第四章 填料密封
填料密封的密封原理

填料密封的密封原理
填料密封原理
1. 定义:填料密封是指将填料塞入液体流道中,填料固定位置,使液
体仅能经过填料密封和设备密封面的螺纹密封而不能泄漏的一种密封
技术。
2. 原理:填料密封本质上利用的是两个密封面之间的端部填料来将液
体稀释,使液体不能穿过端部填料的薄层,间接实现的液体的泄漏,
从而形成一定的压力差,达到液体密封的目的。
3. 优点:(1)填料密封具有抗热胀性,上密封面,下密封面即使在温
度发生变化时仍然不会发生变形,保持密封。
(2)填料密封在多种工况下仍可保持稳定的密封性能。
(3)填料密封的装拆维修方便、易操作,重复使用性能强,且容易更换修理。
4. 缺点:(1)填料密封需要经常检查,因它们有很多可以损坏的部件,如果损坏将会损害密封性能,从而造成漏水。
(2)填料密封由于受压很大,使用寿命较短,经常需要更换新的填料。
5. 应用:填料密封常用于温度、压力和流量较低的工业应用环境中,
它可以用于防止泄露,如冷却水和电液伺服调节控制系统,以及某些交接的或配管的地方等。
填料密封密封介绍

填料密封密封介绍填料密封是一种常见的密封方式,它通过填充一定类型的填料材料来固定和填充密封空间,以达到密封效果。
在工业生产和民用领域广泛应用,填料密封可以有效防止介质泄漏、外界灰尘和污染介质等情况的发生。
本文将详细介绍填料密封的原理、应用范围、材料选择及特点等方面的内容。
一、填料密封的原理填料密封的原理是利用填料材料填充在密封间隙中,通过填料之间的摩擦力和填充度,形成与被密封件间的压力或摩擦力之间的平衡,从而实现密封效果。
填料材料的选择和填充方法的合理性对密封性能至关重要。
填料的选择要根据介质的性质、工作压力和温度等因素确定,确保填料材料具有较好的耐磨、耐压、耐腐蚀和抗老化的性能。
二、填料密封的应用范围填料密封广泛应用于各个行业的密封领域,如石油、化工、电力、纺织、造纸、冶金等工业领域。
在石油行业中,填料密封被应用于各类管道、阀门的密封,有效防止石油介质的泄漏。
在化工行业中,填料密封被广泛应用于各类反应釜、搅拌罐、容器等设备的密封,确保介质的安全和环境保护。
此外,填料密封还被应用于汽车、船舶、铁路等交通运输设备的密封,以及家电、建筑等民用领域的密封。
三、填料密封的材料选择填料密封的材料选择应根据具体的工作条件和要求来确定,常见的填料材料有无石棉、石墨、聚四氟乙烯、金属填料等。
无石棉填料具有耐磨、耐压、耐腐蚀的特点,适用于各类介质的密封。
石墨填料具有良好的导热性和耐腐蚀性,适用于高温高压条件下的密封。
聚四氟乙烯填料具有优异的耐腐蚀性和低摩擦系数,适用于化工行业中各类特殊介质的密封。
金属填料则具有耐高温、抗压和耐腐蚀的特点,适用于金属密封件的填料。
四、填料密封的特点填料密封具有以下几个特点:1.良好的密封性能:填料密封采用填料材料填充密封间隙,通过填料材料之间的摩擦力和填充度,形成与被密封件间的压力或摩擦力之间的平衡,从而实现良好的密封效果。
2.适应性强:填料密封可以适应不同的工作条件和环境要求,填料材料的选择也较为灵活。
4-3填料密封技术PPT课件

要求填料具有良好的回弹性与柔软性,也是开发新型填料 一直遵循的基本观点。
17
良好的润滑性能
❖ 良好的润滑性能是保证密封长周期运行的必要条件,同时 使密封具有较低的摩擦功耗和磨损速率。
过程装备流体动密封技术
(Dynamic Sealing Technology for Process Equipment )
实现以人为本— 健康 安全 环保 经济
—现代化生产新理念 主讲人: 郝木明 孙鑫晖
1
讲授内容
一、流体动密封基本类型 二、填料密封技术 三、接触式机械密封技术 四、非接触式机械密封技术 五、流阻型密封技术 六、动力反输型密封技术 七、封闭式密封技术
