压力容器设计基础

合集下载

压力容器设计基础

压力容器设计基础

压力容器设计基础压力容器设计基础一、基本概念压力容器的设计,就是根据给定的性能要求、工艺参数和操作条件,确定容器的结构型式,选择合适的材料,计算容器主要受压元件的尺寸,最后给出容器及其零部件的图纸,并提出相应的技术条件。

正确完整的设计应达到保证完成工艺生产。

正确完整的设计应达到保证完成工艺生产,运行安全可靠,保证使用寿命、制造、检验、安装、操作及维修方便易行,经济合理等要求。

压力容器设计中的关键问题是力学问题,即强度、刚度及稳定性问题。

在本节中,主要讨论压力容器设计中的有关强度问题。

所谓强度,就是结构在外载荷作用下,会不会因应力过大而发生破裂或由于过度性变形而丧失其功用。

具体来讲,就是在外载荷作用下,容器结构内产生的应力不大于材料的许用应力值,即:ζ≤K〔ζ〕t (1)这个式子就是强度问题的基本表达式。

压力容器的设计计算就是围绕这一关系式而进行的。

公式(1)中的左端项是结构内的应力,它是人们最为关心的问题。

求解结构的应力状态,它们的大小,是一个十分复杂的问题,常用的方法有解法(如弹性力学法、弹型性分析法等)、试验法(如电阻应变计测量法、光弹法、云纹法等)及数值解法(如有限元法、边界元法等)。

应用这些方法可以精确或近似地求出结构的应力,然而,每一种结构的应力都有其特殊性,目前可求解的只是问题的绝大部分,仍有许多复杂结构的应力分析有等人们进一步探讨。

求出结构内任一点的应力后,所遇到的问题就是怎样处理这些应力。

一点的应力状态最多可含有6个应力分量,哪个应力起主要作用,这些应力对失效起什么作用,对它们如何控制才不致发生破坏,解决这一问题,就要选择相应的强度理论计算当量应力,以便与单向拉伸试验得到的许用应力相比较,将应力控制在许可的范围内。

公式(1)中的右端项是强度控制指标,即材料的许用应力。

它涉及到材料强度指标(如抗拉强度ζb、屈服强度ζs 等)的确定及安全系数的选用等问题。

当采用常规设计法,且只考虑静载问题时,系数K=1.0;如果考虑动载荷,或采用应力分析设计法,K≥1.0,此时设计计算将更加复杂。

7.第七章 压力容器设计基础

7.第七章 压力容器设计基础

1800 (1900) 2000 (2100) 2200 (2300) 2400 2500 2600 2800 3000 3200 3400 3500 3600 3800 4000 4200 4400 4500 4600 4800 5000 5200 5400 5500 5600 5800 6000
缺点
(1)只能套合短筒,筒节间深环焊缝多。
(2)要求准确的过盈量,对筒节的制造要求高。
16
绕板式
优点:(1)机械化程度高,操作简便,材料利用率高 优点 (2)纵焊缝少。 缺点:(1)绕板薄,不宜制造壁厚很大的容器。 缺点 (2)层间松动问题。
17
槽形绕带式
优点 (1)筒壁应力分布均匀且能承受一部分由内压产生的 轴向力。 缺点 (2)机械化程度高,材料利用率高。 (1)钢带成本高,公差要求严格。
(1) 中压容器; (2) 毒性程度为极度和高度危害介质的低压容器; (3) 易燃介质或毒性程度为中度危害介质的低压反应容器和 低压储存容器; (4) 低压管壳式余热锅炉; (5) 低压搪玻璃压力容器。
不在第三类、第二类压力容器之内的低压容器为第一类压力容器。
三类容器
二类容器
一类容器
介质毒性分 级 指 标 Ⅰ 极度危害
31
⑵公称压力
工作压力不同,相同公称直径的压力容器其筒体及其零部件
的尺寸也不同,标准零部件尺寸需按压力确定。
将承受的压力范围分为若干个标准压力等级,即公称压力。 表7-3 压力容器法兰与管法兰的公称压力PN 压力容器法 兰(MPa) 管法兰 (MPa) - 0.25 - 0.6 1.0 1.6 2.5 4.0 6.4


