内燃机构造与原理
内燃机原理与构造

水冷式的。 6、按气缸数及布置分,有单缸内燃机、多缸内燃机、立式内燃机、卧式内燃
机、直列式内燃机、V形内燃机(图1-1a)、对置气缸式内燃机(图1-1b)、斜 置式内燃机。 7、按用途分类,有汽车用、工程机械用、拖拉机用、船用、坦克用、摩托车 用、发电用、农用等内燃机。 8、其他,除以上方式分类外,还可按转速来分,有高速、中速和低速等几种。
型号示例:
柴油机 YZ6102Q—六缸直列、四冲程、缸径102mm、水冷、汽车
用(YZ为扬州柴油机厂代号); 12V135ZG—12缸、V型、四冲程、缸径135mm、水冷、
增压、工程机械用; 12VE230ZCZ—12缸、V型、二冲程、缸径230mm、水冷、
增压、船用主机、左机基本型。 汽油机 (1)1E65F—单缸、二冲程、缸径65mm、风冷、通用型; (2)12V135ZG—12缸、V形、四冲程、缸径135mm、水
轿车柴油机(55KW/4200rpm)
全铝结构(气缸盖、气缸体、 曲轴箱) 贯穿螺栓强化整机强度 刚度 四气门,双顶置凸轮 (DOHC) 直喷,增压中冷 可变截面增压器 (VNT) 共轨燃油喷射系统(CR) 带中冷EGR和进气控制 的空气管理 可变进气涡流(选装) 氧化催化器
柴油机与汽油机比较,各有优缺点(表1-3)
(5)、示功图
ra-进气行程 ac-压 缩行程 czb-做功行 程
z-最高燃烧压力 b- 做功终点 r-排气终点
P0-大气压力
2、四冲程柴油机结构特点与工作原理
柴油机所用的燃料是柴油。与四冲程汽油机 相比基本结构特点是没有火花塞,喷油器直 接安装在气缸顶部,向气缸内喷油(图1-7) 其工作原理与四冲程汽油机也有所不同,在 进气行程,进入气缸的是纯空气,而不是可 燃混合气;在压缩行程末,喷油器向气缸喷 入高压柴油,由于气缸的高温高压作用,柴 油迅速着火燃烧,使气体急剧膨胀,推动活 塞做功。其着火方式属于压燃式,而不是汽 油机的点燃式。
内燃机的构造及工作原理

内燃机的构造及工作原理内燃机,也称为发动机,是现代交通工具和许多家用电器的核心部件。
不同于蒸汽机等外燃机,内燃机是一种热力机械,即从燃烧燃料产生热能,通过能量转换产生动力,输出机械能和热能的发动机。
在本文中,我们将深入探讨内燃机的构造及工作原理。
一、内燃机的构造内燃机由多个部件组成,每个部件的构造和功能不同,协同工作,在发动机运转过程中,才能将燃油能转化为动力输出。
以下是内燃机的主要构造:1. 缸体及缸盖内燃机的主体部分是缸体和缸盖,彼此连接成为整体。
缸体是一个长圆柱形的筒体,里面有一个圆柱形的容积,即为缸内。
缸内的形状和大小根据不同的燃烧室形状和大小而定。
缸盖则作为缸体的顶部,封闭了缸内。
2. 活塞及活塞环活塞是内燃机中主要的运动部件,是一个圆柱体,材质通常是铝或铸铁。
活塞上开有一个小孔,称为活塞销穴,可用来固定活塞销。
活塞上还有一个凸起,称为活塞头。
活塞环被固定在活塞上沿着活塞径向走向。
活塞环的作用是密封气缸,确保活塞在缸内运动时气体不会泄漏。
3. 活塞销活塞销是将活塞与活塞连杆连接在一起的部件。
它是一根圆形的轴,材质通常是钢或铬合金钢。
活塞销的工作原理是将活塞上的动力传递到连杆上,然后通过曲轴将动力传递到发动机的其他部件。
4. 连杆连杆是将活塞与曲轴连接在一起的零件,它的长度和形状取决于缸距和曲轴。
通过连接活塞上的活塞销和曲轴上的曲轴销,连杆转化活塞上的往复运动成为曲轴上的旋转运动。
