第8章材料的变形与断裂

合集下载

第8章 金属高温下的变形与断裂

第8章 金属高温下的变形与断裂

8
9
典型的蠕变曲线
金属蠕变过程用蠕变曲线来描述。 金属蠕变过程用蠕变曲线来描述。典型的蠕变曲线如图。 (1)Oa线段:是试样在t 温度下承受恒定拉应力σ时所产 线段: 线段 生的起始伸长率δq。 若应力超过金属在该温度下的屈服强度,则δq包括弹性伸长 弹性伸长 塑性伸长率两部分。 率和塑性伸长率 塑性伸长率 此应变还不算蠕变 应变还不算蠕变,而是由外载荷引起的一般变形过程。 应变还不算蠕变
20
(二)扩散蠕变
(二)扩散蠕变 扩散蠕变: 扩散蠕变:是在较高温度(约比温度(T/Tm)远超过0.5)下的 ( 一种蠕变变形机理。 它是在高温下大量原子和空位定向移动造成的 高温下大量原子和空位定向移动造成的。 高温下大量原子和空位定向移动造成的 在不受外力情况下,原子和空位的移动无方向性,因而宏观 上不显示塑性变形。 但当受拉应力σ作用时,在多晶体内产生不均匀的应力场 产生不均匀的应力场。 产生不均匀的应力场
17
刃位错攀移克服障碍的几种模型: 刃位错攀移克服障碍的几种模型: 可见,塞积在某种障碍前的位错通过热激活可以在新的滑移 面上运动(a),或与异号位错相遇而对消(b),或形成亚 晶界(c),或被晶界所吸收(d)。
18
当塞积群中某一个位错被激活而发生攀移时,位错源便可能 再次开动而放出一个位错,从而形成动态回复过程 动态回复过程。 动态回复过程 这一过程不断进行,蠕变得以不断发展。
7
本章介绍内容: 本章介绍内容: 阐述金属材料在高温长时载荷作用下的蠕变现象 蠕变现象。 蠕变现象 讨论蠕变变形和断裂的机理 蠕变变形和断裂的机理。 蠕变变形和断裂的机理 介绍高温力学性能指标及影响因素。 为正确选用高温金属材料和合理制定其热处理工艺提供基础 知识。

材料的力学性能 断裂与断口分析

材料的力学性能 断裂与断口分析

材料的力学性能-断裂与断口分析材料的断裂断裂是工程材料的主要失效形式之一。

工程结构或机件的断裂会造成重大的经济损失,甚至人员伤亡。

如何提高材料的断裂抗力,防止断裂事故发生,一直是人们普遍关注的课题。

任何断裂过程都是由裂纹形成和扩展两个过程组成的,而裂纹形成则是塑性变形的结果。

对断裂的研究,主要关注的是断裂过程的机理及其影响因素,其目的在于根据对断裂过程的认识制定合理的措施,实现有效的断裂控制。

✓材料在塑性变形过程中,会产生微孔损伤。

✓产生的微孔会发展,即损伤形成累积,导致材料中微裂纹的形成与加大,即连续性的不断丧失。

✓损伤达到临界状态时,裂纹失稳扩展,实现最终的断裂。

按断裂前有无宏观塑性变形,工程上将断裂分为韧性断裂和脆性断裂两大类。

断裂前表现有宏观塑性变形者称为韧性断裂。

断裂前发生的宏观塑性变形,必然导致结构或零件的形状、尺寸及相对位置改变,工作出现异常,即表现有断裂的预兆,可能被及时发现,一般不会造成严重的后果。

脆性断裂断裂前,没有宏观塑性变形的断裂方式。

脆性断裂特别受到人们关注的原因:脆性断裂往往是突然的,因此很容易造成严重后果。

脆性断裂断裂前不发生宏观塑性变形的脆性断裂,意味着断裂应力低于材料屈服强度。

对脆性断裂的广义理解,包括低应力脆断、环境脆断和疲劳断裂等。

脆性断裂一般所谓脆性断裂仅指低应力脆断,即在弹性应力范围内一次加载引起的脆断。

主要包括:与材料冶金质量有关的低温脆性、回火脆性和蓝脆等;与结构特点有关的如缺口敏感性;与加载速率有关的动载脆性等。

材料的断裂比较合理的分类方法是按照断裂机理对断裂进行分类。

微孔聚集型断裂、解理断裂、准解理断裂和沿晶断裂。

有助于→揭示断裂过程的本质→理解断裂过程的影响因素→寻找提高断裂抗力的方法。

材料的断裂将环境介质作用下的断裂和循环载荷作用下的疲劳断裂按其断裂过程特点单独讨论。

金属材料的断裂-静拉伸断口材料在静拉伸时的断口可呈现3种情况:(a)(b):平断口;(c)(d):杯锥状断口;(e)尖刃断口平断口:材料塑性很低、或者只有少量的均匀变形,断口齐平,垂直于最大拉应力方向。