样,应得到良好的润滑。
19
❖ “迷宫效应”:填料压紧后,未接触的凹部形成小沟槽, 有较厚的液膜,当轴与填料有相对运动时,接触部分与 非接触部分组成一道道不规则的迷宫,起阻止液流泄漏 的作用,并认为良好的密封在于维持“迷宫效应”。不 少作者都支持这一观点。
?疑问:众所周知,气体迷宫密封的原理是气体通过密封
❖ 为保证良好的润滑条件,通常允许少量的泄漏存在。对于 一般的填料(不包括具有自润滑性能的填料)只是对流体 的流动泄漏起节流作用而不是将其完全阻止或封闭。
❖ 填料中浸渍润滑剂或提高填料本身的自润滑能力就是为了 保证填料具有良好的润滑性能。
18
“轴承效应”和“迷宫效应”辨析
❖ 软填料装入密封腔后,经压盖对其作轴向压缩,产生径向 力并保持与轴紧密接触,建立起密封状态。同时,填料中 浸渍的润滑剂被挤出,在接触面之间形成液膜,呈“边界 润滑”状态,类似滑动轴承,故称为“轴承效应”。
填料密封密封介绍

填料密封密封介绍填料密封是一种常见的工业密封方式,广泛用于各类容器、设备以及管道的连接处,用于防止流体、气体或粉尘的泄漏。
填料密封主要由填料、填料室和填料密封器等组成,其设计目的是实现有效的密封效果。
填料作为填料密封的核心组成部分,是一种柔性材料,如碳纤维、石墨、聚酰亚胺纤维等。
填料通过填充在填料室内,可以填满连接处的微小缝隙,形成一种阻止流体、气体或固体颗粒通过的屏障。
填料具有耐高温、耐腐蚀、良好的弹性和密封性能等特点。
填料室是容纳填料的密封空间,多为圆形或方形设计。
填料室通常由两个平行的填料箱体组成,分别连接于需要密封的设备或管道上。
填料室内的填料密集且紧密排列,以最大限度地减少泄漏的可能性。
填料密封器是将填料与填料室紧密结合在一起的装置。
它位于填料室的两端,通过调节填料室内填料的压力,控制填料与连接处的贴合程度,从而实现良好的密封效果。
填料密封器通常由金属制成,具有良好的耐腐蚀性和机械强度。
填料密封的工作原理是通过填料的压缩和弹性恢复来实现密封。
当填料室内填料受到压力时,填料密封器通过外部力的作用,将填料均匀地推向连接处,填满连接处的缝隙,形成一条连续的密封线。
这种填料的压缩和回弹特性,使填料密封能够适应设备的变形和运动,并能够在较高温度和压力下工作,确保密封效果的持久性和可靠性。
填料密封具有一些独特的优势。
首先,填料密封相对简单且易于安装和维护。
其次,填料密封适用于广泛的工作环境,包括高温、高压和腐蚀性介质等。
此外,填料密封还可以适应设备的运动和变形,具有较高的适应性和可靠性。
然而,填料密封也存在一些不足之处。
首先,填料密封对填料的选择较为复杂,需要根据具体的工作条件和介质特性进行选择。
其次,填料密封在高速旋转设备中容易产生摩擦磨损和磨粒,导致泄漏问题。
此外,填料密封的压力和温度限制也是需要考虑的因素。
在使用填料密封时,需要注意一些关键要点。
首先,填料密封的压力应在正确的范围内,过高或过低都可能导致泄漏问题。
填料密封工作原理

填料密封工作原理
填料密封工作原理是通过将填料放置在机械密封装置中,使填料与转动的轴向或固定的壳体之间形成一个密封界面,以阻止流体或气体的泄漏。
填料密封通常采用柔性填料,如软木、涂层纤维、纺织品等,其工作原理主要包括以下几个方面:
1.填料压缩密封:填料密封装置中的填料由于受到轴向的压力
作用,会被压缩并填满密封间隙,使填料之间形成高度凝聚的结构,从而实现密封效果。
2.填料摩擦密封:填料与密封件接触面之间存在摩擦力,填料
通过与轴或壳体接触的摩擦力,阻止流体或气体从密封间隙中泄漏。
3.填料润滑密封:填料与轴或壳体之间形成润滑膜,减少填料
与密封件之间的磨损和摩擦,并利用润滑剂的填充和流动作用,进一步提高密封效果。