日本国家标准(JIS);
德国压力容器规范(AD)。

新GB150 压力容器设计基础、总论

新GB150 压力容器设计基础、总论
超高压容器设计准则: 全壁厚屈服失效和爆破失效准则
23
失效准则及设计理论基础
•压力容器设计理论基础
压力容器的结构部件应力状态的计算 GB150标准的计算方法 整体部件:薄膜无力矩理论;边缘区域总体上不考 虑(不排除个别区域的计及)。 JB4732标准的计算方法 整体部件:弹性力学的分析结果 ;局部区域采用应 力分析,或应力指数法。
6
设计管理与标准、法规的选用
压力容器设计依据
• GB150标准范围内的压力容器: 应依据GB150进行设计,并符合以GB150为基础标 准的相关标准的规定。当设计温度小于以钢材蠕变 控制其许用应力的相应温度时,还可选用JB4732标 准进行设计(单位和个人应具备相应资格)。当设 计的压力容器在《固容规》范围内时还必须符合 《容规》的规定。
s按Biblioteka 四强度理论的强度条件为2 1
2 2
2 3
1 2
2 3
1 3
[ ]
试验结果表明第四强度理论比第三强度理论与试验结果符合得更好。
22
失效准则及设计理论基础
•压力容器设计理论基础
压力容器的设计准则
GB150 常规设计: 弹性失效、第一强度理论;
JB4732 分析设计: 塑性或弹塑性失效、第三强度理论;
•压力容器相关法规体系构成 法律—行政法规—部门规章—安全技术规范—引用标准”五个层次。 第一层次:法律 根据宪法和立法法的规定,全国人民代表大会及其常委会制定法律。 如安全生产法、劳动法和已颁布的《特种设备安全法》。
9
压力容器相关法规及标准体系构成
《中华人民共和国特种设备安全法》由中华人民共和国 第十二届全国人民代表大会常务委员会第3次会议于 2013年6月29日通过,2013年6月29日中华人民共和国主 席令第4号公布。《中华人民共和国特种设备安全法》 分总则,生产、经营、使用,检验、检测,监督管理, 事故应急救援与调查处理,法律责任,附则7章101条, 自2014年1月1日起施行。

压力容器基础知识

压力容器基础知识

压力容器基础知识压力容器是用于存储各种气体、液体和气体-液体混合物的设备。

这些设备不仅需要承受不同介质的压力,还需要保证设备的密封性和耐腐蚀性能。

因此,压力容器的设计、制造、安装和维护都需要符合相关的标准和规范。

1. 压力容器的应用场景压力容器广泛应用于石油化工、核工业、制药、冶金、燃气等领域。

比如,在石油化工中,压力容器被用于储存石油、汽油等可燃液体。

在核工业中,压力容器被用于储存和运输放射性物质。

在制药中,压力容器被用于制造药品、医疗设备等。

2. 压力容器的设计原则压力容器的设计需要遵循以下原则:(1) 安全性和可靠性原则:设备应能承受其设计条件下的最大工作压力和温度,同时应考虑容器内介质的性质以及应力集中等因素。

