压力容器设计方案基础

合集下载

压力容器的设计方案步骤

压力容器的设计方案步骤

压力容器的设计方案步骤1.确定设计目标和使用条件:首先需要明确设计压力容器的使用目标和条件,包括容器的工作压力、工作温度、容量和所处环境等。

2.材料选择:根据容器的使用条件和要求,选择合适的材料进行容器的制造。

常用的压力容器材料有碳钢、不锈钢和铝合金等。

3.容器结构设计:确定容器的结构形式和尺寸。

结构设计包括容器的壁厚、底部形式、连接方式和支撑结构等。

根据容器的工作压力,需要进行强度计算和结构优化,确保容器能够承受内部和外部的力和压力。

4.强度计算和最大允许应力分析:根据容器的结构形式和制造材料,进行强度计算和最大允许应力分析。

主要包括容器的轴向应力、周向应力和切向应力的计算,以及承载能力和安全系数的评估。

5.容器的密封设计:确保容器的密封性能,避免泄漏和破裂。

根据容器的使用条件和介质特性,选择合适的密封材料和密封方式,如垫片密封、法兰密封或螺纹连接等。

6.容器的安全阀和压力传感器设计:为了确保容器的安全运行,需要设计并安装安全阀和压力传感器。

安全阀用于在容器内部压力超过设计值时,释放压力以防止容器破裂。

压力传感器用于实时监测容器的内部压力,以便及时采取措施。

7.容器的制造和检验:根据设计方案,选择合适的制造工艺进行容器的制造。

制造过程需要注意材料的质量控制、焊缝的质量检查和容器的外观检验等。

制造完成后,需要进行压力测试、水压试验和射线检测等,以确保容器的安全性和可靠性。

8.容器的安装和维护:根据容器使用的具体情况,进行容器的安装和维护。

安装过程需要注意容器的固定和支撑,以确保容器的稳定性。

维护过程包括容器的定期检查和保养,以延长容器的使用寿命。

综上所述,压力容器的设计方案步骤涵盖了设计目标和使用条件的确定、材料选择、容器结构设计、强度计算和应力分析、密封设计、安全阀和压力传感器设计、容器的制造和检验、容器的安装和维护等。

通过合理的设计方案,能够确保压力容器的安全运行和可靠性。

压力容器设计基础

压力容器设计基础

压力容器设计基础压力容器设计基础一、基本概念压力容器的设计,就是根据给定的性能要求、工艺参数和操作条件,确定容器的结构型式,选择合适的材料,计算容器主要受压元件的尺寸,最后给出容器及其零部件的图纸,并提出相应的技术条件。

正确完整的设计应达到保证完成工艺生产。

正确完整的设计应达到保证完成工艺生产,运行安全可靠,保证使用寿命、制造、检验、安装、操作及维修方便易行,经济合理等要求。

压力容器设计中的关键问题是力学问题,即强度、刚度及稳定性问题。

在本节中,主要讨论压力容器设计中的有关强度问题。

所谓强度,就是结构在外载荷作用下,会不会因应力过大而发生破裂或由于过度性变形而丧失其功用。

具体来讲,就是在外载荷作用下,容器结构内产生的应力不大于材料的许用应力值,即:ζ≤K〔ζ〕t (1)这个式子就是强度问题的基本表达式。

压力容器的设计计算就是围绕这一关系式而进行的。

公式(1)中的左端项是结构内的应力,它是人们最为关心的问题。

求解结构的应力状态,它们的大小,是一个十分复杂的问题,常用的方法有解法(如弹性力学法、弹型性分析法等)、试验法(如电阻应变计测量法、光弹法、云纹法等)及数值解法(如有限元法、边界元法等)。

应用这些方法可以精确或近似地求出结构的应力,然而,每一种结构的应力都有其特殊性,目前可求解的只是问题的绝大部分,仍有许多复杂结构的应力分析有等人们进一步探讨。

求出结构内任一点的应力后,所遇到的问题就是怎样处理这些应力。

一点的应力状态最多可含有6个应力分量,哪个应力起主要作用,这些应力对失效起什么作用,对它们如何控制才不致发生破坏,解决这一问题,就要选择相应的强度理论计算当量应力,以便与单向拉伸试验得到的许用应力相比较,将应力控制在许可的范围内。

