还原性强弱判断规律及其运用物质氧化性、还原性强弱判断是中学化学教学的重点、难点,同时也是高考的热点。
如何掌握这一知识点,本人的做法是归纳规律、运用规律。
其规律如下:性质强弱规律:根据氧化还原反应方程式失去电子被氧化强氧化剂+强还原剂→弱还原产物+弱氧化产物得到电子被还原在同一氧化还原反应中,氧化性:氧化剂>氧化产物还原性:还原剂>还原产物氧化剂的氧化性越强,则其对应的还原产物的还原性就越弱;还原剂的还原性越强,则其对应的氧化产物的氧化性就越弱。
该规律主要用于比较粒子的氧化性、还原性的强弱,氧化还原反应能否发生的判断,在适宜条件下用氧化性强的物质制备氧化性弱的物质或者用还原性强的物质制备还原性弱的物质等。
除此之外,还有如下规律:1.根据金属活动顺序表比较判断。
+2++2+3++2+2+2+2+2+3+2++2.根据元素非金属性强弱判断:-2----2-3.根据反应速率确定,42232SO N 2O SO Na 2=+(快),42232S O H 2O S O H 2=+(慢),322SO 2O SO 2催化剂∆+ ,其还原性:23232S O S O H S O Na >>。
4.氧化剂不同还原剂相同时,可根据还原剂被氧化的程度来判断氧化剂的氧化性的强弱,例如:22CuCl Cl Cu 点燃+,S Cu SCu 22∆+,即氧化性S Cl 2>。
同理,可根据相同氧化剂被不同还原剂还原的程度不同来判断还原剂还原性的大小。
例如O H 2SO Br SO H HBr 2222)(42+↑+∆+浓,O H 4S H I 4S O H HI 8222)(42+↑+=+浓,即有还原性HBr HI >。
5.根据反应条件来判断,条件越苛刻,反应越难发生,其性质便越弱。
例如,4KMnO 与浓HCl 常温下就能制得2Cl ,而2M n O 与浓HCl 需加热条件下才能制得2Cl ,故4K M n O的氧化性大于2MnO 的氧化性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断氧化剂和还原剂的强弱
标准电极电势数值越小,其还原型的还原性越强,而氧化型的氧化性越弱.例如Zn2+ + 2e-Zn φθ=-0.7628V
Cu2+ + 2e-Cu φθ=-0.337V
锌的电极电势比铜的电极电势小得多,表明金属锌是较强的还原剂,而锌离子能在溶液中较稳定地存在,是弱氧化剂.相反,Cu2+是比Zn2+更强的氧化剂,而金属铜是比金属锌更弱的还原剂.
例如:已知:
根据电极电势越高,其氧化型氧化能力越强,反之其还原型还原能力越弱的原理,有:
氧化能力:MnO4->Cl2>Fe2+>Zn2+
还原能力:Zn>Fe>Cl->Mn2+
判断氧化还原反应的方向
氧化还原反应自发进行的方向为:
强氧化型1 + 强还原型2 = 弱还原型1 + 弱氧化型2在标准状态下,标准电极电势较大的电对的氧化型能氧化标准电极电势数值较小的电对的还原型.因此,在标准电极电势表中,氧化还原反应发生的方向,是右上方的还原型与左下方的氧化型作用.可以通俗地总结成:“对角线方向相互反应”.
我们还可以用标准电极电势定量地判断氧化还原方向.其具体步骤可总结如
下:
(1)首先根据氧化数的变化确定反应中的氧化剂和还原剂.
(2)分别查出氧化剂电对的标准电极电势和还原剂电对的标准电极电势.
(3)以反应物中还原剂的电对作负极,反应物中氧化剂的电对作正极,求出电池标准状态的电动势:
ΔEø=Φø(+)-Φø(-)
若ΔEø>0,则反应自发正向(向右)进行;
若ΔEø<0,则反应逆向(向左)进行.
例如:判断Zn+Cu2+=Zn2++Cu反应是否向右进行?