5. 曲轴曲轴是内燃机的关键部件之一,是一个大型的旋转轴。
它类似于一个长方形的轴,上面有几个凸起,具有不同长度的曲柄臂。
它的作用是将来自连杆的线性力转变为旋转力,使发动机产生动力输出。
6. 气门与点火系统气门系统由进气门和排气门组成,控制着油气混合物的进出。
点火系统包括点火线圈和火花塞,控制着燃料的燃烧。
二、内燃机的工作原理内燃机的工作原理是当燃料和空气混合物在发动机的燃烧室中被点燃时,发生爆炸,使空气和燃料混合物的压力快速增加。
内燃机复习资料已整理

内燃机复习资料已整理
概述:
内燃机是一种利用燃料在发动机内燃烧产生高温高压气体推动活塞运动的装置。
内燃机广泛应用于交通工具、发电厂和工业生产中。
本文档为内燃机的复习资料,整理了内燃机的基本原理、工作循环、构造和性能参数等内容。
一、内燃机基本原理
内燃机是通过在活塞内部进行燃烧来产生高压气体推动活塞运动的一种热机。
其基本原理是燃料与空气在气缸内混合并点燃,产生高温高压气体,推动活塞运动,从而驱动机械装置。
二、内燃机工作循环
内燃机的工作循环分为四个连续的过程,即吸气、压缩、燃烧和排气。
在吸气过程中,活塞下行,气门打开,燃料空气混合物进入气缸;在压缩过程中,活塞上行,气门关闭,混合物被压缩至高压;在燃烧过程中,点火系统点火,混合物燃烧产生高温高压气体推动活塞运动;最后,在排气过程中,活塞再次上行,排出废气。
三、内燃机构造
内燃机由气缸、活塞、曲柄连杆机构、燃料系统和点火系统等
组成。
1. 气缸:内燃机的工作腔,通常呈圆筒形,可容纳活塞和混合
气体。
2. 活塞:气缸内能够往复运动的密封装置,将高压气体的作用
转化为机械能。
3. 曲柄连杆机构:将活塞往复运动转化为旋转运动的机构,由
曲轴、连杆和曲柄轴组成。
4. 燃料系统:负责供给燃料和空气混合物到气缸中,包括燃料
喷射器、油泵和进气系统等。
5. 点火系统:提供可靠的点火能量,使混合气体能够燃烧起来。
典型的点火系统包括点火塞、点火线圈和点火控制单元等。
四、内燃机的性能参数
内燃机的性能受到多个参数的影响,包括排量、压缩比、热效率、功率和扭矩等。
内燃机的构造与工作原理解析

内燃机的构造与工作原理解析内燃机是一种常见的发动机类型,广泛应用于汽车、飞机和船舶等交通工具中。
它通过燃烧内部燃料来产生动力,驱动机械运转。
本文将对内燃机的构造和工作原理进行详细解析。
一、内燃机的构造内燃机的构造主要由以下几个部分组成:1. 气缸和活塞:内燃机通常具有多个气缸,每个气缸内都放置有活塞。
气缸和活塞的数量决定了内燃机的多缸数量,多缸设计有利于提高发动机的功率和平稳性。
2. 曲轴和连杆:曲轴与活塞相连,将活塞的往复运动转化为旋转运动。
连杆负责连接活塞和曲轴,使活塞的运动能够传递到曲轴上。
3. 燃烧室和火花塞:燃烧室是燃烧燃料的地方,位于气缸顶部。
火花塞则是引发燃料燃烧的关键部件,通过电火花点燃混合气体。
4. 进气和排气系统:进气系统负责引入空气和燃料混合物,而排气系统则将燃烧产生的废气排出。
这些系统通常包括进气管、空气滤清器、燃油喷嘴和排气管等。
5. 燃油系统:燃油系统负责储存和供给燃料。
它包括燃油箱、燃油泵和喷油嘴等组件。
二、内燃机的工作原理内燃机的工作原理可以总结为四个基本步骤:进气、压缩、燃烧和排气。
1. 进气:在进气冲程中,活塞从上往下移动,气缸内的压力下降,进气阀开启,混合气体通过进气管进入气缸。
这个过程将空气和燃料混合物引入燃烧室。
2. 压缩:在压缩冲程中,活塞从下往上移动,气缸内的空间减小,将混合气体压缩至高压状态。