公式(1)中的右端项是强度控制指标,即材料的许用应力。

它涉及到材料强度指标(如抗拉强度ζb、屈服强度ζs 等)的确定及安全系数的选用等问题。

当采用常规设计法,且只考虑静载问题时,系数K=1.0;如果考虑动载荷,或采用应力分析设计法,K≥1.0,此时设计计算将更加复杂。

7.第七章 压力容器设计基础

7.第七章 压力容器设计基础

1800 (1900) 2000 (2100) 2200 (2300) 2400 2500 2600 2800 3000 3200 3400 3500 3600 3800 4000 4200 4400 4500 4600 4800 5000 5200 5400 5500 5600 5800 6000
缺点
(1)只能套合短筒,筒节间深环焊缝多。
(2)要求准确的过盈量,对筒节的制造要求高。
16
绕板式
优点:(1)机械化程度高,操作简便,材料利用率高 优点 (2)纵焊缝少。 缺点:(1)绕板薄,不宜制造壁厚很大的容器。 缺点 (2)层间松动问题。
17
槽形绕带式
优点 (1)筒壁应力分布均匀且能承受一部分由内压产生的 轴向力。 缺点 (2)机械化程度高,材料利用率高。 (1)钢带成本高,公差要求严格。
(1) 中压容器; (2) 毒性程度为极度和高度危害介质的低压容器; (3) 易燃介质或毒性程度为中度危害介质的低压反应容器和 低压储存容器; (4) 低压管壳式余热锅炉; (5) 低压搪玻璃压力容器。
不在第三类、第二类压力容器之内的低压容器为第一类压力容器。
三类容器
二类容器
一类容器
介质毒性分 级 指 标 Ⅰ 极度危害
31
⑵公称压力
工作压力不同,相同公称直径的压力容器其筒体及其零部件
的尺寸也不同,标准零部件尺寸需按压力确定。
将承受的压力范围分为若干个标准压力等级,即公称压力。 表7-3 压力容器法兰与管法兰的公称压力PN 压力容器法 兰(MPa) 管法兰 (MPa) - 0.25 - 0.6 1.0 1.6 2.5 4.0 6.4


日本国家标准(JIS);
德国压力容器规范(AD)。

压力容器设计基础讲义

压力容器设计基础讲义

压⼒容器设计基础讲义压⼒容器设计基础讲义第⼀部分、压⼒容器设计基础知识第⼀章压⼒容器失效模式压⼒容器在载荷作⽤下丧失了正常的⼯作能⼒称为失效。

压⼒容器所考虑的失效模式主要为断裂、泄漏、过度变形和失稳。

压⼒容器失效常以三种形式表现出来:强度、刚度、稳定性。

压⼒容器建造标准中主要考虑的失效模式:1)短期失效模式:(1)脆性断裂(2)韧性断裂(3)超量变形引起的接头泄漏(4)超量局部应变引起的裂纹形成或韧性剪切(5)弹性、塑性或弹塑性失稳2)长期失效模式:(1)蠕变断裂(2)蠕变超量变形(3)蠕变失稳(4)冲蚀、腐蚀(5)环境助长开裂,如:应⼒腐蚀开裂3)循环失效(1)扩展性塑性变形(2)交替塑性(3)弹性应变疲劳或弹-塑性应变疲劳(4)环境助长疲劳,如:腐蚀疲劳第⼆章 GB150适⽤范围(1)适⽤的设计压⼒①对于钢制容器不⼤于35MPa;②其它⾦属材料制容器的设计压⼒适⽤范围按相应引⽤标准确定。

(2)适⽤的设计温度范围①设计温度范围:-269℃~900℃。

②钢制容器不得超过按GB 150.2 中列⼊材料的允许使⽤温度范围。

③其他⾦属材料制容器按本部分相应引⽤标准中列⼊的材料允许使⽤温度确定。

(3)下列各类容器不在标准的适⽤范围内:①设计压⼒低于0.1MPa且真空度低于0.02MPa的容器;②《移动式压⼒容器安全监察规程》管辖的容器;③旋转或往复运动机械设备中⾃成整体或作为部件的受压器室(如泵壳、压缩机外壳、涡轮机外壳、液压缸等);④核能装置中存在中⼦辐射损伤失效风险的容器;⑤直接⽕焰加热的容器;⑥内直径(对⾮圆形截⾯,指截⾯内边界的最⼤⼏何尺⼨,如:矩形为对⾓线,椭圆为长轴)⼩于150mm的容器;⑦搪玻璃容器和制冷空调⾏业中另有国家标准或⾏业标准的容器。