4.填料对流动的阻碍:填料中的纤维结构具有较高的表面粗糙
度和较大的内外周面积,能够有效地阻碍流体或气体的泄漏,并增强密封性能。
综上所述,填料密封工作原理主要是通过填料的密实和摩擦力,以及填料与轴或壳体之间的润滑和阻碍作用,实现对流体或气体的有效密封。
填料密封范文

填料密封范文填料密封填料密封是一种常见的密封方式,广泛应用于化工、石油、制药、食品等工业领域。
它的主要功能是防止流体泄漏,并保证设备的正常运行。
本文将详细介绍填料密封的原理、分类、应用领域及常见问题。
一、填料密封的原理填料密封是利用填料的弹性和塑性来保持设备的密封状态。
填料作为密封材料,经过适当的压实后,能够填充在密封缝隙中,并形成密封界面,阻止流体的泄漏。
填料的弹性和塑性可以适应密封面的微小变形,从而保持压盖力的稳定性。
二、填料密封的分类根据填料的种类和用途,填料密封可以分为以下几种类型:1.石棉填料密封:石棉填料是最早被广泛应用的一种填料材料。
它具有耐磨、耐压、耐腐蚀等特点,但由于石棉本身的有害性,目前已逐渐被其他无害材料所取代。
2.聚四氟乙烯填料密封:聚四氟乙烯填料是填料密封中的一种常用材料。
它具有良好的耐腐蚀性、耐高温性和低摩擦系数,是一种优良的密封材料。
3.螺纹填料密封:螺纹填料密封通常用于管道和容器的连接处。
通过螺纹的旋紧和填料的填充,可以实现密封的效果。
4.涂层填料密封:涂层填料密封是将填料材料涂覆在被密封的表面上,以实现密封效果。
常用的涂层填料材料有橡胶、聚合物等,具有良好的耐腐蚀性和密封性。
三、填料密封的应用领域填料密封广泛应用于各个行业的设备中,特别是一些流体传输设备和容器。
以下是一些常见的应用领域:1.化工行业:填料密封常用于各类化工设备中,如反应釜、储罐、管道等。
它能够有效地保持化工设备的密封性,防止化学物质的泄漏,确保生产过程的安全。
2.石油行业:石油管道和储罐中使用填料密封,可以防止石油及其衍生物的泄漏,保持设备的正常运行。
3.制药行业:制药设备中常用填料密封,以确保药品的纯净度和安全性。
4.食品行业:食品加工设备中使用填料密封,可以防止食品中的营养成分流失,确保食品的品质。
四、填料密封常见问题及解决方法1.泄漏:填料密封在长时间使用后,由于填料弹性降低或填料材料老化,可能会导致泄漏。
填料密封(技术部)

23
非矩形截面石墨填料
24
填料的选择
25
软填料密封的特点及改进
26
软填料密封的特点及改进
27
软填料密封的特点及改进
28
软填料密封的特点及改进
29
软填料密封的特点及改进
30
软填料密封的特点及改进
31
填料的选择
填料材料的正确选择考虑因素: 设备种类和运动方式、介质的性能、工作温度和压力、运 动速度
12
软填料的分类
① 分类: 功能: 阀门、离心泵、往复压缩机用填料等
材料: 橡胶、天然纤维、合成纤维和金属填料
加工方法: (软填料分为)绞合填料、编结填料、层叠填 料和膜压填料
13
② 材料 基体材料和辅助材料
14
增强石墨填料环
15
③ 编结填料结构
a 夹心套层式编结填料 b 发辫式编结填料 c 穿心式编结填料
5
6 1 2 3 4 5
软填料密封的结构
2)封液环 ①作用:在机器上采用有压 紧力的填料箱时,工作介质 仍会或多或少地泄漏。为此 6 要想填料密封更可靠,就装 上封液环。 1 2 3 4 5 ②安装:封液环通常装在填 料之中靠近压盖的地方,丝 孔与压力泵或压缩机相连, 有压力的中性液由此进入环 内,液体的压力须比填料箱 的工作压力高0.1~0.3Mpa。 ③中性液体选择原则:它既 不会弄脏工作介质,同时又 能作为填料箱的润滑剂,使 填料的使用寿命延长(特别 是高速回转轴的填料箱,装 上封液环更为有利)
32
33
一些盘根的简介