(2) 容器材质选择原则:要根据介质的性质、使用条件和操作环境等因素来选择合适的材质。

(3) 规范性原则:设计要符合相关的标准和规范,如ASME、GB等标准。

(4) 可维护性原则:设计要考虑设备的可维护性和易检修性。

3. 压力容器的制造工艺压力容器通常需要使用高强度的钢材制造。

在制造过程中需要进行焊接、加工和检验等工艺。

压力容器的制造工艺需要注意以下问题:(1) 设备加工精度和工艺控制:保证制造误差在运行条件内范围并满足规定的偏差控制要求。

(2) 设备检验:确保制造设备的质量和设计要求一致,并符合相关标准和规范的要求。

(3) 设备安装:在安装过程中需要保证设备安装牢固,并且需遵守安全操作规范。

4. 常见的压力容器故障原因(1) 经常受到冲击或振动。

(2) 长期使用导致设备老化或疲劳。

(3) 腐蚀或受到化学侵蚀。

(4) 压力容器设计或制造过程存在缺陷。

(5) 不正常操作或使用不当。

总之,对于一些需要使用压力容器的行业和领域,人们必须要关注和遵守相关的标准和规范,才能确保设备的安全稳定运行。

压力容器设计基础讲义

压力容器设计基础讲义

压力容器设计基础讲义第一部分、压力容器设计基础知识第一章压力容器失效模式压力容器在载荷作用下丧失了正常的工作能力称为失效。

压力容器所考虑的失效模式主要为断裂、泄漏、过度变形和失稳。

压力容器失效常以三种形式表现出来:强度、刚度、稳定性。

压力容器建造标准中主要考虑的失效模式:1)短期失效模式:(1)脆性断裂(2)韧性断裂(3)超量变形引起的接头泄漏(4)超量局部应变引起的裂纹形成或韧性剪切(5)弹性、塑性或弹塑性失稳2)长期失效模式:(1)蠕变断裂(2)蠕变超量变形(3)蠕变失稳(4)冲蚀、腐蚀(5)环境助长开裂,如:应力腐蚀开裂3)循环失效(1)扩展性塑性变形(2)交替塑性(3)弹性应变疲劳或弹-塑性应变疲劳(4)环境助长疲劳,如:腐蚀疲劳第二章 GB150适用范围(1)适用的设计压力①对于钢制容器不大于35MPa;②其它金属材料制容器的设计压力适用范围按相应引用标准确定。

(2)适用的设计温度范围①设计温度范围:-269℃~900℃。

②钢制容器不得超过按GB 150.2 中列入材料的允许使用温度范围。

③其他金属材料制容器按本部分相应引用标准中列入的材料允许使用温度确定。

(3)下列各类容器不在标准的适用范围内:①设计压力低于0.1MPa且真空度低于0.02MPa的容器;②《移动式压力容器安全监察规程》管辖的容器;③旋转或往复运动机械设备中自成整体或作为部件的受压器室(如泵壳、压缩机外壳、涡轮机外壳、液压缸等);④核能装置中存在中子辐射损伤失效风险的容器;⑤直接火焰加热的容器;⑥内直径(对非圆形截面,指截面内边界的最大几何尺寸,如:矩形为对角线,椭圆为长轴)小于150mm的容器;⑦搪玻璃容器和制冷空调行业中另有国家标准或行业标准的容器。

(4)对不能按 GB 150.3确定结构尺寸的容器或受压元件,允许采用以下方法进行设计:①按照附录C的规定,进行验证性实验分析(如实验应力分析、验证性液压试验)。

②按照附录D的规定,利用可比的已投入使用的结构进行对比经验设计。

压力容器--设计基础(一)

压力容器--设计基础(一)

压力容器的强度与设计(江苏省压力容器检验员培训考核班专题讲座)董金善南京工业大学过程装备研究所第一节概述一、容器的结构在工厂中可以看到许多设备。

在这些设备中,有的用来储存物料,如各种储罐、计量罐;有的进行热量交换,如各种换热器、蒸发器、冷凝器、结晶器等;有的用来进行化学反应,如反应釜、聚合釜、发酵罐、合成塔等。