(4)对不能按 GB 150.3确定结构尺⼨的容器或受压元件,允许采⽤以下⽅法进⾏设计:①按照附录C的规定,进⾏验证性实验分析(如实验应⼒分析、验证性液压试验)。

压力容器设计

压力容器设计

六、封头
按构造形状分为: 半球形封头
凸形封头 椭圆形封头 碟形封头
锥形封头 平盖封头:
1、凸形封头
(1)半球形封头
是半个球壳。 从受力来看,
球形封头是最理想旳构造。 但整体冲压困难,加工工作 量大。
其厚度计算公式:
p c
Di
4[ ]t
p
c
(2)碟形封头
由球面、过渡段及圆柱 直边段三段构成。成型加 工以便,但在三部分连接 处,因为经线曲率发生突 变,受力情况不佳。
2、锥形封头
有两种,一种是无折边锥 形封头,另一种是与筒体连接 处有一过圆弧和一圆柱直边段 旳折边锥形封头。在厚度较薄 时,制造比较以便。
3、平板封头
是最简朴,制造 最轻易旳一种封头。 但相同直径和压力旳 容器,平板封头厚度 过大,材料花费过多 而且十分笨重。
第四节 压力容器附件
设备旳壳体能够采用铸造、铸造或焊接成一种整体, 但大多数化工设备是做成可拆旳几种部件,然后把它们 连接起来。这一方面是设备旳工艺操作需要开多种孔, 并使之与工艺管道或其他附件相连接;另一方面也是为 了便于设备制造、安装和检修。化工设备中旳可拆连接 应该满足下列基本要求:
在设计或选用压力容器零部件时需要将操作温 度下旳最高操作压力(或设计压力)调整为所要 求旳公称压力等级,然后再根据DN与PN选定零 部件旳尺寸。
练一练: P27,1-2,1-3 拟定计算压力、许用应力 P61,6,7 P62,2-3 拟定计算压力、许用应力
四、压力容器旳校核: 1、圆筒容器旳校核
筒体旳强度计算公式:
pD t
2
公式旳应用: 拟定承压容器旳厚度 对压力容器进行校核计算 拟定设计温度下圆筒旳最大允许工作压力 在指定压力下旳计算应力

压力容器--设计基础(一)

压力容器--设计基础(一)

压力容器的强度与设计(江苏省压力容器检验员培训考核班专题讲座)董金善南京工业大学过程装备研究所第一节概述一、容器的结构在工厂中可以看到许多设备。

在这些设备中,有的用来储存物料,如各种储罐、计量罐;有的进行热量交换,如各种换热器、蒸发器、冷凝器、结晶器等;有的用来进行化学反应,如反应釜、聚合釜、发酵罐、合成塔等。

这些设备虽然尺寸大小不一,形状结构不同,内部构件的型式更是多种多样,但是它们都有一个外壳,这个外壳就叫作容器。

容器一般是由筒体(圆筒)、封头(端盖)、法兰、支座、接管、人孔(手孔)、视镜、安全附件等组成(图1)。

它们统称为压力容器通用零部件,常、低压压力容器通用零部件大都已有标准,设计时可直接选用。

图-1 容器的结构二、压力容器常用标准1.国务院《特种设备安全监察条例》(2003)2.国家质量技术监督局《压力容器安全技术监察规程》 (1999)3.国家质量监督检验检疫总局《特种设备行政许可工作程序》 (2003)4.国家质量监督检验检疫总局《特种设备行政许可实施办法》 (2003)5.国家质量监督检验检疫总局《特种设备行政许可分级实施范围》(2003)6.国家质量监督检验检疫总局《锅炉压力容器制造监督管理办法》(2003)7.国家质量监督检验检疫总局《锅炉压力容器制造许可工作程序》(2003)8.国家质量监督检验检疫总局《锅炉压力容器制造许可条件》 (2003)9.国家质量监督检验检疫总局《锅炉压力容器产品安全性能监督检验规则》 (2003)10.国家质量监督检验检疫总局《压力容器压力管道设计单位资格许可与管理规则》 (2002)11.G B150-1998《钢制压力容器》12.G B151-1999《管壳式换热器》13.J B/T4735-1997《钢制焊接常压容器》14.J B4710-1992《钢制塔式容器》15.J B4731-XXXX《钢制卧式容器》16.H G/T20569-1994《机械搅拌设备》17.G B12337-1998《钢制球形储罐》18.G B16749-1997《压力容器波形膨胀节》19.J B4732-1994《钢制压力容器-分析设计标准》20.H G20580-1998《钢制化工容器设计基础规定》21.H G20581-1998《钢制化工容器材料选用规定》22.H G20582-1998《钢制化工容器强度计算规定》23.H G20583-1998《钢制化工容器结构设计规定》24.H G20584-1998《钢制化工容器制造技术要求》25.H G20585-1998《钢制低温压力容器技术规定》26.H G20531-1993《铸钢、铸铁容器》27.J B/T4734-2002《铝制焊接容器》28.J B/T4745-2002《钛制焊接容器》29.G B/T15386-1994《空冷式换热器》30.G B16409-1996《板式换热器》31.H G/T2650-1995《钢制管式换热器》32.G B5842-1996《液化石油气钢瓶》33.J B/T4750-2003《制冷装置用压力容器》34.J B/T6539-1992《微型空气压缩机用钢制压力容器》35.J B8701-1998《制冷用板式换热器》36.J B/T4751-2003《螺旋板式换热器》37.G B18442-2001《低温绝热压力容器》38.G B12130-1995《医用高压氧舱》39.G B9019-1988《压力容器公称直径》40.J B/T4700~4707-2000《压力容器法兰》41.H G20592~20635-2009《钢制管法兰、垫片、紧固件》42.G B/T9112~9124-2000《钢制管法兰》43.J B/T74~90-1994《管路法兰及垫片》44.J B/T4746-2002《钢制压力容器用封头》45.J B/T4736-2002《补强圈》46.H GJ527-1990《补强管》47.J B/T4712-1992《鞍式支座》48.J B/T4713-2007《腿式支座》49.J B/T4724-1992《支承式支座》50.J B/T4725-1992《耳式支座》51.G B16749-1997《波形膨胀节》52.H G501~502-1986《压力容器视镜》53.H G21588~21591-1995《玻璃板液面计》54.H G21592-95《玻璃管液面计》55.H G/T21584-95《磁性液面计》56.H G21514~21527-1995《碳钢、低合金钢人孔》57.H G21528~21535-1995《碳钢、低合金钢人孔》58.H GJ504~509-1986《不锈钢人孔》59.H GJ510~513-1986《不锈钢手孔》60.H G21537-1992《填料箱》61.H G21571~21572-1995《机械密封》62.H G21563~21569-1995《搅拌传动装置》63.H G5-220~222-1965《搅拌器》64.H G/T21574-1994《设备吊耳》65.G B41-1986《I型六角螺母-C级》66.G B6170-1986《I型六角螺母-A和B级》67.G B5780-1986《六角头螺栓-C级》68.G B5782-1986《六角头螺栓-A和B级》69.J B/T4714-1992《浮头式换热器和冷凝器型式与基本参数》70.J B/T4715-1992《固定管板式换热器型式与基本参数》71.J B/T4716-1992《立式热虹吸式重沸器型式与基本参数》72.J B/T4717-1992《U型管式换热器型式与基本参数》73.H G21503-1992《钢制固定式薄管板列管换热器》74.G B567-1989《拱形金属爆破片形式与参数》75.G B/T14566-93《正形金属爆破片形式与参数》76.G B/T14567-93《反形金属爆破片形式与参数》77.G B/T14568-93《开缝形金属爆破片形式与参数》78.H G/T20668-2000《化工设备设计文件编制规定》79.T CED41002-2000《化工设备图样技术要求》80.G B6654-1996《压力容器用钢板》81.G B713-1986《锅炉用碳素钢和低合金钢板》82.G B3531-1996《低温压力容器用低合金钢钢板》83.G B4237-1992《不锈钢热轧钢板》84.G B8165-1987《不锈钢复合钢板》85.G B8163-1999《输送流体用无缝钢管》86.G B9948-1988《石油裂化用无缝钢管》87.G B6479-1986《化肥设备用高压无缝钢管》88.G B5310-1995《高压锅炉用无缝钢管》89.G B/T14976-94《流体输送不锈钢无缝钢管》90.G B13296-91《锅炉、热交换器用不锈钢无缝钢管》91.J B4726-2000《压力容器用碳素钢和低合金钢锻件》92.J B4727-2000《低温压力容器用碳素钢和低合金钢锻件》93.J B4728-2000《压力容器不锈钢锻件》94.G B/T983-1995《不锈钢焊条》95.G B/T5117-1995《碳钢焊条》96.G B/T5118-1995《低合金钢焊条》97.G B5293-1985《碳素钢埋弧焊用焊剂》98.G B12470-1990《低合金钢埋弧焊用焊剂》99.G B/T14957-1994《熔化焊用钢丝》100.GB/T14958-1994《气体保护焊用钢丝》101.GB/T8110-1995《气体保护电弧焊用碳钢、低合金钢焊丝》102.JB/T2835-1979《低温钢焊条》103.JB4708-2000《钢制压力容器焊接工艺评定》104.JB/T4709-2000《钢制压力容器焊接规程》105.JB4730-1994《压力容器无损检测》106.JB/T4711-2003《压力容器涂敷与运输包装》107.JB/T613-1993《锅炉受压元件焊接技术条件》108.HG20660-2000《压力容器中化学介质毒性危害和爆炸危险程度分类》109.GB/T18182-2000《金属压力容器声发射检测及结果评价方法》三、压力容器许可证1. 锅炉制造许可证3. 压力容器设计许可证注:①锅炉设计图纸由省级交由被核准的检验检测机构鉴定;②气瓶(B类)、氧舱设计图纸由总局核准的检验检测机构鉴定;③客运索道、大型友游乐设施设计图纸由总局核准的检验检测机构鉴定。

压力容器设计基础

压力容器设计基础

容器受压元件为满足强度及稳定性要求,按相应公式计算得到的不包 括厚度附加量的厚度。 厚度附加量 C=C1+C2 设计容器受压元件时所必须考虑的附加厚度,包括钢板(或钢管)厚
4
度附加量的厚度。 设计厚度δd 计算厚度与腐蚀裕量之和 名义厚度(即图样厚度)δn 设计厚度加上钢材厚度负偏差后,向上圆整至钢材(钢板或钢管)标 准规格的厚度。 有效厚度δe 名义厚度减去厚度附加量(腐蚀裕量与钢材厚度负偏差之和)。 二.材料 (一)选材的基本原则 选择压力容器用材,须根据容器的使用条件(如温度、压力、介质腐蚀 性、介质对材料的脆化作用及其是否易燃、易爆、有毒等)、制造工艺、 材料的焊接性能及经济合理性选择具有适宜的机械性能、耐腐蚀性能、物 理性能等的材料。 注意在同一工程中应尽量注意用材统一,具体的选材过程 中必须仔细考虑如下因素: (二)材料的基本性能 1. 机械性能 金属的机械性能是指金属材料在外力作用下表现出来的特性,如强 度、弹性、硬度、韧性及塑性等。也可称为“力学性能”。金属材料就是 用其在为同受力条件下所表现出来的不同特性指标,来衡量金属材料的机 械性能。 (1) 机械强度 强度是材料抵抗外力作用不致破坏的性能特性。 常用
7
料脆性转变和断裂特性的重要指标,所以对压力容器用钢来说,尤其是低 温压力容器冲击功是一项重要的性能指标。 (5)温度对材料机械性能的影响 材料的屈服极限、强度极限和弹性模量随温度的升高而降低。如果设备 的操作温度较高,则必须选用在相应温度下能保持其强度指标的材料。
如果材料在高温下承受高的应力,则材料的抗蠕变性能是关键性的。 材料蠕变极限指在某一温度下受恒定载荷作用时, 在规定的持续时间内(10 万小时)产生 1%的变形时的应力;持久极限是材料在某一温度下受恒定载荷 作用时,在规定的持续时间内(10 万小时)引起断裂时的应力.在实际试验 中,常常用较短时间的试验结果来外推长时间的性能,但一般限制外推时 间不得大于试验时间的 10 倍。持久强度是高温元件设计选材的重要依据, 是 GB150 中确定许用应力的强度指标之一.

压力容器设计基础

压力容器设计基础

3
设计基础
——概论
在压力容器建造的初期,产品建造的目的为满足本国相应工业的 需求,压力容器的生产技术也是以本国的基本生产条件为基础。
生产技术的总结和统一安全质量的要求,使得国家依据自己的生 产技术和管理要求制订出了适合于本国国情的相应安全法规和技 术标准体系。
安全法规和技术标准水平的先进性如何,应体现在安全法规和技 术标准是否能有效地保证压力容器产品的安全性和经济合理性, 是否体现了代表时代的技术手段的应用,是否能推动行业的技术 进步。
4
设计基础
——概论
随着全球经济一体化的逐步发展,承压设备法规和标准的国际化趋势已 经越来越明显。
欧洲议会于1997年5月正式批准了统一的压力设备指令(Pressure Equipment Directive), 于2002年5月在欧盟内强制执行。
欧洲标准化委员会(CEN)现正在采取积极行动,试图将现有的欧洲标 准上升为国际标准。
-
0.50
无塞焊的单面满角搭接焊(L—3)
-
-
0.45
注: 1)有关系数所允许的应用场合和具体接头型式, 请参见文献[1]、[2]。
Байду номын сангаас
2)美国为射线检测程度。
23
一、压力容器技术进展 结构设计
现代的压力容器结构设计正在逐 步摆脱传统观念的束缚,体现真 正满足工艺要求的设计理念,追 求实效性、安全性和经济性的和 谐统一。
28
一、压力容器技术进展
安全系数的降低
降低安全系数的前提条件是:
l 结构分析设计水平的提高; l 制造经验的积累和制造技术水平的提高; l 更严格的材料技术要求; l 更科学的质量保证体系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压力容器工作条件及特点
结构多样性
卧式、立式、换热器、塔器、圆筒形贮槽、球罐、空冷器、余热锅 炉等
换热器: 固定管板式、浮头式、填函式、U形管式; 单管程、多管程; 双管板、带导流筒、带膨胀节
压力容器工作条件及特点
主要结构组成
受内压或外压的圆筒壳 各种形式的封头、平盖 开孔及其补强元件 法兰连接 膨胀节
压力容器工作条件及特点
温度条件
液氢装置:-253℃ 液态空气及其他气体的制取:-196℃ 苯乙烯装置中SMART反应器:650℃ 乙烯生产装置中的管式裂解炉:1100℃
压力容器工作条件及特点
压力条件
超高压人造水晶釜:~200MPa 低密度聚乙烯反应釜:~300MPa 低真空:100kPa~3kPa(绝压)
压力容器设计基础
李洪亮
压力容器
《特种设备安全监察条例》第九十九条第(二)款: 压力容器是指盛装气体或者液体,承载一定压力的密闭设备,
其范围规定为最高工作压力大于或者等于0.1MPa(表压),且压 力与容积的乘积大于或者等于2.5MPa·L的气体、液化气体和最高 工作温度高于或者等于标准沸点的液体的固定式容器和移动式容 器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力与 容积的乘积大于或者等于1.0MPa·L的气体、液化气体和标准沸点 等于或者低于60℃液体的气瓶;氧舱等。
B类:B1(无缝气瓶)、B2(焊接气瓶)、B3(特种气瓶); C类:C1(铁路罐车)、C2(汽车罐车或长管拖车)、C3(罐式集装
箱); D类:D1(第一类压力容器)、D2(第二类低、中压容器)。
压力容器的分类
其他分类方法
按容器主体材料 按容器结构型式 按容器截面形状 按容器主轴线方向 按容器壁厚
中真空:3kPa~0.1Pa(绝压) 高真空:0.1Pa~0.1mPa(绝压) 甚高真空:0.1mPa~0.1μPa(绝压) 超高真空:≤0.1μPa(绝压)
压力容器工作条件及特点
介质腐蚀条件
同一种材料在不同介质中,不同材料在同一介质中,同一种材料同 一种介质在不同内部、外部条件下都会表现出不同的腐蚀规律。 碳钢在稀硫酸中极不耐蚀,但在浓硫酸中却很稳定; 铅耐稀硫酸,但不能在浓硫酸中使用; 不锈钢在中、低浓度的硝酸中耐蚀,但不耐浓硝酸的腐蚀; 碳钢在稀硫酸中是均匀腐蚀,奥氏体不锈钢在氯化物的水溶液中 会由于应力 介质的危害性
在石油、化工、天然气的工业生产装置中,参与过程的绝大部分是 易燃、易爆、有毒或有腐蚀性的物质,同时这些物质的状态在工艺 过程中受温度、压力的控制不断变化。
压力容器工作条件及特点
其他载荷条件
风载荷、地震载荷 有些设备可能是在循环载荷作用下运行,同时还可能承受热应力循
环作用 设备及其内件、附件自重 设备内盛装的物料重量,试验状态下的液体重量 来自支承、连接管道及相邻设备的作用载荷 设备运输、安装、维修时可能承受的作用载荷
压力容器工作条件及特点
装置的大型化
炼油装置中的减压蒸馏塔 直径10000 长40000 乙烯装置中的丙烯塔 直径10000 高94000 重量1100吨 氨合成塔 直径2500 长22000 壁厚200 甲醇反应器 直径6500 长14000 壁厚220 核工业中的沸水反应堆 直径7800 壁厚190 重量1000吨 煤液化加氢反应器 直径4810 壁厚338 重量2040吨 乙二醇列管式反应器 直径5000 长10000 管数9000 立式圆筒形油品贮罐 直径100000 高21800 容积150000m3
压力容器的分类
根据温度分类
GB150:≤-20℃ 低温容器 日本:<-10℃ 英国: <0℃ 德国: <-10℃
压力容器的分类
根据《容规》分类
Ⅰ类 Ⅱ类 Ⅲ类
压力容器的分类
根据“压力容器压力管道设计许可证”分类
A类:A1(超高压容器、高压容器)、A2(第三类低、中压容器)、 A3(球形储罐)、A4(非金属压力容器);
C类:C1(铁路罐车)、C2(汽车罐车或长管拖车)、C3(罐式集装 箱);
D类:D1(第一类压力容器)、D2(第二类低、中压容器); SAD类:压力容器分析设计。
压力容器的分类
根据“压力容器制造许可证”分类
A类:A1(超高压容器、高压容器)、A2(第三类低、中压容器)、 A3(球形储罐现场组焊或球壳板制造)、A4(非金属压力容器)A5 (医用氧仓);
近代压力容器的发展趋势
大型化,高参数 高温蠕变 低应力脆断 疲劳问题
对压力容器的基本要求
满足(工艺)使用要求 安全可靠性
强度、刚度、稳定性、密封性、耐蚀性
合理的经济成本
压力容器强度失效准则有三种观点
弹性失效——常规设计(GB150等)
认为壳体内壁产生屈服即达到材料屈服限时该壳体即失效,将应力 限制在弹性范围,按照强度理论把筒体限制在弹性变形阶段。
塑性失效——分析设计(JB4732)
压力容器
TSG R0004-2009《固定式压力容器安全技术监察规程》1.3条: 工作压力大于或者等于0.1MPa(表压,不含液体静压力,下同); 工作压力与容积的乘积大于或者等于2.5MPa·L; 盛装介质为气体、液化气体以及介质最高工作温度高于等于标准
沸点的液体。
压力容器的分类
根据生产装置中工艺单元过程分类
非均相(液固、气固)分离
搅拌与混合
制冷与深冷
热量传递
蒸发
结晶
蒸馏
吸收与解析
萃取
吸附
干燥
反应
贮存
压力容器的分类
根据生产过程中的作用原理分类
反应容器(R) 换热容器(E) 分离容器(S) 储存容器(C)(球罐B)
压力容器的分类
根据压力等级分类
低压容器(L) 中压容器(M) 高压容器(H) 超高压容器(U) 常压容器
相关文档
最新文档