34
一些盘根的简介
35
一些盘根的简介
36
一些盘根的简介
37
一些盘根的简介
填料密封

度(或高度)、填料箱总高度等,如图2—5所 示。
15
第一节 软填料密封 二 主要参数
(二)压紧裁荷与压盖螺栓尺寸
1.填料的压紧载荷确定
pg
1 k
2 k fl
pie B
16
第一节 软填料密封 二 主要参数
2.压盖螺栓尺寸的确定
5
第一节 软填料密封 一基本结构及密封原理
为了使沿轴向径向力分布均匀,采用中间封液环5将填 料箱分成两段。为了使软填料有足够的润滑和冷却, 往封液环入口4注入润滑性液体(封液)。为了防止填料 被挤出,采用具有一定间隙的底衬套7。
6
第一节 软填料密封 一基本结构及密封原理
在软填料密封中,流体可泄漏的途径有三条。 (1)流体穿透纤维材料编织的软填料本身的
缝隙而出现渗漏(如图2—1中A所示)。一般情 况下,只要填料被压实,这种渗漏通道便可 堵塞。高压下,可采用流体不能穿透的软金 属或塑料垫片和不同编织填料混装的办法防 止渗漏。
7
第一节 软填料密封 一基本结构及密封原理
(2)流体通过软填料与箱壁之间的缝隙 而泄漏(如图2—l中B所示)。由于填料 与箱壁内表面问无相对运动,压紧填 料较易堵住泄漏通道。
21
第一节 软填料密封 三、密封材料的选择
(二)常用软填科
1.典型的软填料结构形式 按不同的加工方法,软填科分为绞合填料、编织填料、叠层
填料、模压境料等,其典型结构形式如图2—7所示。
22
第一节 软填料密封 三、密封材料的选择
(1)绞合填料。如图2—7(a)所示,绞合填料是 把几股纤维绞合在一起,将其填塞在填料腔内 用压盖压紧,即可起密封作用,常用于低压蒸 气阀门,很少用于转抽或往复杆的密封。用各 种金属箔卷成束再绞合的填料,涂以石墨,可 用于高压、高温阀门。若与其他填料组合,也 可用于动密封。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当泄漏流体压力作用时,根据流体压力与填料之间的 相互作用,流体压力沿轴向的分布出现两种不同的状 况。 一. 压盖压力显著比流体压力高,压缩填料与轴表面 形成微小的迷宫接触状态,密封间隙中的泄漏流体受 到节流的作用,所以流体压力(p)沿填料长度呈非 线性规律分布,如图4-6(a)所示。
二. 填料与轴表面的径向接触应力比流体压力低, 于是除了压盖附近外,流体压力将填料推向填料 函壁面而脱离轴,所以流体压力沿填料长度的分 布状况如图4-6(b)
4.1.4 填料的安装、使用与保管
4.2 往复密封
往复密封——是指用于过程机械作往复运动机构 处的密封,包括液压密封、气动密封、活塞环 密封、柱塞泵密封等。
4.2.1 液压密封
1. 对液压密封的基 本要求
一般的液压密封 指液压缸活塞密封和 活塞杆密封。当范围 更广、要求更严时, 还包括防止灰尘或外 界液体进入系统的防 尘密封。支撑环起到 类似滑动轴承的作用, 支撑侧向载荷,维持 液压密封同心的作用。
因此,填料与运动的轴或杆之间的泄漏或逸散成为填 料密封成功的关键。
1. 软填料密封的安装状态,即预紧压盖螺栓,轴是静 止的,没有密封介质压力存在。
螺栓伸长时产生一轴向力 Fg ,压盖压力 g Fg A,
A为填料函的环形截面积,A 0.785 D2 d 2 。
填料具有粗糙的表面,且是可压缩的材料
g pe2 fKL/t / K (4-7)
(2)摩擦力和摩擦力矩
作用在填料轴向微元上的摩擦力:
dFt fcdr x dx fcdK ge fKx/tdx
对上式积分,得到填料与轴的总摩擦力:
Ft
fcKd
L 0
g
e
fKx
/t
dx
摩擦力矩则为
图4-28表示了 气动气缸的主 要构件,其密 封构件有:活 塞杆密封、活 塞密封、防尘 密封、冲程终 了刹车系统的 衬垫密封。