这些设备虽然尺寸大小不一,形状结构不同,内部构件的型式更是多种多样,但是它们都有一个外壳,这个外壳就叫作容器。

容器一般是由筒体(圆筒)、封头(端盖)、法兰、支座、接管、人孔(手孔)、视镜、安全附件等组成(图1)。

它们统称为压力容器通用零部件,常、低压压力容器通用零部件大都已有标准,设计时可直接选用。

图-1 容器的结构二、压力容器常用标准1.国务院《特种设备安全监察条例》(2003)2.国家质量技术监督局《压力容器安全技术监察规程》 (1999)3.国家质量监督检验检疫总局《特种设备行政许可工作程序》 (2003)4.国家质量监督检验检疫总局《特种设备行政许可实施办法》 (2003)5.国家质量监督检验检疫总局《特种设备行政许可分级实施范围》(2003)6.国家质量监督检验检疫总局《锅炉压力容器制造监督管理办法》(2003)7.国家质量监督检验检疫总局《锅炉压力容器制造许可工作程序》(2003)8.国家质量监督检验检疫总局《锅炉压力容器制造许可条件》 (2003)9.国家质量监督检验检疫总局《锅炉压力容器产品安全性能监督检验规则》 (2003)10.国家质量监督检验检疫总局《压力容器压力管道设计单位资格许可与管理规则》 (2002)11.G B150-1998《钢制压力容器》12.G B151-1999《管壳式换热器》13.J B/T4735-1997《钢制焊接常压容器》14.J B4710-1992《钢制塔式容器》15.J B4731-XXXX《钢制卧式容器》16.H G/T20569-1994《机械搅拌设备》17.G B12337-1998《钢制球形储罐》18.G B16749-1997《压力容器波形膨胀节》19.J B4732-1994《钢制压力容器-分析设计标准》20.H G20580-1998《钢制化工容器设计基础规定》21.H G20581-1998《钢制化工容器材料选用规定》22.H G20582-1998《钢制化工容器强度计算规定》23.H G20583-1998《钢制化工容器结构设计规定》24.H G20584-1998《钢制化工容器制造技术要求》25.H G20585-1998《钢制低温压力容器技术规定》26.H G20531-1993《铸钢、铸铁容器》27.J B/T4734-2002《铝制焊接容器》28.J B/T4745-2002《钛制焊接容器》29.G B/T15386-1994《空冷式换热器》30.G B16409-1996《板式换热器》31.H G/T2650-1995《钢制管式换热器》32.G B5842-1996《液化石油气钢瓶》33.J B/T4750-2003《制冷装置用压力容器》34.J B/T6539-1992《微型空气压缩机用钢制压力容器》35.J B8701-1998《制冷用板式换热器》36.J B/T4751-2003《螺旋板式换热器》37.G B18442-2001《低温绝热压力容器》38.G B12130-1995《医用高压氧舱》39.G B9019-1988《压力容器公称直径》40.J B/T4700~4707-2000《压力容器法兰》41.H G20592~20635-2009《钢制管法兰、垫片、紧固件》42.G B/T9112~9124-2000《钢制管法兰》43.J B/T74~90-1994《管路法兰及垫片》44.J B/T4746-2002《钢制压力容器用封头》45.J B/T4736-2002《补强圈》46.H GJ527-1990《补强管》47.J B/T4712-1992《鞍式支座》48.J B/T4713-2007《腿式支座》49.J B/T4724-1992《支承式支座》50.J B/T4725-1992《耳式支座》51.G B16749-1997《波形膨胀节》52.H G501~502-1986《压力容器视镜》53.H G21588~21591-1995《玻璃板液面计》54.H G21592-95《玻璃管液面计》55.H G/T21584-95《磁性液面计》56.H G21514~21527-1995《碳钢、低合金钢人孔》57.H G21528~21535-1995《碳钢、低合金钢人孔》58.H GJ504~509-1986《不锈钢人孔》59.H GJ510~513-1986《不锈钢手孔》60.H G21537-1992《填料箱》61.H G21571~21572-1995《机械密封》62.H G21563~21569-1995《搅拌传动装置》63.H G5-220~222-1965《搅拌器》64.H G/T21574-1994《设备吊耳》65.G B41-1986《I型六角螺母-C级》66.G B6170-1986《I型六角螺母-A和B级》67.G B5780-1986《六角头螺栓-C级》68.G B5782-1986《六角头螺栓-A和B级》69.J B/T4714-1992《浮头式换热器和冷凝器型式与基本参数》70.J B/T4715-1992《固定管板式换热器型式与基本参数》71.J B/T4716-1992《立式热虹吸式重沸器型式与基本参数》72.J B/T4717-1992《U型管式换热器型式与基本参数》73.H G21503-1992《钢制固定式薄管板列管换热器》74.G B567-1989《拱形金属爆破片形式与参数》75.G B/T14566-93《正形金属爆破片形式与参数》76.G B/T14567-93《反形金属爆破片形式与参数》77.G B/T14568-93《开缝形金属爆破片形式与参数》78.H G/T20668-2000《化工设备设计文件编制规定》79.T CED41002-2000《化工设备图样技术要求》80.G B6654-1996《压力容器用钢板》81.G B713-1986《锅炉用碳素钢和低合金钢板》82.G B3531-1996《低温压力容器用低合金钢钢板》83.G B4237-1992《不锈钢热轧钢板》84.G B8165-1987《不锈钢复合钢板》85.G B8163-1999《输送流体用无缝钢管》86.G B9948-1988《石油裂化用无缝钢管》87.G B6479-1986《化肥设备用高压无缝钢管》88.G B5310-1995《高压锅炉用无缝钢管》89.G B/T14976-94《流体输送不锈钢无缝钢管》90.G B13296-91《锅炉、热交换器用不锈钢无缝钢管》91.J B4726-2000《压力容器用碳素钢和低合金钢锻件》92.J B4727-2000《低温压力容器用碳素钢和低合金钢锻件》93.J B4728-2000《压力容器不锈钢锻件》94.G B/T983-1995《不锈钢焊条》95.G B/T5117-1995《碳钢焊条》96.G B/T5118-1995《低合金钢焊条》97.G B5293-1985《碳素钢埋弧焊用焊剂》98.G B12470-1990《低合金钢埋弧焊用焊剂》99.G B/T14957-1994《熔化焊用钢丝》100.GB/T14958-1994《气体保护焊用钢丝》101.GB/T8110-1995《气体保护电弧焊用碳钢、低合金钢焊丝》102.JB/T2835-1979《低温钢焊条》103.JB4708-2000《钢制压力容器焊接工艺评定》104.JB/T4709-2000《钢制压力容器焊接规程》105.JB4730-1994《压力容器无损检测》106.JB/T4711-2003《压力容器涂敷与运输包装》107.JB/T613-1993《锅炉受压元件焊接技术条件》108.HG20660-2000《压力容器中化学介质毒性危害和爆炸危险程度分类》109.GB/T18182-2000《金属压力容器声发射检测及结果评价方法》三、压力容器许可证1. 锅炉制造许可证3. 压力容器设计许可证注:①锅炉设计图纸由省级交由被核准的检验检测机构鉴定;②气瓶(B类)、氧舱设计图纸由总局核准的检验检测机构鉴定;③客运索道、大型友游乐设施设计图纸由总局核准的检验检测机构鉴定。

压力容器设计基础知识培训

压力容器设计基础知识培训
钢的最低使用温度为-253℃(对应液氢设计温度),S31008最高使用温度为 800℃,部分奥氏体不锈钢最高使用温度为700℃。
1、总论-GB150适用范围
适用的压力范围:
钢制容器适用于设计压力不大于35MPa,不低于0.1MPa及真空度 高于0.02MPa 。特殊材质容器的设计压力按相应标准。
真空容器 常压容器
1、总论-设计参数
对于设计图纸中注明最高允许工作压力的压力容器,允许超压泄放装置的整定 压力高于设计压力,但不高于该压力容器的最高允许工作压力。
容器最大允许工作压力一般大于设计压力,当设计文件未注明最大允许工作压 力时,则设计压力视为其最大允许工作压力,计算采用的厚度应为有效厚度减 去除压力外的其它载荷(如风弯矩、地震载荷)等,以及开孔补强所需厚度的 厚度的计算值,并应减去液注静压力。最大允许工作压力计算麻烦,需要进行 全面强度校核(法兰、补强、外压、局部不连续等)
3)其他金属材料制容器按相应规范所列材料的的允许使用温度范围。
第1条款说明了本标准涵盖的所有容器设计温度范围为-269℃∽900℃ ,其 下限值269℃对应于铝的极限使用(设计)温度,上限值900℃对应于镍合 金的极限使用(设计)温度。
第2条GB/T150.2所列钢材使用温度范围不含有色金属。其中奥氏体不锈
2)设计压力必须与相应的设计温度作为设计条件,且还应考虑容器在运行中可 能出现的各种工况,并以最苛刻的工作压力与相应的温度的组合工况,确定设 计压力。
3)盛装液化石油气和液化气的容器的设计压力, 1)无安全装置时,设计压力应不低于安全阀开启压力的1.05倍工作压力, 2)装有安全装置时设计压力应不低于安全阀的开启压力(开启压力取工作
压力容器设计基 础知识培训
技术中心 郝世荣