这个过程使得混合气体变得更加稳定,为后续的燃烧提供条件。
3. 燃烧:在燃烧冲程中,电火花点燃燃烧室内的混合气体。
燃料燃烧产生高温高压气体,推动活塞向下移动。
这个过程释放出能量,推动发动机工作。
4. 排气:在排气冲程中,活塞再次向上移动,将燃烧产生的废气排出。
排气阀门开启,废气通过排气管被排放到大气中。
三、内燃机的工作循环内燃机的工作原理可以通过热力学循环图来表示,最常见的循环是四冲程循环,也称为奥托循环。
1. 进气冲程:活塞从上往下移动,气缸内的容积增大,吸入空气和燃料。
内燃机原理和构造(共57张PPT)

多元化动力总成
未来动力总成将呈现多元化趋势,内燃机将与电动机 、燃料电池等共同存在。
提高效率降低排放策略
涡轮增压技术
提高进气压力,增加发动机功 率和扭矩,同时降低油耗和排 放。
轻量化设计
采用高强度材料和先进制造工 艺,减轻发动机重量,提高燃 油经济性。
02
密封材料选择
根据密封部位的工作条件和要求,选择合适的密封材料,如橡胶、塑料
、金属等。
03
密封技术改进
随着技术进步,新型密封材料和结构不断涌现,如高性能橡胶材料、复
合密封结构等,提高了密封效果和耐久性。同时,采用先进的加工工艺
和质量控制手段,确保密封件的精度和质量。
05
性能评价与试验方法
Chapter
应用领域与市场需求
应用领域
内燃机广泛应用于交通运输、工程机械、农业机械、发电机组等领域,为现代社 会提供了强大的动力支持。
市场需求
随着全球经济的不断发展,对于内燃机的需求也在持续增长。特别是在新兴市场 和发展中国家,由于基础设施建设和工业化进程的加速,对于内燃机的需求尤为 旺盛。同时,市场对于更加高效、环保的内燃机的需求也在不断增加。
缸内直喷技术
提高燃油雾化质量,实现更精 确的燃油喷射控制。
可变气门正时技术
根据发动机工况实时调整气门 开度和气门关闭时间,优化燃 烧过程。
余热回收技术
利用发动机余热为车辆提供辅 助热源,提高能源利用效率。
THANKS
感谢观看
润滑、冷却与密封技术
Chapter
润滑系统组成及作用
润滑系统组成
包括机油泵、机油滤清器、机油 冷却器、油道等。
内燃机原理和构造.完整版PPT资料

7
二冲程柴油工作原理
如果在两个冲程里完成进气、压缩、做功 、排气这些循环动作,就叫二冲程,相应 的内燃机叫二冲程内燃机.
8
柴油机工作原理
第一冲程——进气,它的任务是使气缸内充满新鲜空气。 当进气冲程开始时,活塞位于上止点,气缸内的燃烧室中 还留有一些废气。 当曲轴旋转时,连杆使活塞由上止点向下止点移动,同时 ,利用与曲轴相联的传动机构使进气阀打开。 随着活塞的向下运动,气缸内活塞上面的容积逐渐增大: 造成气缸内的空气压力低于进气管内的压力,因此外面空 气就不断地充入气缸。 当活塞向下运动接近下止点时,冲进气缸的气流仍具有很 高的速度,惯性很大,为了利用气流的惯性来提高充气量 ,进气阀在活塞过了下止点以后才关闭。虽然此时活塞上 行,但由于气流的惯性,气体仍能充人气缸。
11
柴油机工作原理
四. 排气冲程 第四冲程——排气。排气冲程的功用是把膨胀后的废气排 出去,以便充填新鲜空气,为下一个循环的进气作准备。 当工作冲程活塞运动到下止点附近时,排气阀开起,活塞 在曲轴和连杆的带动下,由下止点向上止点运动,并把废 气排出气缸外。由于排气系统存在着阻力,所以在排气冲 程开始时,气缸内的气体压力比大气压力高0.025— 0.035MPa,其温度Tb=725~925K。为了减少排气时活 塞运动的阻力,排气阀在下止点前就打开了。排气阀一打 开,具有一定压力的气体就立即冲出缸外,缸内压力迅速 下降,这样当活塞向上运动时,气缸内的废气依靠活塞上 行排出去。为了利用排气时的气流惯性使废气排出得干净 ,排气阀在上止点以后才关闭。