4.2.2 气动密封
(1). 基本要求
对于气动气缸,摩擦问题是最重要的,气体的泄
漏降为其次。密封件的润滑问题是气动密封的设计要 点。
对于很多场合,不允许对气动设备进行油雾润滑,
,
代入得:
这表明只要弹性体材料的泊松比维持在0.5附近,密封的 接触应力 总比介质压力P高 因此具有自动适应流 体压力变化的能力。
O形圈的自密封机理ຫໍສະໝຸດ 矩形截面的基本原理一样的。(2). 液压往复运动用O形密封圈
O形圈是液压活塞和活塞杆常用的密封件,但在应用 中存在的主要问题:
(3). 活塞杆密封
解决方案是采用无油空气。在整个设备周期内,润滑 膜均存在而无需维护。
(2). 气动密封典型唇口结构
图4-30为典型弹性体气动密封唇口部位的两种结 构,其初始接触应力决定于密封与其偶合密封面 的过盈量。密封的接触应力随气体压力的增加而 增加,即具有自紧作用,不过这也将导致摩擦力 的增加。
现代气动技术的发展,要求气动密封的润滑持久、 有效和抗腐蚀,能实现无油润滑。
(4-4)
由上式可得到保证软填料密封所需要的压盖压力为:
g peL / K1 (4-5)
当轴回转时,填料与轴摩擦的轴向分量为零 f1 0 仅与填料与填料函内壁的摩擦 f f2
并假设 K K1 K2,D d / 2 D,
则式4-3、式4-5可简化为:
r x ro x ri x Kge fKL t (4-6)
图4-13所示密封环在自由状态下的密封表面产生了 接触应力
图4-14,操作过程中,流体压力P作用在密封环暴 露于介质的表面,使得密封面的接触应力增加到, 此时 大于被密封的流体压力P,从而实现了密 封。
接触应力 与介质压力P的关系可通过分析三维应 力应变关系获得,其表达式为
,
式中 为弹性体材料的泊松比。对于弹性材料
总接触压力包括环的初始接触压力和气体压力产生 的接触压力。
通常气体压力产生的接触压力较大,是形成轴向和 径向密封阻力的主要原因。 但当气体压力较小时,则环的张力可能是主要的。
(2)活塞环的作用 活塞式压缩机分为油润滑压缩机和无油润滑压缩机。 1. 油润滑活塞环 2.无油润滑活塞环
4.2.3 旋转轴唇形密封
唇形密封——结构简单、紧凑、摩擦阻力小,对无 压或低压环境的旋转轴密封可靠
1 .唇形密封
(1)无压旋转轴唇形密封
1). 基本概念 下图给出了从填料密封到唇形密封的发展过程。
2. 密封唇的几何形状
下图为现代弹性体径向唇形密封的机构图,柔性环状 隔膜的一端为密封唇口,另一端与金属骨架固联。
密封面由两个相交的锥面形成。油侧的接触角要明显 大于空气侧的接触角。 下图分别表示了唇形密封正常安装和反向安装的情况。
1.基本结构
与机械密封相比,软填 料密封——优点:结构 简单、价格便宜、加工 方便、装拆容易和使用 范围很广。缺点:填料 与轴或杆表面摩擦和磨 损较大,造成材料和功 率消耗大。 填料密封要允许一定的 泄漏量,为了润滑摩擦 部位并带走摩擦热,降 低材料磨损,延长使用 寿命。
2.软填料的分类、材料和结构
由以上分析可知,填料预紧后的径向接触应力与 泄漏流体压力的分布规律恰恰相反。为了保证填 料的密封作用,要求填料与轴和填料与填料函之 间的径向应力足以使介质不可能沿其流动,即填 料函底部的径向应力不小于泄漏流体的压力P。即:
ri L K1a L K1geL p
ro L K2a L K2geL p
(4-8)
(4-9)
(3)泄漏率
密封介质沿填料与轴之间的环形间隙的泄漏,可
视为流体作层流流动,理想条件下的泄漏量可按
下式计算
Q Dph03 12 L
调节填料轴向压紧力,使其沿径向与轴紧密接触, 是保证软填料达到密封的关键。
(4)磨损与润滑