在上述反应中,Zn作还原剂,Cu2+作氧化剂,则电对Zn/Zn2+作负极,电对Cu2+/Cu 作正极.查表得:
(-)Zn2+ + 2e-=Zn Φø=0.7628 V
(+)Cu2+ + 2e-=Cu Φø=0.337 V
则电池电动势:
ΔEø=Φø(+)-Φø(-)
=0.337-(-0.7628)=1.10V >0
∴反应向右进行.
判断氧化还原反应进行的程度
从热力学的学习中大家已经了解到自发进行的反应自由能变化为负值,而在本章我们又看到氧化还原反应自发进行的方向是电池电动势大于零的方向.将这
两种判断结合在一起考虑,就可知体系的自由能在恒温恒压下减少的值等于体系作最大有用功的能力(非膨胀功),即ΔG=-WR.在电池中如果非膨胀功只有电功一种,那么自由能和电池电动势之间就有下列关系:
电功=电量×电动势
=Q·E
=nFE
∴Δr G =-nFE (9-1)
Δr G是自由能变化(kJ),n是在反应中电子的转移数,F是法拉第常数
96.487kJ·V-1·mol-1,E是电动势(V).
当反应物和产物是在标准状态时,电池电动势为Eø,则
Δr Gø=-nFEø(9-2) 已经介绍过标准自由能变化和平衡常数的关系:
Δr Gø=-RTlnK(9-3) 用以10为底的对数来表示,得:
Δr Gø=-2.303RTlgK
将(9-2)与上面的方程合并得:
Δr Gø=-nFEø=-2.303RTlgK
nFEø=2.303RTlgK
求298.15K时,2.303RT/F的数值:
T=298.15K R=8.314J·K-1·mol-1F=96.487kJ·V-1·mol-1
所以298.15K时平衡常数和Eø的关系式为:
(9-4) 式中,n表示总反应得失电子总数,Eø表示标准态下的电池电动势.
根据(9-4)式,已知标准状态下正负极的电极电势,即可求出该电池反应的平衡常数K.
从(9-4)式可以看出,正,负极标准电势差值越大,平衡常数也就越大,反应进行得越彻底.因此,可以直接用Eø的大小来估计反应进行的程度.按一般标准,平衡常数K=105,反应向右进行的程度就算相当完全了.
综上所述,标准电极电势不仅可以用来比较氧化还原剂的强弱,而且可以判断氧化还原反应进行的方向和程度,它使氧化还原反应的研究定量化了.因此,标准电极电势是氧化还原反应很好的定量标度.但是,也应该注意标准电极电势并不是万能的,它的应用是有条件的,能解决的问题是有限制的.
应用标准电极电势时应该注意的问题
(l)Φø与反应速度无关.
Φø从热力学的角度衡量反应进行的可能性和进行的程度.是电极处于平衡状态时表现出的特征值,它与平衡到达的快慢,反应速度的大小无关.当我们用Φø来
解释实验现象时,特别要注意这一点.
例如,从标准电极电势看,钠的活泼性应小于锂,但Li,Na与水反应时,钠与水反应更为剧烈.为什么会出现这样的现象?我们发现实验结果不仅取决于反应的可能性,趋势和程度,还和实现反应的速度快慢有关.而Φø值的大小只能说明反应的可能性,趋势和程度的高低.
由于氧化还原反应进行的速度常常比中和反应和沉淀反应慢,所以,对于氧化还原反应,反应速度常常是不可忽视的问题.
(2)Φø的应用是有条件的.
Φø的数据是在标准状态下水溶液中测出的,对非水溶液,高温,固相反应是不适用的.例如,欲判断C+O2CO2反应能否进行,Φø则无能为力了.
(3)Φø与电极反应中物质的计量系数无关.
因为Φø是电极的强度性质,取决于物质的本性,而和物质的多少无关.所以电极反应中各物质的系数无论乘以什麽系数,其标准电极电势的数值仍然不变.例如: Ag+ + e-Ag φθ=0.7996V
2Ag+ + 2e-2Ag φθ=0.7996V。