影响:喷油提前角的大小对柴油机影响极大,若 其过大,将导致发动机工作粗暴;过小,最高压 力和热效率下降,排气管冒白烟。最佳喷油提前 角:即在转速和供油量一定的条件下,能获得最 大功率及最小燃油消耗率的喷油提前角。供油量 越大,转速越高,则最佳喷油提前角越大;最佳 喷油提前角还与发动机的结构有关
内燃机结构及原理

内燃机未来的发展将着重于改进燃烧过程,提高机械效率,减少散热损失,降低燃料消耗率;开发和利用非石油制品燃料、扩大燃料资源;减少排气中有害成分,降低噪声和振动,减轻对环境的污染;采用高增压技术,进一步强化内燃机,提高单机功率;研制复合式发动机、绝热式涡轮复合式发动机等;采用微处理机控制内燃机,使之在最佳工况下运转;加强结构强度的研究,以提高工作可靠性和寿命,不断创制新型内燃机
四冲程内燃机(汽油机)
吸气冲程:进气门打开,排气门关闭,活塞向下运动,雾状汽油和空气的混合物(柴油机为空气)进入气缸内。
压缩冲程:进气门和排气门都关闭,活塞向上运动,燃料混合物被压缩(机械能转化为内能)
做功冲程:在压缩冲程结束时,火花塞(柴油机为喷油嘴)产生电火花,使燃料猛烈燃烧(柴油机为压燃),产生高温高压气体。高温高压的气体推动活塞向下运动,带动曲轴转动,对外做功。(内能转化为机械能)
实际上,进气门是在上止点前即开启,以保证活塞下行时进气门有较大的开度,这样可在进气过程开始时减小流动阻力,减少吸气所消耗的功,同时也可充入较多的新鲜充量。当活塞在进气行程中运行到下止点时,由于气流惯性,新鲜充量仍可继续充入气缸,故使进气门在下止点后延迟关闭。
排气门也在下止点前提前开启,即在膨胀行程后部分即开始排气,这是为了利用气缸内较高的燃气压力,使废气自动流出气缸,从而使活塞从下止点向上止点运动时气缸内气体压力低些,以减少活塞将废气排挤出气缸所消耗的功。排气门在上止点后关闭的目的是利用排气流动的惯性,使气缸内的残余废气排除得更为干净。
内燃机的构造和工作原理

内燃机的构造和工作原理内燃机是一种能够将化学能转化为机械能的热机。
在内燃机中,燃料在燃烧过程中释放能量,并通过往复循环过程转化为连续运动。
内燃机通常采用往复活塞式结构,包括气缸、活塞、连杆和曲轴等重要部件。
1.气缸:内燃机通常有一个或多个气缸,气缸壁内部光滑,充当活塞运动的导向面。
气缸通常用铸铁或铝合金制成。
2.活塞:活塞是内燃机的运动部件,通常是一个柱状或圆柱形的零件,位于气缸内。
活塞上下运动在曲轴的驱动下完成,将压力转化为机械能。
3.曲轴:曲轴是内燃机的核心组成部分,将来自活塞和连杆的往复运动转化为旋转运动。
曲轴通过连杆和活塞连接并驱动机械装置,将发动机的功率传递到外部。
4.连杆:连杆将活塞的往复运动转化为曲轴的旋转运动。
连杆连接着活塞与曲轴,通过摇杆机构使活塞的上下运动转变为曲轴的回转运动。
5.气门:气门是内燃机进、排气的关键部件。
气门通过气门弹簧和凸轮机构控制开关,使燃烧室与气缸通道正确连接,完成进、排气过程。
内燃机的工作原理如下:1.进气冲程:活塞下行,气缸内压力下降,气门打开,油气混合物通过进气道进入燃烧室。
同时,曲轴带动连杆将活塞向下推动。
2.压缩冲程:活塞上行,气门关闭,气缸内油气混合物被压缩,并使混合物中的燃料、空气更加充分混合并增加压力。