由于摩擦引起的磨 损是软填料密封中 的一个突出问题。 除了填料磨损外, 转轴或往复杆也同 样发生磨损。正常 装填的填料在压盖 处磨损较大,向内 逐渐减小,而装填 不好的填料出现如 图4-7所示的异常磨 损状况。
气动专用的唇形密封圈,与液压密封圈相比,唇口较 薄,接触部位隆起。
(3)方形圈气动密封
(4). 无油润滑气动密封
4.2.3 活塞和活塞杆密封
活塞与气缸内表面的密封由活塞环来实现;活塞杆 与缸体的密封一般由填料密封来实现
1. 活塞密封—活塞环
活塞环是依靠阻塞和节流机理工作的接触式动密封。 (1)活塞环密封的基本原理
a x gex
(4-2)
—系数,
4
f1K1d D2
f2K2D
d2
所以,填料与轴和填料函之间任意x处的径向应力:
ri x K1a x K1gex ro x K2a x K2gex (4-3)
上式表明填料与轴和填料函之间的径向应力在压盖 出最大,并以指数规律向填料函底递减。
4.1.3 软填料密封结构的设计 软填料密封结构的发展方向: 1. 填料沿填料函长度方向的径向应力分布均匀, 且与泄漏介质的压力分布规律一致。 2. 考虑冷却和润滑措施 3. 设置及时或自动补偿填料磨损的结构; 4. 在填料函底部设置底套,以防止填料被挤出; 为防止含固体颗粒介质的磨蚀和腐蚀性介质的腐蚀, 采用中间封液环,注入封液,起冲洗和提高密封性 的作用。 5. 采用由不同材质的填料环组合的结构。
4.1.2 软填料密封的原理
(1)应力特征
在预装填料的填料函中,流体可能的泄漏通道主要是 穿过软填料材料本身的渗漏和通过填料与轴外表面, 以及填料与填料函内壁表面之间的间隙的泄漏。
对于填料材料本身的渗漏,可以通过以下解决:一、 压缩时软填料被压实,二、通过改变填料材料或结 构
对于填料与填料函内壁面的泄漏:无相对运动,泄漏 量好控制
与纯粹的旋转运动密封不同之处:往复运动密封的泄 漏率在构成一个循环的两个行程中是彼此不相同的。
对液压密封的基本要求如图所示:
2. 弹性体密封的基本原理
以橡胶O形圈密封为代表,介绍弹性体密封的基本 原理。 (1)自密封机理 弹性体密封的“自动密封”或称“自密封”是依靠 弹性体材料的,弹性、并存在初始装配过盈量或预加 载荷来实现的。
3. 密封界面的特征
主要有密封界面接触载荷、弹性体的初始磨损、轴 的表面粗糙度及密封接触面的润滑。
4. 动力密封机理
下图揭示了弹性体唇形密封的动密封能力。“回泵送” 就是唇形密封的“动力密封机理”。
实验过程:
1)稍许干运转,测量干摩擦转矩;2)停止运转,在 空气侧注以一定量的润滑油;3)重新开始运转,摩 擦力矩明显降低,同时油膜被渐渐地泵送到密封的另 一侧;4)最后,当所有的油被送到油侧一边后,摩 擦力矩又突然增加。 结论——如果唇形密封是近似对称的,或者接触面不 能形成必需的微突体或棱脊,那么,唇形密封并不会 产生明显的回泵送现象。
第四章 过程机械密封
4.1.1 引言
4.1 填料密封
填料密封——又称压盖填料密封,主要用于过程机器 和设备运动部分的密封,如离心泵、真空泵、搅拌机、 反应釜等的转轴和往复泵、往复压缩机的柱塞或活塞 杆,以及做螺旋运动阀门的阀杆与固定机体之间的密 封。 填料密封依其采用的密封填料的形式分为软填料密封 和硬填料密封,本节主要介绍软填料密封。
• a:分类 • 按功能、材料和加工方法等分类。 • b:材料 • 实际软填料由基体材料和辅助材料组成,基体材
料用于满足耐热性、化学稳定性方面的要求,而 辅助材料则满足润滑性、致密性或防腐蚀的要求 • c:编结填料结构 • 编结填料按编织方式分为夹心套层式编结填料、 发辫式编结填料和穿心式编结填料等三种。
当往复运动时,密封是依靠密封件与运动活塞杆之 间流体膜的弹性流体动压效果来实现的。 典型的活塞杆密封: