第十六章二次根式知识点总结大全
人教版八年级下册数学知识点汇总

八年级下册第十六章:二次根式(1))0a ≥号,a 叫做被开方数.2,即:2可以省略 .(2) 二次根式有意义的条件:被开方数为非负数,即:被开方数大于或等于0.在实数范围内有意义的条件为: . 由20x -≥,可以得出:2x ≥.20x ≥,x 属于任意实数.在实数范围内有意义的条件:30x ≥,0x ⇒≥.在实数范围内有意义的条件:10121202x x x x x -≥≤⎧⎧⇒⇒-<≤⎨⎨+>>-⎩⎩. (分析:分子、分母都要有意义,分式有意义:分母不为0)(3) 负数没有平方根也没有算术平方根,0的平方根是0,0的算术平方根是0.(4) 正数的立方根是正数,负数的立方根是负数,0的立方根是0.(5) 一个正数有两个平方根,互为相反数. 一个正数有一个算术平方根方根,且为正根. (6) 二次根式的双重非负性:0a ≥0≥.21a =-,则a 的取值范围是: .根据二次根式的双重非负性,()2120a -≥,则210a -≥,所以:12a ≥. (7)()20a a=≥.例如:21.5=;(22224520=⨯=⨯=.提示:2=2倍根号5”.(8()()()0000a a a a a a >⎧⎪===⎨⎪-<⎩.4==5== .11=-=;14==;π==-;110==. (9)代数式:用基本运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接起来的式子叫做代数式.例如:3,x ,x y +)0x ≥,ab -,()0st t≠,3x 都是代数式.(10)二次根式的乘法法则:一般地,=()0,0a b ≥≥,=.=; 3=== ;2612==⨯=;33===;14===== ;⑥((32-=⨯-=-=-=-=-;====;(11=()0,0a b ≥>,=()0,0a b ≥>利用它可以进行二次根式的化简 .====;=====;==; 53=== ;⑤===;(12)最简二次根式:最简二次根式是指满足下列两个条件的二次根式①被开方数不含分母;②被开方数中不含开的尽方的因数或因式..(13)化简最简二次根式的一般方法:①将被开方数中能开得尽方的因数或因式进行开方.====.②化去根号下的分母,即:分母有理化.====;=====;====;==.(14)二次根式的加减:一般地,二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并.注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并.例:==;==;==;-==;同类二次根式:根指数相同、化简后被开方数相同的二次根式;=.注:合并被开方数相同的二次根式与合并同类项类似,将它们的“系数”相加减,最简结果,不能合并.(15)二次根式的混合运算:①二次根式的混合运算顺序与实数的运算顺序一样,先乘方,再乘除,后加减,有括号先算括号里面的,同级运算从左往右依次计算; ②在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用 .例: ① ⎛÷ ⎝解原式(=÷(2=+2==②)23-解原式22223⎡⎤--=-⎢⎥⎣⎦()5329=---229=-+9=注:运算结果是根式的,应表示为最简二次根式 .(16 解:2150126=+ ; 令:12a =,6b =;61212.25224b a a ≈+=+≈第十七章:勾股定理(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222a b c =+ . 勾股定理的证明方法:全世界共有370多种证明方法.其中赵爽正弦图、毕达哥拉斯证法、美国第20任总统詹姆斯加菲尔德的证法比较出名;勾股定理的变式:① 222c a b =+;②()()222a cbc b c b =-=+- ;③ ()()222b c a c a c a =-=+-;④c =⑤a =⑥b =(2)勾股定理逆定理:如果三角形三边长a ,b ,c 满足222a b c =+,那么这个三角形是直角三角形 .(3)定理:经过证明被确认正确的命题叫做定理 .(4)我们把题设、结论正好相反的两个命题叫做互逆命题;如果把其中一个叫做原命题,那么另一个叫做它的逆命题 .(例如:勾股定理与勾股定理逆定理) (5)常见的勾股数(勾股数是正整数):①3、4、5,222345⇒+= ; ②5、12、13,22251213⇒+=; ③6、8、10,2226810⇒+=; ④7、24、25,22272425⇒+=;注:只要三角形的三边长都是勾股数的k (k 为正整数)倍时,构成的三角形仍然是直角三角形.(6)蚂蚁吃食物最短路径问题:①如下图,是一个边长为2的正方体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程. (注:表面爬行)情况一: 情况二: 情况三:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为AB = 42 + 22 =20 =25AbacCBAAAB = 42 + 22 =20 =25AAB = 42 + 22 =20 =25②如下图,是一个长为2,宽为4,高为8的长方体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程. (注:表面爬行)情况一: 情况二: 情况三:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为10.③如下图,是一个底面半径为2,高为8的圆柱体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程.(注:表面爬行)情况一: 情况二:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为(7)如图:直角三角形的两直角边长分别为a 、b ,斜边为c .以两直角边为边长的正方形的面积等于以斜边为边长的正方形的面积.即:123S S S +=,或222a b c +=.AB =82+4π()2 =64+16π2 =44+π2AB =82+4π()2 =64+16π2 =44+π2A8AB = 62 + 82 =100 =10AB AB = 122 + 22 =148AAB = 62 + 82 =100 =10bac S 3S 2S 1(8)三角形面积的计算方法:海伦秦九韶公式(知道三角形的三边长可以直接求面积).2a b cP ++=(其中,,a b c 为三角形的三边长 );S =.例:在下列ABC ∆中,边长如图所示,计算其面积. 解:由海伦秦九韶公式得:6810122P ++==ABC S ∆∴==24==(9)如图,AB BC ⊥,3,4,12,13,AB BC CD AD ====求四边形ABCD 的面积. 解:(法一)连接AC在Rt ABC ∆中,根据勾股定理得:5AC ===22222251216913AC CD AD +=+===∴根据勾股定理得逆定理得:ACD ∆是直角三角形. AC CD ∴⊥,即:90ACD ∠=︒. ∴S 四边形ABC ACD S S ∆∆=+ 111134512362222AB BC AC CD =⋅+⋅=⨯⨯+⨯⨯=.解:(法二)连接AC在Rt ABC ∆中,根据勾股定理得:5AC ===在ACD ∆中,由海伦秦九韶公式得:51213152P ++==A C D S ∆∴=30== ∴S 四边形113034306303622ABC ACD S S AB BC ∆∆=+=⋅+=⨯⨯+=+=. 6108CBA341213DCBA第十八章:平行四边形(1)平行四边形:两组对边分别平行的四边形叫做平行四边形.平行四边形用“”表示,如平行四边形ABCD 记作“ABCD ”.即:若AB ∥CD ,AD ∥BC ,则四边形ABCD 是平行四边形. (2)平行四边形的性质:①平行四边形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC .AB =CD ,AD =BC .②平行四边形的两组对角相等.即:BAD BCD ∠=∠,ABC ADC ∠=∠.平行四边形的邻角互补.即:180BAD ABC ∠+∠=︒,180BCD ABC ∠+∠=︒. ③平行四边形的对角线互相平分.即:OA OC =,OB OD =.(3)平行四边形的两条对角线将平行四边形分成四个面积相等的三角形.即:14AOBBOCCODAODABCDSSSSS ====.4444ABCDAOBBOCCODAODSSS SS====.(4)两平行线间的距离处处相等. (5)平行四边形的面积:底⨯高.(6)平行四边形的判定:①两组对边分别相等的四边形是平行四边形. ②两组对角分别相等的四边形是平行四边形. ③对角线互相平分的四边形是平行四边形. ④一组对边平行且相等的四边形是平行四边形. ⑤两组对边分别平行的四边形叫做平行四边形. (7)三角形中位线定理:三角形的中位线平行且等于第三边的一半. 在ABC ∆中,点D 是AB 的中点,点E 是AC 的中点,所以DE 是ABC ∆的中位线.即:12DE BC =,DE ∥BC .(8)梯形中位线定理:梯形的中位线平行且等于上底与下底和的一半. 在梯形ABCD 中,点E 是AB 的中点,点F 是DC 的中点,所以EF 是梯形ABCD 的中位线.即:2AD BCEF +=,EF ∥AD ∥BC .(9)矩形:有一个角是直角的平行四边形叫做矩形. (10)矩形的性质:①矩形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②矩形的四个角都是直角.即:90BAD BCD ABC ADC ∠=∠=∠=∠=︒. ③矩形的对角线相等且互相平分.即:AC BD =,12OA OC AC ==,12OB OD BD ==.ODCB AED CBAFEDCBAODCBAA OB ∆,BOC ∆,COD ∆,AOD ∆都是等腰三角形. (11)矩形的面积:长⨯宽.即:S AB BC =⋅.(12)在直角三角形中,斜边上的中线等于斜边的一半.如:在Rt ABC ∆中,90ABC ∠=︒,BD 是斜边AC 的中线,则12BD AD DC AC ===.(13)矩形的判定:①对角线相等的平行四边形是矩形. ②有三个角是直角的四边形是矩形.③对角线相等且互相平分的四边形是矩形. ④有一个角是直角的平行四边形叫做矩形. (14)菱形:有一组邻边相等的平行四边形叫做菱形. (15)菱形的性质:①菱形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②菱形的四条边都相等.即:AB BC CD AD ===. ③菱形的对角线互相垂直平分,且每一条对角线平分一组对角.即:AC BD ⊥,12OA OC AC ==,12OB OD BD ==. 1122ABD CBD ADB CDB ABC ADC ∠=∠=∠=∠=∠=∠.1122BAC DAC BCA DCA BAD BCD ∠=∠=∠=∠=∠=∠.A OB ∆,BOC ∆,COD ∆,AOD ∆都是全等的三角形. 即:AOB ∆≌BOC ∆≌COD ∆≌AOD ∆AOB BOC COD AOD S S S S ====14S 菱形ABCD .(16)菱形的面积:两条对角线乘积的12.即:12S AC BD =⋅.(17)菱形的判定:①有一组邻边相等的平行四边形叫做菱形.②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形. ④对角线互相垂直平分的四边形是菱形.(18)正方形:有一组邻边相等且有一个角是直角的平行四边形是正方形.正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形;既是矩形又是菱形的四边形是正方形. (19)正方形的性质:①正方形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②正方形的四条边都相等.即:AB BC CD AD ===.正方形的四个角都是直角.即:90BAD BCD ABC ADC ∠=∠=∠=∠=︒ ③正方形的对角线相等且互相垂直平分,且每一条对角线平分一组对角.即: A C B D ⊥,AC BD =,12OA OC AC ==,12OB OD BD ==. DCBAODCB AODCB A114522ABD CBD ADB CDB ABC ADC ∠=∠=∠=∠=∠=∠=︒.114522BAC DAC BCA DCA BAD BCD ∠=∠=∠=∠=∠=∠=︒.A OB ∆,BOC ∆,COD ∆,AOD ∆都是全等的三角形. 即:AOB ∆≌BOC ∆≌COD ∆≌AOD ∆AOB BOC COD AOD S S S S ====14S 正方形ABCD .(20)正方形的面积:边长⨯边长或对角线乘积的一半.即:S AB BC =⋅或12S AC BD =⋅. (21)正方形的判定:①有一组邻边相等且有一个角是直角的平行四边形是正方形.②有一组邻边相等的矩形是正方形.③有一个角是直角的菱形是正方形.④对角线相等且互相垂直平分的四边形是菱形. ⑤对角线相等的菱形是正方形. ⑥对角线互相垂直的矩形是正方形.(22)平行四边形的中点四边形是平行四边形;菱形的中点四边形是矩形;矩形的中点四边形是菱形;正方形的中点四边形是正方形. (23)平行四边形不是轴对称图形;矩形是轴对称图形,有2条对称轴;菱形是轴对称图形,有2条对称轴;正方形是轴对称图形,有4条对称轴.第十九章:一次函数(1)常量与变量:在某一变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量.(2)函数:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说y 是x 的函数,x 是自变量. (3)函数值:函数值是指自变量在其取值范围内取某个值时,函数与之对应的唯一确定的值.如果当x a =时,y b =,那么b 叫做当自变量的值为a 时的函数值.(4)解析式:像23y x =-+这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式.(5)函数的图象:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. (6)描点法画函数图象的步骤:①列表; ②描点; ③连线;(7)判断分析函数图象的突破点:①明确两坐标轴所表示的意义;②明确图象上的点所表示的意义;③弄清图象上的转折点、最高(低)点所表示的意义;④弄清上升线和下降线所 表示的意义.(8)函数的表示方法:解析式法;列表法;图象法.例1:小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了这个过程中,小明离家的距离y 与时间x 之间的对应关系. 第(1)段:小明从家到食堂,相距0.6km ,用时8min . 第(2)段:小明在食堂用餐,用时()25817min -=. 第(3)段:小明从食堂到图书馆,食堂与图书馆相距()0.80.60.2km -=,用时()28253min -=.食堂与家相距()0.800.8km -=.第(4)段:小明在图书馆看书,用时()582830min -=. 第(5)段:小明从图书馆到家,用时()685810min -=,速度()0.8100.08/min v km =÷=.例2:画出函数21y x =+的图象.第三步:连线(9)正比例函数:一般地,形如()0y kx k =≠(k 是常数)的函数,叫做正比例函数,其/miny /中k 叫做比例系数或斜率.例:①0.2y x =-; ②2xy =; ③22y x =; ④24y x =. 在上面式子中: ①②是正比例函数;③④不是正比例函数.(10)正比例函数()0y kx k =≠的图象性质:①正比例函数()0y kx k =≠的图象是一条经过原点的直线.②当0k >时,函数图象从左往右上升,y 随x 的增大而增大(增函数),函数图象经过第一、三象限.③当0k <时,函数图象从左往右下降,y 随x 的增大而减小(减函数),函数图象经过第二、四象限.④k 越大,直线越倾斜(越陡).⑤正比例函数()0y kx k =≠的图象经过点()0,0和()1,k .(11)一次函数:一般地,形如()0y kx b k =+≠(,k b 是常数)的函数,叫做一次函数.当0b =时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数. (12)一次函数()0y kx b k =+≠的图象性质: ①一次函数()0y kx b k =+≠的图象是一条直线.②当0k >时,函数图象从左往右上升,y 随x 的增大而增大(增函数). ③当0k <时,函数图象从左往右下降,y 随x 的增大而减小(减函数). ④当0b >时,函数图象交y 轴的正半轴. ⑤当0b =时,函数图象经过原点. ⑥当0b <时,函数图象交y 轴的负半轴.⑦k 越大,直线越倾斜(越陡).正比例函数和一次函数的图象都是直线,画函数图象时只需要找两个点,即两点作图法.(13)函数的平移:x :左+右-;y :上+下-.例:6y x =-向上平移5个单位长度得到:65y x =-+. 6y x =-向下平移3个单位长度得到:63y x =--.2y x =-向左平移3个单位长度得到:()2326y x x =-+=--.2y x =-向右平移2个单位长度得到:()2224y x x =--=-+.22y x =--向左平移2个单位,向下平移3个单位得到:()222329y x x =-+--=--. 32y x =-+向右平移2个单位,向上平移3个单位得到:()3223311y x x =--++=-+.(14)在一次函数()11110y k x b k =+≠和()22220y k x b k =+≠中:①当12k k =时,1y ∥2y . ②当121k k =-时,12y y ⊥.例:直线21y x =--与26y x =-+互相平行;直线21y x =--与162y x =+互相垂直. (15)直线与x 轴相交0y =;直线与y 轴相交0x =(16)待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.例:已知一次函数的图象过点()3,5和()4,9--,求这个一次函数的解析式.解:设这个一次函数的解析式为()0y kx b k =+≠.函数图象经过点()3,5和()4,9--∴3549k b k b +=⎧⎨-+=-⎩解得:21k b =⎧⎨=-⎩∴这个一次函数的解析式为21y x =-.(17)一次函数与方程、不等式:①一次函数与方程的关系:函数值y 为某一特定值时,求自变量x 的值. ②一次函数与不等式的关系:函数值y 为某一范围时,求自变量x 的取值范围.(18)两个一次函数图象相交时,它们有相同的横坐标,相同的纵坐标.例:求函数5y x =+与0.525y x =+的交点坐标. 解:50.525x x +=+ 20x =把20x =代入5y x =+中得20525y =+=.∴函数5y x =+与0.525y x =+的交点坐标为()20,25. (19)一次函数的实际应用:①方案选择问题 ②租车问题. 两个问题的考察实则是考察自变量的取值范围 例题:重点掌握人教版教材109页的第15题.第二十章:数据的分析(1)算术平均数:一般地,我们把n 个数12,,,n x x x ⋅⋅⋅,的和与n 的比值,叫做这n 个数的算术平均数,简称平均数,记作“__x ”.即__12nx x x x n++⋅⋅⋅+=.(2)加权平均数:一般地,若n 个数12,,,n x x x ⋅⋅⋅的权分别是12,,,n w w w ⋅⋅⋅,则__112212n nnx w x w x w x w w w ++⋅⋅⋅+=++⋅⋅⋅+叫做这n 个数的加权平均数.(3)在求n 个数的平均数时,如果1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次,(这里12k f f f n ++⋅⋅⋅+=),那么这n 个数的平均数为__1122k kx f x f x f x n++⋅⋅⋅+=.也叫做12,,,k x x x ⋅⋅⋅这k 个数的加权平均数,其中12,,,k f f f ⋅⋅⋅分别叫做12,,,k x x x ⋅⋅⋅的权.(4)中位数:将-组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则最中间两个数的平均数就是这组数据的中位数.(5)众数:把一组数据中出现次数最多的那个数据叫做这组数据的众数.注:一组数据的众数可能不止一个,也可能没有众数.(6)平均数、中位数、众数都刻画了数据的集中趋势,但它们各有特点.平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,因此在现实生活中较为常用.但它受极值(一组数据中与其余数据差异很大的数据)的影响较大.当一组数据中某些数据多次重复出时,众数往往是人们关心的一个量,众数不易受极端值的影响.中位数只需要很少的计算,它也不易受极端值的影响.(7)方差:设__x 是n 个数据12,,,n x x x ⋅⋅⋅的平均数,各个数据与平均数只差的平方的平均数,叫做这n 个数据的方差.用“2s ”表示,即:222______2121n s x x x x x x n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 方差越大,数据的波动越大,方差越小,数据的波动越小.(8)标准差:方差的算术平方根称为标准差.s =(9)极差:一组数据中的最大值与最小值的差称为极差.。
第十六章二次根式复习知识讲解_2023年学习资料

养-怎样化去被开方数中的分母呢?-q-a-a.b-ab-~al-√ab-1b.b-/b2-a20,b>0母有理化
二次根式计算、化简的结果符合什-么要求?最简二次根式-1被开方数不含分母;-分母不含根号;-根号内不含小数 2被开方数中不含能开得尽方的因数-或因式.
x2=ax为正数-X=-算术平方根的双重非负性:-1被开方数≥0-即:a≥0-即:√a≥0
5.已知:Vx-4+V2x+y=0,求x-y的值-解:由题意得:-x-4=0且2x+=0-解得x=4,J= 8-x-Jy=4--8=4+8=12
6.已知x,y为实数,且-Vx-1+3y-22=0,则x-y的值为D-A.3-B.-3-C.1-D.-1
0①-+v27-v店
98b10bd4fd4ffe4733687e21af45b307e971f9f7_--_第十六章二次根式复 课件知识讲解
二次根式的性质:-l.√a2=a-a≥0-a>0-2.va2 =a=-a<0-3.√ab=Vax/b-b≥ -b>0
果前热身-2、二次根式V-32的值是-D-A、-3-B、3或-3-C、-9-D、3
2-9x2-3-4-0-2-13v2
二次根式的除法公式:-a≥0,b>0-把公式逆运,-Vg-aa-利用这个等式也可以化简一些二次根式。
知x=2-5,y=2+5,-求x2-xy+y2的值
比较大小,并说明理由.-W4+V6与√2×/5-解::v4+V62=10+4vV6-2×V52-V2XN5 10-且V4+V6>0,-V2×V5>-·0-.4+V6>V2xV5
0u598b10bd4fd4ffe4733687e21af45b307e971f9f7_--_第十六章二次 式复习课件知识讲解
(完整版)第十六章二次根式知识点总结大全

二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a≥0,b≥0);=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质例1、下列各式1)-,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)xx--+315;(2)22)-(x例3、在根式1) ,最简二次根式是()A.1) 2) B.3) 4) C.1) 3) D.1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=xyyxxyyxxxy例5、已知数a,b,若=b-a,则( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >>a b <<例1、 比较与(2)、平方法当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。
人教版八年级下册数学知识点归纳:第十六章二次根式

人教版八年级下册数学知识点归纳第十六章 二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=. (3)积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:)0b ,0a (b a b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1))0b ,0a (ba b a>≥=;(2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式:a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.。
第十六章二次根式知识点归纳

二次根式知识点归纳家长签字:学生:陈爱枝时间:2017、9、24 指导老师:王老师一、形如()的式子叫做二次根式。
注:在二次根式中,被开方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,二次根式成立应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.三、二次根式()的双重非负性:1、被开方数非负。
2、a的值非负。
四、二次根式的化简。
1、化简2a时,一定要弄明白被开方数的底数a是正数还是负数或0.2a=∣a∣①若a是正数,则∣a∣等于a本身;②若a是负数,则∣a∣等于a的相反数-a,③若a是0,则∣a∣等于0.2、()2a=a (a≥0).3、被开方数是乘积用ab =a ·b(a≥0,b≥0)化,4、被开方数是商的形式用ab=ba(a≥0,b>0)或ba=b1ab5、最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式;(2)被开方数中的因数或因式不能再开方。
(五)二次根式的加法和减法1 同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
2 合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
(六)二次根式的混合运算1确定运算顺序2灵活运用运算定律3正确使用乘法公式4大多数分母有理化要及时5在有些简便运算中也许可以约分,不要盲目有理化(七)分母有理化分母有理化:利用分式的基本性质,分子与分母同时乘以分母根号本身。
构成()2a化去分母中的根号。
分母有理化有两种方法I.分母是单项式 II.分母是多项式要利用平方差公式注意:1.根式中不能含有分母 2.分母中不能含有根式。
第十七章勾股定理知识总结1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
第十六章 二次根式知识点归纳及应用(精品)

第十六章二次根式出处何海平名师工作室 QQ:1322798146(欢迎加入交流)一、知识梳理1.二次根式:式子)0(≥aa叫做二次根式。
2.最简二次根式若二次根式满足:被开方数不含分母;分母不含根号;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
3. 化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果分母含根号,利用分母有理化进行化简。
(3)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
4. 同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
5. 二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)6. 函数中自变量的取值范围要使式子有意义,必须保证:(1)分母≠0;(2)二次根式根号下被开方数≥07.【公式】:(1)√a·b=√a×√b;√a×√b=√a·b(2)√ab=√a√b√a√b=√ab(3)(√a)2=a (4)√a²=|a|={a (a≥0)–a (a≤0)被开方数是乘除关系根号可以拆开,被开方数是加减关系根号不可以拆开。
比如:91691675734916525916916916+≠+∴≠=+=+==++≠+1625162513145162539162516251625-≠-∴≠=-=-==--≠-分数与二次根式相乘结果中分数要写成假分数。
比如:413√2(×);133√2(√)1.填空(1)√8=________;(2)√18=________;(3)√32=________;(4)√50=________;(5)√12=________;(6)√27=________;(7)√48=________;(8)√75=________;(9)√20=________;(10)√45=________;(11)√80=________;(12)√125=________;2.填空;(1)√4x=________;(2)√9x=________;(3)√16x=________;3.填空;(1)√2x²=________;(2)√3x²=________;(3)√4x2=________;(4)√8x2=________;(5)√2x³=________;(6)√3x3=________;(7)√4x3=________;(8)√8x3=________;4.填空(1)√12=________;(2)√13=________;(3)√18=________;(4)√19=________;(5)√23=________;(6)√25=________;(7)√35=________5.填空(1)√1x=________;(2)√12x=________;(3)√1x²=________;(4)√12x²=_______;(5)√1x³=________;(6)√12x³=_______6、计算:(1)√16x+√9x (2)√80−√45(3) 5√2+√8−7√18 (4)√80+√8−√45−7√18 (5)√32−√12−2(√18+√27) (6) 2√8+12√18−14√32(7)√12−(√13−√127) (8) 3√40−√25−2√110(9) 2√12−4√127+3√48 (10)√24−√12+2√23−√18−√6 7.计算:(1)(√8+√3)×√6(2)(5√8+3√3)×2√3(3)(4√2−3√6)÷2√2(4)2√3(4√2−3√6+5√12−√8)(5)(7√2+2√6)(2√6−7√2)(6)(√7−7√3)²(7)已知x=√3+2,y=√3−2,求x2-y2的值二、函数中自变量的取值范围要使式子有意义,必须保证:(1)分母≠0;(∵分母为零没有意义)(2)二次根式根号下被开方数≥0(∵负数没有平方根)例1 求下列函数中自变量的取值范围(1)y=x﹣2 (2)y=1x﹣2(3)y=5x﹣2-1x+3(4)y =x﹣2(5)y=1x﹣2(6)y=1√x−2(7)y =x+5x﹣2(8)y=x﹣2+2﹣x解:(1)x取任意实数【∵题目中没有分母也没有根号∴x取任意实数】(2)x≠2【∵由分母x-2≠0得x≠2】(3)x≠2并且x≠﹣3 【由{分母x−2≠0分母x+3≠0解之得{x≠2x≠−3即x≠2并且x≠﹣3】(4)x≥2【∵由被开方数x-2≥0得x≥2】(5)x>2【由{被开方数x−2≥0分母√x−2≠0解之得{x≥2x≠2∴x>2】(6)x≥0并且x≠4【由{被开方数x≥0分母√x−2≠0解之得{x≥0x≠4∴x≥0并且x≠4】(7)x≥﹣5并且x≠2【由{被开方数x+5≥0分母x−2≠0解之得{x≥−5x≠2∴x≥﹣5并且x≠2】(8)x=2【由{被开方数x−2≥0被开方数2−x≥0解之得{x≥2x≤2∴x=2】二、函数中自变量的取值范围1.求下列函数中自变量的取值范围(1)y=x+3(2)y=1x+3(3)y=1x﹣2﹣1x+3(4)y=x+3(5)y=1x+3(6)y=√x−3(7)y=x+3x﹣2(8)y=x-3 +3-x11. (武汉)式子x-1在实数范围内有意义,则x 的取值范围是( ) A .x <1 B . x ≥1 C . x ≤-1 D .x <-111.(鞍山)要使式子2-x 有意义,则x 的取值范围是( ) A .x >0B .x ≥﹣2C .x ≥2D .x ≤211.(江苏盐城)有意义,则x 的取值范围是 .11.(湖北随州)函数x 的取值范围是_________。
八年级上下册数学知识点整理

⎧ ④ a 把第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1. 二次根式的概念: 式子 a (a ≥ 0) 叫做二次根式.注意被开方数只能是正数或 0。
2. 二次根式的性质① a 2 = a =⎨a(a ≥ 0) ⎩ - a(a ≤ 0);② ( a ) 2 = a(a ≥ 0)③ ab = a ⋅ b (a ≥ 0, b ≥ 0) ;a = (a ≥ 0,b > 0)bb 16.2 最简二次根式与同类二次根式1. (1)被开方数中因式的指数都为 1;(2)被开方数不含有分母。
被开方数同时符合上述两个条件的二次根式,叫作最简二次根式。
2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.2.二次根式的乘法:两个二次根式相乘,被开方数相乘,根指数不变。
即a ⋅b = ab (a ≥ 0, b ≥ 0).3.二次根式的除法:两个二次根式相除,被开方数相除,根指数不变。
4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式, 分 母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:a c +bc =(a+b)c (c ≥ 0)a ⋅b = ab (a ≥ 0, b ≥ 0).aa =b b (a ≥ 0,b>0)( a )n = a n ( a ≥ 0)5.混合运算:两个含有二次根式的非零代数式相乘,如果它们的积不含有有二次根式,我们 就说这两个含有二次根式的非零代数式互为有理化因式。
2a 2a 2a第十七章 一元二次方程 17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是 2 的整式方程叫做一元二次方程。
2.一般形式 y=ax ²+b x +c (a ≠0),称为一元二次方程的一般式,ax 2叫做二次项,a 是二次项 系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法-b ± b 2 - 4ac -b + b 2 - 4ac -b - b 2 - 4ac 3.求根公式 x = : x = , x = ; 1 2△= b 2 - 4ac ≥017.3 一元二次方程的判别式1.一元二次方程 ax 2 + bx + c = 0(a ≠ 0) :△>0 时,方程有两个不相等的实数根△=0 时,方程有两个相等的实数根△<0 时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1 . 一 般 来 说 , 如 果 二 次 三 项 式 ax2 + bx + c ( a ≠ 0 ) 通 过 因 式 分 解 得ax 2 + bx + c = a( x - x )( x - x ) ; x 、 x 是一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的根 1 2 1 2 2.把二次三项式分解因式时;如果 b 2 - 4ac ≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果 b 2 - 4ac <0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3. 实际问题:设,列,解,答第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为 x 和 y ,如果在变量 x 的允许取之范围内,变量 y 随变量 x 的变化而变化,他们之间存在确定的依赖关系,那么变量 y 叫做变量 x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学式子称为函数解析式 y = f ( x )4.函数的自变量允许取值的范围,叫做这个函数的定义域;如果变量 y 是自变量 x 的函数, 那么对于 x 在定义域内取定的一个值 a ,变量 y 的对应值叫做当 x=a 时的函数值。
八下数学人教版第十六章知识点汇总

八下数学人教版第十六章知识点汇总一、二次根式的概念。
1. 二次根式的定义。
- 形如√(a)(a≥slant0)的式子叫做二次根式。
其中“√()”称为二次根号,a叫做被开方数。
例如√(4),√(x + 1)(x≥slant - 1)都是二次根式。
- 注意:被开方数a必须是非负数,这是二次根式有意义的条件。
如果a<0,√(a)在实数范围内无意义。
例如√(-2)在实数范围内就没有意义。
2. 最简二次根式。
- 满足下列两个条件的二次根式,叫做最简二次根式:- 被开方数中不含能开得尽方的因数或因式;例如√(8)不是最简二次根式,因为8 = 2^3,√(8)=√(4×2) = 2√(2),2√(2)是最简二次根式。
- 分母中不含根号。
例如(1)/(√(2))不是最简形式,化为最简形式为(√(2))/(2)。
二、二次根式的性质。
1. (√(a))^2=a(a≥slant0)- 例如(√(3))^2=3。
这个性质表明,一个非负数的算术平方根的平方等于它本身。
2. √(a^2)=| a|=a(a≥slant0) - a(a<0)- 例如√(2^2) = 2,√((-2)^2)=| - 2|=2。
这一性质在化简二次根式时经常用到,当a的正负不确定时,要先取绝对值,再根据a的正负去绝对值符号。
三、二次根式的运算。
1. 二次根式的乘法。
- 法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。
- 例如√(2)×√(3)=√(2×3)=√(6)。
- 推广:√(a)·√(b)·√(c)=√(abc)(a≥slant0,b≥slant0,c≥slant0)。
2. 二次根式的除法。
- 法则:(√(a))/(√(b))=√(frac{a){b}}(a≥slant0,b > 0)。
- 例如(√(12))/(√(3))=√(frac{12){3}}=√(4) = 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式
【知识回顾】
1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式;
⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:
(1)(a )2=a (a ≥0); (2)==a a 2 5.二次根式的运算:
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
ab =a ·b (a≥0,b≥0); b b a a
=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
【典型例题】
a (a >0)
a -(a <0) 0 (a =0);
1、 概念与性质
例1、下列各式
1)22211,2)5,3)2,4)4,5)(),6)1,7)2153
x a a a --+---+, 其中是二次根式的是_________(填序号).
例2、求下列二次根式中字母的取值范围
(1)x x --
+315;(2)22)-(x
例3、 在根式1) 22
2;2);3);4)275x a b x xy abc +-, 最简二次根式是( )A .1) 2) B .3) 4) C .1) 3) D .1) 4)
例4、已知:的值。
求代数式22,211881-+-+++-+-=x y y x x y y x x x y
例5、已知数a ,b ,若2()a b -=b -a ,则 ( )
A. a>b
B. a<b
C. a≥b
D. a≤b
2、二次根式的化简与计算
例1. 将根号外的a 移到根号内,得 ( )
A. ;
B. -;
C. -;
D.
例2. 把(a -b )
-1a -b 化成最简二次根式
例3、计算:
例4、先化简,再求值:
11()b a b b a a b ++++,其中a=512+,b=512
-.
例5、如图,实数a 、b 在数轴上的位置,化简 :
222
()a b a b ---
4、比较数值
(1)、根式变形法
当0,0a b >>时,①如果a b >,则a b >;②如果a b <,则a b <。
例1、 比较35与53的大小。
(2)、平方法
当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。
例2、比较32与23的大小。
(3)、分母有理化法
通过分母有理化,利用分子的大小来比较。
例3、比较231-与121
-的大小。
(4)、分子有理化法
通过分子有理化,利用分母的大小来比较。
例4、比较1514-与1413-的大小。
(5)、倒数法
例5、比较76-与65-的大小。
(6)、作差比较法
在对两数比较大小时,经常运用如下性质:
①0a b a b ->⇔>;②0a b a b -<⇔<
例6、比较2131++与23
的大小。
5、规律性问题
例1. 观察下列各式及其验证过程:
, 验证:;
验证:.
(1)按照上述两个等式及其验证过程的基本思路,猜想4415
的变形结果,并进行验证; (2)针对上述各式反映的规律,写出用n(n≥2,且n 是整数)表示的等式,并给出验证过程.
例3、已知a>b>0,a+b=6ab ,则a b a b
-+的值为( ) A .22
B .2
C .2
D .12 例4、甲、乙两个同学化简
时,分别作了如下变形: 甲:==;
乙:=。
其中()A. 甲、乙都正确 B. 甲、乙都不正确
C. 只有甲正确
D. 只有乙正确
【基础训练】
1.化简:(1)72=__ __;(2)222524-=___ __
(3)61218⨯⨯=___ _;
(4)3275(0,0)x y x y ≥≥=___ _;
(5)_______420=-。
2.)化简()2
4-=_________。
3.计算4的结果是
A.2 B.±2 C.-2 D.4
4. 化简:(1)9的结果是 ;
(2)123-的结果是 ; (3)825-= (4))5x -2x =_____ _; (5)3+(5-3)=_________;
(6) ;
(7)=________;
(8)
.
5.计算28-的结果是( )
A 、6
B 、6
C 、2
D 、2 63的倒数是 。
7.下列计算正确的是
A .
B .
C .
D .
8.下列运算正确的是 A 、4.06.1= B 、()5.15.12-=-
C 、39=-
D 、3
294= 9.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是__________;
10. 比较大小:3 10。
11.使2x -有意义的x 的取值范围是 .
12.若式子5x +在实数范围内有意义,则x 的取值范围是( )
A.x >-5
B.x <-5
C.x ≠-5
D.x ≥-5
13. 函数中,自变量的取值范围是 .
14.下列二次根式中,x 的取值范围是x ≥2的是( )
A 、2-x
B 、x+2
C 、x -2
D 、
1x -2
15.下列根式中属最简二次根式的是( )
A.21a +
B.1
2 C.8 D.27
16.下列根式中不是最简二次根式的是( )
A .10
B .8
C .6
D .2
17.下列各式中与是同类二次根式的是( )
A .2
B .
C .
D .
18.下列各组二次根式中是同类二次根式的是( )
A .21
12与 B .2718与 C .31
3与 D .5445与
19.已知二次根式与是同类二次根式,则的α值可以是( ) A 、5
B 、6
C 、7
D 、8
20.若b a y b a x +=-=,,则xy 的值为( )
A .a 2
B .b 2
C .b a +
D .b a -
21.若230a b -+-=,则2a b -= .
22.如图,在数轴上表示实数15的点可能是( )
A .点P
B .点Q
C .点M
D .点N
23.若,则的取值范围是( )
A .
B .
C .
D .
24.如图,数轴上两点表示的数分别为1和,点关于点的对称点为点,则点所表示的数是
A .
B .
C .
D . 25.计算:
(1)
(2)
(3).
(4).
(5)271241
48÷⎪⎭⎫ ⎝⎛+。