解直角三角形的应用(方向角)
26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)

例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习
人教版九年级下册数学 28.2.2解直角三角形的应用举例 例5 航海——方位角(共18张PPT)

险区。这渔船如果继续向东追赶鱼群,有没有进入危险 将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);
方位角
区的可能? (3)边角之间的关系:
某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向
的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北 方向前进,甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上, 于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处 相遇。 (1)甲船从C处追赶上乙船用了多长时间? (2)甲船追赶乙船的速度北是每小时多少千米?
B
D
C 75°
45°
西走60米到达C点,测得点B在点C的北偏东60°方向。 这渔船如果继续向东追赶鱼群,有没有进入危险区的可能?
C
为有效开发海洋资源,保护海洋权益,我国对南海诸岛
2解直角三角形的应用举例
北 为有效开发海洋资源,保护海洋权益,我国对南海诸岛
进行了全面调查,一测量船在A岛测得B岛2解直角三角形的应用举例 航海问题——方位角
北 M东
B
A
D
N
解直角三角形的依据
(1)三边之间的关系: (2)锐角之间的关系:
(3)边角之间的关系:
B
c a
A
bC
仰角俯角
A
?
E 34
F
18
D
10米
B
方位角
北
C
西
O
B
东
南
利用锐角三角函数解决航海问题
如图,一艘海伦位于灯塔P的北偏东65°方向,距离灯 塔80海里的A处,它沿正南方向航行一段时间后,到达 位于灯塔P的南偏东34°方向的B处。这时,B处距离 灯塔P有多远?(结果取整数)(cos25°=0.9063, sin34°=0.5291, )
解直角三角形的应用典型习题(方位角)

1.如下图,某船以每小时36海里的速度向正东方向航行,在点A 测得某岛C 在北偏东60°方向上,航行半小时后到达点B 测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁。
(1)说明点B 是否在暗礁区域内;(2)若继续向东航行有无触礁的危险?请说明理由。
2.如图,海岛A 四周20海里周围内为暗礁区,一艘货轮由东向西航行,在B 处见岛A 在北偏西60˚,航行24海里到C ,见岛A 在北偏西15˚,货轮继续向西航行,有无触礁的危险3.如图所示,A 、B 两城市相距100km .现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:3 1.7322 1.414≈,≈)4.为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A 北偏西45°并距该岛20海里的B 处待命.位于该岛正西方向C 处的某外国商船遭到海盗袭击,船长发现在其北偏东60°的方向有我军护航舰(如图所示),便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C 处?(结果精确到个位)5.如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.6.如图,A 城气象台测得台风中心在A 城的正西方300千米处,以每小时10千米的速度向北偏东60º的BF 方向移动,距台风中心200千米的范围内是受这次台风影响的区域。
第一章直角三角形的边角关系-解直角三角形的应用复习-方位角(教案)

本节课将重点围绕方位角的求解与应用进行复习巩固,提高学生解决实际问题的能力。
二、核心素养目标
本节课的核心素养目标致力于培养学生的以下能力:
1.理解并运用数学知识:通过复习直角三角形的性质和解直角三角形的方法,加深对几何知识的理解和应用,提高解决实际问题的能力;
难点解释:学生在理解三角函数的概念时,容易混淆正弦、余弦、正切函数的定义及其应用场景。
(2)空间想象能力的培养:在求解方位角时,需要学生在脑海中构建直角三角形的空间模型。
难点解释:学生在解决方位角问题时,往往难以在脑海中形成清晰的空间图像,导致解题困难。
(3)实际问题的解决:将数学知识应用于实际情境,解决现实问题。
3.重点难点解析:在讲授过程中,我会特别强调解直角三角形的方法和方位角的计算这两个重点。对于难点部分,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与方位角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量和计算,演示方位角的基本原理。
第一章直角三角形的边角关系-解直角三角形的应用复习-方位角(教案)
一、教学内容
本节课为九年级数学课程,选取教材中“第一章直角三角形的边角关系-解直角三角形的应用复习”部分进行深入讲解。内容包括:
1.复习直角三角形的定义及性质;
2.掌握解直角三角形的方法;
3.介绍方位角的概念及应用;
4.通过实际例题,让学生掌握利用解直角三角形的方法求解方位角;
2.数学思维能力:在方位角的求解过程中,锻炼学生的逻辑推理和空间想象能力,提升数学思维水平;
解直角三角形的应用方向角问题重难点培优-九年级数学下册尖子生同步培优题典原卷版浙教版

A. B 地在 C 地的北偏西 40 方向上 B. A 地在 B 地的南偏西 30 方向上 C. cos BAC 3
2 D. ACB 50 5.(2021•长清区一模)如图,一艘轮船在 A 处测的灯塔 C 在北偏西15 的方向上,该轮船又从 A 处向正东 方向行驶 20 海里到达 B 处,测的灯塔 C 在北偏西 60 的方向上,则轮船在 B 处时与灯塔 C 之间的距离
对岸一棵树 T 的位置, T 在 P 的正北方向,且 T 在 Q 的北偏西 70 方向,则河宽 (PT 的长)可以表示为 ( )
A. 200 tan 70 米
B. 200 米 tan 70
C. 200sin 70 米 D. 200 米 sin 70
3.(2020•无棣县二模)一艘轮船由海平面上 A 地出发向南偏西 30 的方向行驶 50 海里到达 B 地,再由
轮与补给船的速度之比为 ( )
A. 2 : 2
B. 2 :1
C. 3 : 2
D. 3 :1
8.(2021•皇姑区一模)如图,一条东西向的大道上, A , B 两景点相距 20km , C 景点位于 A 景点北偏东
60 方向上,位于 B 景点北偏西 30 方向上,则 A , C 两景点相距 ( )
12.(2021•任城区一模)如图,某轮船以每小时 30 海里的速度向正东方向航行,上午 8 : 00 ,测得小岛 C 在轮船 A 的北偏东 45 方向上;上午10 : 00 ,测得小岛 C 在轮船 B 的北偏西 30 方向上,则轮船在航行
中离小岛最近的距离约为 海里(精确到 1 海里,参考数据 2 1.414 , 3 1.732) .
A. 20 3 海里
B.10 2 海里
C. 20 6 海里
解直角三角形的应用-方向角问题-初中数学习题集含答案

一.填空题(共 5 小题) 1.(2018 秋•顺义区期末)轮船从 B 处以每小时 50 海里的速度沿南偏东 30 方向匀速航行,在 B 处观测灯塔 A 位于
南偏东 75 方向上,轮船航行半小时到达 C 处,在观测灯塔 A 北偏东 60 方向上,则 C 处与灯塔 A 的距离是 海里.
2.(2019 秋•东城区校级期中)如图,某货船以 24 海里 / 时的速度从 A 处向正东方向的 D 处航行,在点 A 处测得某 岛 C 在北偏东 60 的方向.该货船航行 30 分钟后到达 B 处,此时测得该岛在北偏东 30 的方向上.则货船在航行中 离小岛 C 的最短距离是 .
3.(2017 春•西城区校级期中)如图,在点 A 测得某岛 C 在北偏东 60 方向上,且距 A 点18 3 海里,某船以每小时 36 海里的速度从点 A 向正东方向航行,航行半小时后到达 B 点,此时测得岛 C 在北偏东 30 方向上,已知该岛周围 16 海里内有暗礁. B 点与 C 岛的距离是 B 点暗礁区域 (填内或外)
7.(2016•延庆县一模)如图,甲船在港口 P 的南偏西 60 方向,距港口 86 海里的 A 处,沿 AP 方向以每小时 15 海 里的速度匀速驶向港口 P .乙船从港口 P 出发,沿南偏东 45 方向匀速驶离港口 PC 2x ,现两船同时出发,2 小 时后乙船在甲船的正东方向.求乙船的航行速度.(结果精确到个位,参考数据: 2 1.414 , 3 1.732 , 5 2.236)
【分析】根据题中所给信息,求出 BCA 90 ,再求出 CBA 45 ,从而得到 ABC 为等腰直角三角形,然后根据 解直角三角形的知识解答.
【解答】解:根据题意,得 1 2 30 , Q ACD 60 , ACB 30 60 90 , CBA 75 30 45 , ABC 为等腰直角三角形, Q BC 50 0.5 25 , AC BC 25 (海里). 故答案为:25.
25.4 解直角三角形的应用(2)

25.4 解直角三角形的应用(2)[方位角]第一组 25-151、某轮船沿正北方向航行,在A 点处测得灯塔C 在北偏西30º处,下图25-15-1正确的是( )2、海面上有A 、B 两个灯塔,已知灯塔A 位于B 的北偏东30º方向,那么灯塔B 位于灯塔A 的( )A 、南偏西60ºB 、南偏西30ºC 、北偏东30ºD 、北偏东60º3、某人在离水平面a m 的山上测得地面B 点的俯角为α,此时此人与地面B 点之间的水平距离是( )m 。
A 、a cot α B 、a sin αC 、a tan αD 、acos α4、如图25-15-2,已知小明外婆家在小明家的正东方,学校在外婆家的北偏西40º,外婆家到学校与小明家到学校的距离相等,则学校在小明家的( ) A 、南偏东50º B 、南偏东40º C 、北偏东50º D 、北偏东40º5、如图25-15-3,当太阳光线与地面成30º时,测得旗杆AB 在地面上的影子BC 长为15m ,那么旗杆AB 的高度是 m 。
(保留根号)图 25 - 15 - 1(D)A CA C CA CA 图 25 - 15 - 2小明家学校北北图 25 - 15 - 3BA太阳光C6、某人从A 点出发,向北偏东45º方向走到B 点,再从B 点出发,向南偏西15º方向走到C 点,那么∠ABC= 。
7、如图25-15-4,点B 在点A 北偏西30º方向,且AB=5km ,点C 在点B 北偏东60º方向,且BC=12km ,则A 到C 的距离是 。
8、如图25-15-5,一轮船以每小时20海里的速度沿正东方向航行,上午8时,该船在A 处测得某灯塔位于它的北偏东30º的B 处,上午9时行至C 处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里。
解直角三角形的应用(19张ppt)课件

选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
N1
N
30˚ D C
60˚
B
2.某市计划将地处A、B两地的两所大学合并 成一所综合大学,为了方便A、B两地师生的交 往,学校准备在相距2千米的A、B两地之间修 筑一条笔直公路(即图中的线段AB)经测量,在 A地的北偏东60º方向,B地的北偏西45º方向 的C处有一个半径为0.7千米的公园,问计划修 筑的这条公路会不会穿过公园?为什么?
北 A 60° B D
4.(2011·成都中考)如图,在亚丁湾一海域执行护航 任务的我海军某军舰由东向西行驶.在航行到B处时, 发现灯塔A在我军舰的正北方向500米处;当该军舰从B 处向正西方向行驶至达C处时,发现灯塔A在我军舰的北 偏东60°的方向.求该军舰行驶的路程.(计算过程和 结果均不取近似值)
A
D
南 F
B
ห้องสมุดไป่ตู้
北 E
?m
C
探究
【例】如图,一艘海轮位于 灯塔P的北偏东65°方向,距 离灯塔80海里的A处,它沿正 南方向航行一段时间后,到 达位于灯塔P的南偏东34°方 向上的B处,这时,海轮所在
P
C 34° 65° A
的B处距离灯塔P有多远?
(精确到0.01海里)
B
1.海岛A四周20海里内为暗礁区,一艘货轮 由东向西航行,在B处见岛A在北偏西60˚,航 行24海里到C,见岛A在北偏西30˚,货轮继续 向西航行,有无触礁的危险?请说明理由.
AA
20m
D
30° 30
南
FF
15m
北 E E
15m
B
C
小华想:若设计时要求北楼的采光, 不受南楼的影响,请问楼间距BC长至 少应为多少米?
30
20m
A
D
北
南
?m
B C
小华又想:如果要使北楼实验室内的 同学在室内也能惬意地享受阳光,已 知窗台距地面1米,那么两楼应至少 相距多少米?
30
20m
P
A
B
4、如图,为了测量高速公路的保护石堡坎与地面的倾斜 角∠BDC是否符合建筑标准,用一根长为10m的铁管AB 斜靠在石堡坎B处,在铁管AB上量得AF长为1.5m,F点 离地面的距离为0.9m,又量出石堡坎顶部B到底部D的距 离为 4 3 m ,这样能计算出∠BDC吗?若能,请计算出 ∠BDC的度数,若不能,请说明理由。
2 2
180÷12 = 15小时 答:A城将受到这次沙尘暴影响, 影响的时间为15小时。
E
B
3.海中有一个小岛A,它的周围8海里内有暗礁,渔船跟踪
鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,
航行12海里到达D点,这时测得小岛A在北偏东30°方向上,
如果渔船不改变航线继续向东航行,有没有触礁的危险?
A
C
B
课本P92 例4
(第 2 题)
3.国外船只,除特许外,不得进入我国海洋100海里 以内的区域,如图,设A、B是我们的观察站,A和B 之间的距离为157.73海里,海岸线是过A、B的一条 直线,一外国船只在P点,在A点测得∠BAP=450,同 时在B点测得∠ABP=600,问此时是否要向外国船只 发出警告,令其退出我国海域.
(1)A城是否受到这次沙尘暴 的影响 ,为什么? C
A
解(1):过A作AC⊥BM,垂足为C, 在Rt△ABC中, ∠B = 30°, 1 1 ∴AC= 2 AB = 2 x 240 = 120 ∵AC = 120 < 150 ∴A城受到沙尘暴影响
OC
B
(2)若A城受这次沙尘暴的影响, 那么遭受影响的时间有多长? M 解(2):设点E、F是以A为圆心,150km为 半径的圆与BM的交点,由题意得: A F ∴CE = √ AE – AC = 90 ∴EF = 2CE = 2 x 90 = 180 C ∴A城受到沙尘暴影响的时间为
B
10m
F
4 3m
D
1.5m
A
0.9m
E
C
方位角的定义:
指北或指南方向线与目标方向线所 成的小于90°的角叫做方位角。
认识方位角
北 D E 45° 45° 西 C
(1)正东,正南,正西,正北
射线OA OB OC H OD
射线OE (2)西北方向:_________ 射线OF 西南方向:__________ 东 A 射线OG 东南方向:__________
解直角三角形的应用 ------方向角问题
在山脚C处测得山顶A的仰角为450。问题如下:
变式: (2)沿着坡角为30 °的斜坡前进300米 到达D点,在D点测得山顶A的仰角为600 ,求山高 AB。 A
D 30°
C E
x x
F B
练习8:在山顶上处D有一铁塔,在塔顶B处测得
地面上一点A的俯角α=60o,在塔底D测得点A的俯角 β=45o,已知塔高BD=30米,求山高CD。 B α
C
60º
A
45º
D
B
1.一艘轮船在A处观测到东北方向有一小岛C, 已知小岛C周围4.8海里范围内是水产养殖场.渔 船沿北偏东30°方向航行10海里到达B处,在B处 测得小岛C在北偏东60°方向,这时渔船改变航线 向正东(即BD)方向航行,这艘渔船是否有进入养 殖场的危险?
2.由于过度采伐森林和破坏植被,我国部分地区 频频遭受沙尘暴侵袭.近日,A城气象局测得沙尘 暴中心在A城的正南方向240km的B处,以每小时 12km的速度向北偏东30°方向移动,距沙尘暴中 心150km的范围为受影响区域。 (1)A城是否受到这次沙尘 暴的影响 ,为什么? (2)若A城受这次沙尘暴的 影响,那么遭受影响的 时间有多长?
O
F
B
南
射线OH 东北方向 :__________ G
认识方位角
北
(3)南偏西25°
B 西 70° 东 O 60° 25° A 南
C
射线OA
北偏西70° 射线OB 南偏东60° 射线OC
小华去实验楼做实验, 两幢实 验楼的高度AB=CD=20m, 两楼间的距离 BC=15m,已知太阳光与水平线的夹角为 30°,求南楼的影子在北楼上有多高?
D
β
C
A
1.如图,某飞机于空中 A处探测到目标C,此 时飞行高度AC=1200米, 从飞机上看地平面控制 点B的俯角α=16031`,求 飞机A到控制点B的距 离.(精确到1米)
α
2. 两座建筑 AB及CD,其 地面距离AC为50.4米,从 AB 的顶点 B 测得 CD 的顶 部 D 的仰角 β = 250, 测得 其 底 部 C 的 俯 角 a = 500, 求两座建筑物 AB 及 CD 的 高.(精确到0.1米)