曲轴再次带动连杆将活塞向上推动,使体积变小。
3.燃烧冲程:当活塞达到最高点时,燃油喷射器向燃烧室喷射燃料,与空气形成可燃混合气体,然后通过火花塞产生的火花点燃混合气体。
燃烧产生的高温高压气体将活塞向下推动,曲轴再次带动连杆。
4.排气冲程:活塞再次向上移动,气门打开,废气通过排气道排出,气缸内压力下降。
曲轴带动连杆将活塞向上推动。
以上四个冲程完成一个完整的循环,并将化学能转换为机械能,推动发动机的运转。
总体而言,内燃机通过不断重复的往复运动将燃料在燃烧室内燃烧,释放出的能量转化为机械能,驱动发动机的运动。
内燃机在现代交通运输、工业生产和家庭用途中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 雾化性和流动性:主要决定于柴油的黏度和凝点。黏度表示柴油的稀稠程度及流动性,黏度 过高,则柴油滤清困难,喷雾恶化,燃烧变坏,过低则使喷油泵及喷油器中的精密偶件表面 不易形成油膜,造成润滑不良而加速磨损。柴油失去流动性而开始凝固的温度称为凝点。品 质好的柴油应具有低凝点。当柴油接近凝点时流动性已变得很差,不但会使喷雾恶化,而且 供油也很困难。凝点是柴油的重要指标之一,国产柴油均以凝点作为牌号。例如10号轻柴油 的凝点为10℃,通常选用柴油的凝点应比最低环境温度低5~7 ℃ 以上。
• 柴油分为轻柴油、重柴油二类。轻柴油一般用于高速柴油机(一般接触到的均为轻柴油), 重柴油多用于中、低速柴油机(农田排灌、船舶等)。轻柴油的使用性能包括:自燃性、蒸 发性、雾化性和流动性、腐蚀性等(表6-1)。
• 自燃性:评定柴油自燃着火性的指标是十六烷值。柴油的自燃点越低,自燃性能越好,亦即 十六烷值越高。柴油自燃点过高或过低都对柴油机的性能不利:过低(即十六烷值高),则 喷入气缸的柴油来不及与空气充分混合就着火,使燃料不能得到及时而完全的燃烧,造成排 气冒黑烟,柴油机的经济性降低;过高(即十六烷值低),则喷入气缸的柴油滞燃期增长, 致使在着火之前气缸里积累了较多的柴油混合气,一旦着火,燃气压力升高的速度过大,造 成柴油机工作粗暴,并使冷起动困难。
• 一般可用油束本身的喷雾锥角β、射程L(β过大,L过小,则柴油不能很好的分布到燃烧室空间;β 过小,L过大,当燃烧室尺寸小时,较多柴油喷射到燃烧室壁面上)及雾化质量来评定喷射质量。
• 一般用喷雾的细度和喷雾均匀度表示雾化质量(喷雾越细,越均匀,雾化质量越好)。喷雾细度可 用油束中油粒的平均直径表示,平均直径小,喷雾越细。均匀度可用油粒的最大直径与平均直径之 差表示,直径差值越小则喷雾越均匀。雾化特性曲线,横坐标表示油粒的直径(细度),纵坐标为 某一直径油粒占全部油粒的百分数(均匀度),曲线越窄(均匀度大),越靠近纵坐标(细度小), 则雾化质量越好。
内燃机构造与原理
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
内燃机概述 内燃机的工作原理 内燃机的热力循环 内燃机的性能指标 曲柄连杆机构 配气机构 柴油机燃油系统 汽油机燃油系统和点火系统 润滑系统//起动装置
第七章 柴油机燃油系统
1. 柴油及其使用性能