压力容器设计基础

压力容器设计基础

3
设计基础
——概论
在压力容器建造的初期,产品建造的目的为满足本国相应工业的 需求,压力容器的生产技术也是以本国的基本生产条件为基础。
生产技术的总结和统一安全质量的要求,使得国家依据自己的生 产技术和管理要求制订出了适合于本国国情的相应安全法规和技 术标准体系。
安全法规和技术标准水平的先进性如何,应体现在安全法规和技 术标准是否能有效地保证压力容器产品的安全性和经济合理性, 是否体现了代表时代的技术手段的应用,是否能推动行业的技术 进步。
4
设计基础
——概论
随着全球经济一体化的逐步发展,承压设备法规和标准的国际化趋势已 经越来越明显。
欧洲议会于1997年5月正式批准了统一的压力设备指令(Pressure Equipment Directive), 于2002年5月在欧盟内强制执行。
欧洲标准化委员会(CEN)现正在采取积极行动,试图将现有的欧洲标 准上升为国际标准。
-
0.50
无塞焊的单面满角搭接焊(L—3)
-
-
0.45
注: 1)有关系数所允许的应用场合和具体接头型式, 请参见文献[1]、[2]。
Байду номын сангаас
2)美国为射线检测程度。
23
一、压力容器技术进展 结构设计
现代的压力容器结构设计正在逐 步摆脱传统观念的束缚,体现真 正满足工艺要求的设计理念,追 求实效性、安全性和经济性的和 谐统一。
28
一、压力容器技术进展
安全系数的降低
降低安全系数的前提条件是:
l 结构分析设计水平的提高; l 制造经验的积累和制造技术水平的提高; l 更严格的材料技术要求; l 更科学的质量保证体系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
强度
把强度理论(公式(1))具体应用到压力容器 专业,就称这为压力容器的强度理论, 它又增加了一些具体的规定和特殊要求,由 此产生了一系列容器的设计规定和标准等。
9
强度
1、强度设计的任务: 内压容器的强度设计包含设备的壁厚设计 和在用设备的强度校核两方面。 1)设计型计算——根据给定的公称直径以及 设计压力和温度,设计出合适的壁厚,以保证 设备安全可靠。 2)校核型计算——根据已有的设备公称直径 以及工作压力和温度,判断设备的使用安全性。
17
三、压力容器强度理论
4、第四强度理论(形状改变比能理论)及相应强度条件 第四强度理论认为设备构件受外力产生弹性变形时,物 体内部也就积蓄了能量,即变形能。
单位变形体体积内所积蓄的变形能称为变形比能。当 构件变形比能达到材料的极限值时,会引起屈服破坏。
其相应的强度条件:
1 1 2 2 2 3 2 3 1 2 当 2
7
强度
σ≤K„σ‟t 公式(1)
公式(1)中的右端项是强度控制指标,即材料的 许用应力。 它涉及到材料强度指标(如抗拉强度σb、屈服强 度σs 等)的确定及安全系数的选用等问题。
当采用常规设计法,且只考虑静载问题时,系数 K=1.0;如果考虑动载荷,或采用应力分析设计法, K≥1.0,此时设计计算将更加复杂。
1 2 3
16
三、压力容器强度理论
3、第三强度理论(最大剪应力理论)及相应的强度条件
第三强度理论认为最大剪应力( σ1-σ3 )是引起材料 屈服破坏的主要因素。
其强度条件为:

pD pD 1 3 0 2S 2S

pD 2S
压力容器设计基础
内容
一、概述
二、强度设计的基本知识 三、压力容器强度理论 四、压力容器设计准则 五、压力容器设计基本内容 六、压力容器设计审核要点
2
一、概述
压力容器的设计,就是根据给定的性能要求、 工艺参数和操作条件,确定容器的结构型式, 选择合适的材料,计算容器主要受压元件的尺 寸,最后给出容器及其零部件的图纸和计算书, 并提出相应的技术条件。 正确、完整的设计应达到保证完成工艺生产, 运行安全可靠,保证使用寿命、制造、检验检 测、安装、操作及维修方便易行,经济合理等 要求。
6
强度
一点的应力状态最多可含有 6 个应力分量,哪 个应力起主要作用,对失效起什么作用,如何 控制才不致发生破坏,解决这一问题,就要选 择相应的强度理论计算当量应力,以便与单向 拉伸试验得到的许用应力相比较,将应力控制 在许可范围内。 对它们如何控制才不致发生破坏,解决这一问 题,就要选择相应的强度理论计算当量应力, 以便与单向拉伸试验得到的许用应力相比较, 将应力控制在许可的范围内。
5
强度
常用的方法有解析法(如弹性力学法、弹塑性分 析法等)、试验法(如电阻应变计测量法、光弹 法、云纹法等)及数值解法(如有限元法、边界 元法等)。
应用这些方法可以精确或近似地求出结构的应力, 然而,每一种结构的应力都有其特殊性
目前可求解的只是问题的绝大部分,仍有许多复 杂结构的应力分析有待人们进一步探讨。
σ1 σ2 σ1 σ3 σ2 σ2
σ2
σ1 σ3 σ1 二项应力状态与三项应力状态
13
二、强度设计的基本知识
① 根据应力状态确定主应力; ② 确定材料的许用应力。 对承受均匀内压的薄壁容器,其主应力为:
1 2 m
pD 2S pD 4S
14
3 r 0
三、压力容器强度理论



18
三、压力容器强度理论
适用性: 第一强度理论适用于脆性材料; 第二强度理论经试验验证不适于金属材料,一直没 有得到工程应用; 第三、第四强度理论适用于塑性材料。
19
三、压力容器强度理论
强度理论及其应用 在对结构进行强度分析时,要对危险点处于 复杂应力状态的构件进行强度计算,首先要知道 是什么因素使材料发生某类型破坏的。 长期以来,人们根据对材料破坏现象的分析, 提出了各种各样的假说,认为材料的某一类型破 坏现象是由哪些因素所引起的,这种假说通常就 称为强度理论。 一种类型的破坏是脆性断裂破坏,第一、二强 度理论依据于它;
11
二、强度设计的基本知识
1、关于弹性失效的设计准则
设计压力容器时,为了保证结构安全可靠的
工作,必须留有一定的安全裕度,即强度安
全条件:

12
0
n

二、强度设计的基本知识
2、强度理论及其相应的强度条件 借助于强度理论,将二向和三向应力状态转 换成单向拉伸应力状态的相当应力,同时须 解决两个问题:
10
强度
2 、内压薄壁圆筒与封头的强度计算公式,以壳体 无力矩理论为推导基础,其推导过程如下: ① 根据薄膜理论进行应力分析,确定薄膜应力状 态下的主应力; ② 根据弹性失效的设计准则,应用强度理论确定 应力的强度判据; ③ 对封头,考虑到薄膜应力的变化和边缘应力的 影响,按壳体中的应力状况在公式中引进应力增 强系数。 ④ 根据应力强度判据,考虑腐蚀等实际因素导出 具体的计算公式。
3
一、概述
压力容器设计中的关键问题是力学问题, 即强度、刚度及稳定性问题。 在本节中,主要讨论压力容器设计中的
有关强度问题。
4
强度
强度:就是结构在外载荷作用下,会不会因应力过大而发 生破裂或者由于过度性变形而丧失其功用。 具体来讲,就是在外载荷作用下,容器结构内产生的应力 不大于材料的许用应力值,即: σ≤K„σ‟t 公式(1) 这个公式就是强度问题的基本表达式。压力容器的设计计 算就是围绕这一关系式而进行的。 公式 (1) 中的左端项是结构内的应力,它是我们最为关 心的问题。 求解结构的应力状态,是一个十分复杂的问题。
1 、第一强度理论(最大主应力理论)及相应 的强度条件 第一强度理论认为在三向应力中,若最大应 力小于许用应力,则安全。
其强度条件为:
pD 当 1 2S
15
三、压力容器强度理论
2 、第二强度理论(最大线应变理论)及相应 的强度条件
第二强度理论认为在三向应力中,若最大 线应变小于许用应变,则安全。 其强度条件为:
相关文档
最新文档