为使混合迅速而均匀,一般采用两个措施:采用高压力喷射和雾化质量好的多孔式喷油器, 并使喷射油束与燃烧室形状配合;燃烧室内组织空气运动,利用气流运动促进柴油与空气 的混合。 • 油膜蒸发混合将绝大部分柴油喷射到燃烧室壁面上,形成一层油膜,而只有少量柴油直接 形成混合气首先燃烧,随着燃烧过程的进行,燃烧室温度升高,在强烈的旋转气流作用下 使覆盖在燃烧室壁面上的油膜迅速蒸发以形成均匀的混合气。 • 在小型高速柴油机中,柴油或多或少地会喷到燃烧室壁上,所以两种混合方式都兼而有之, 只是多少、主次各有不同。 • 表7-1,目前多数柴油机仍以空间雾化混合为主,球型燃烧室以油膜蒸发混合为主。
空间雾化混合(ω型燃烧室)
油膜蒸发混合(球型燃烧室)
Байду номын сангаас
第七章 柴油机燃油系统
4. 柴油的喷射雾化
• 利用喷射设备将柴油分散成细粒的过程称为柴油的喷雾或雾化。柴油雾化效果对混合气的形成于燃 烧有重要的影响:可大大增加柴油蒸发的表面积(P146),从而提高加热蒸发的速度,也增加与 空气接触氧化的机会,促进混合气的形成,加速柴油在燃烧开始前的物理化学准备过程。
油束结构
雾化特性曲线
第七章 柴油机燃油系统
4. 柴油的喷射雾化
• 影响油束特性的因素
① 喷油嘴结构:喷油嘴结构不同,引起油束形成的内部扰动不同,从而产生不同形式的油束。油束应与燃烧 室 型 式 密 切 配 合 。 多 孔 喷 嘴 , 喷 孔 数 目 一 般 为 1~8个 , 喷 孔 直 径 为 0.25~0.6mm , 喷 孔 间 的 夹 角 在 130°~155°之间。在喷油压力和喷孔总截面积不变的条件下,增加喷孔数目,每个喷孔的直径需减小, 柴油喷出喷孔时受到更大的节流,孔内扰动增加,雾化质量提高。轴针式单孔喷嘴,轴针头部伸入喷孔中, 轴针头部可做成不同的锥度,从而控制油束的喷雾锥角,以适应不同燃烧室对油束的要求。
1—2:绝热压缩过程 2—3:定容加热过程 3—4:定压加热过程 4—5:绝热膨胀过程 5—1:定容放热过程
第七章 柴油机燃油系统
3. 混合气形成的基本方式
• 柴油机混合气的形成基本上有两种形式,即空间雾化混合和油膜蒸发混合。 • 空间雾化混合是直接将柴油喷射到燃烧室空间,使柴油与空气形成混合气的一种混合方式。
• 蒸发性:用馏程表示,直接影响滞燃期内柴油的蒸发量,从而影响燃烧的完善程度和起动性 能。中轻馏分多时,即低温蒸发性好,可加速混合气的形成,也有利于冷起动,但会导致滞 燃期中蒸发的柴油量增加,使柴油机工作粗暴;中重馏分多时,将引起柴油喷雾汽化不足, 从而造成柴油在缺氧的条件下燃烧而裂解出游离碳。质量好的柴油其轻、重馏分均应较少。
• 混合气的形成和燃烧重叠进行,一边喷油,一边混合和 燃烧。这一过程既有不均匀的预混合燃烧(即定容加热 过程),又有扩散混合燃烧(即定压加热过程),两种 混合和燃烧形式同时存在,并且相互影响。
• 为了保证柴油机良好的性能,燃烧应尽可能在上止点附 近迅速完成,不应延长。要求喷油持续时间极为短促, 一般全负荷时的供油持续时间只有15~35°CA,对转速 1500r/min 的 柴 油 机 来 说 , 也 就 是 只 有 1.7~4ms 。 需 在 较短的时间内保证形成均匀的混合气,因此柴油机混合 气形成过程对燃烧过程有决定性的影响。
• 腐蚀性:分别用硫含量、水溶性酸或碱及酸度等指标来表示。柴油燃烧时其中的硫或硫化物 会生成二氧化硫,遇到气缸内的蒸汽或水分就会形成亚硫酸和硫酸而严重地腐蚀气缸、活塞 及排气管等零件。此外,柴油中硫含量增加会增加颗粒排放物。
第七章 柴油机燃油系统
2. 柴油机混合气形成的特点
• 柴油黏度大,不易挥发,必须借助喷油设备(喷油泵和 喷油器等)将柴油在接近压缩行程终了的时刻喷入气缸。 所以,柴油机是采用内部混合的方式形成混合气。