第八章聚合物的屈服和断裂

第八章聚合物的屈服和断裂

第八章聚合物的屈服和断裂一、基本概念1、韧性破坏;脆性破坏;脆化温度2、强迫高弹形变;冷流;细颈3、银纹;屈服;银纹屈服;剪切屈服4、拉伸强度;抗弯强度;弯曲模量;冲击强度;硬度5、应变诱发塑料─橡胶转变6、应变软化现象;应变变硬化现象7、银纹;裂缝;应力集中二、选择题1、下列高聚物中,拉伸强度最高的是( )A,低密度聚乙烯B,聚苯醚C,聚甲醛2、非晶态聚合物作为塑料使用的最佳温度区间为( )A,Tb---Tg B,Tg---Tf C,Tg以下3、甲乙两种聚合物材料的应力---应变曲线如图所示, 其力学性能类型和聚合物实例分别为( )A,甲聚合物:硬而强,硬聚氯乙稀;乙聚合物:软而韧,聚异戊二稀B,甲聚合物:硬而脆,聚甲基丙稀酸甲酯;乙聚合物:软而弱,聚丁二稀C,甲聚合物:硬而强,固化酚醛树酯;乙聚合物:软而韧 ,聚合物凝胶D,甲聚合物:硬而脆,硬聚氯乙稀;乙聚合物:软而弱,聚酰胺4、韧性聚合物单轴拉伸至屈服点时,可看到剪切带现象,下列说法错误的是()。

A、与拉伸方向平行B、有明显的双折射现象C、分子链高度取向D、每个剪切带又由若干个细小的不规则微纤构成5、拉伸实验中,应力-应变曲线初始部分的斜率和曲线下的面积分别反映材料的()。

A、拉伸强度、断裂伸长率B、杨氏模量、断裂能C、屈服强度、屈服应力D、冲击强度、冲击能6、在聚甲基丙烯酸甲酯的拉伸试验中,温度升高则()。

A、σB升高、εB降低,B、σB降低、εB升高,C、σB升高、εB升高,D、σB降低、εB降低,7、聚苯乙烯在张应力作用下,可产生大量银纹,下列说法错误的是()。

A、银纹是高度取向的高分子微纤构成。

B、银纹处密度为0,与本体密度不同。

C、银纹具有应力发白现象。

D、银纹具有强度,与裂纹不同。

8、杨氏模量、冲击强度、应变、切变速率的量纲分别是()。

A、N/m2, J/m2, 无量纲, S-1,B、N, J/m, 无量纲, 无量纲C、N/m2, J, 无量纲, 无量纲D、N/m2, J, m, S-19、可较好解释高抗冲聚苯乙烯(HIPS)增韧原因的为()。

大学材料科学基础第八章材料的变形与断裂(1)

大学材料科学基础第八章材料的变形与断裂(1)

六方晶系则需画图判定。
滑移系数量与金属的塑性 滑移系代表了晶体滑移时可能采取的空间取向,晶 体中滑移系数量越多,滑移时可能采取的空间取向就 越多,滑移就越容易进行,金属的塑性便越好。 面 心 立 方 金 属 : Cu,Al,Au,Ag,,Ni,γ-Fe, 奥氏体钢,体心立方金属α-Fe,铁素体,Mo,Nb的 塑性很好,而密排六方金属Mg,Zr,Be,Zn的塑性 则较差。当然滑移系数量并不是决定金属塑性高低唯 一的因素,合金的成分、强度的高低、加工硬化的能 力等也会影响到金属的塑性。试验表明,奥氏体钢的 塑性要优于铁素体钢。
金属拉伸曲线分析。 1 弹性变形阶段:ζ-ε呈直线关系。
(弹)塑性变形阶段: ζ-ε不遵循虎克定律
2 均匀塑性变形阶段:屈服阶段:ε增加,ζ基本保 持不变, ζ-ε呈非线性关系。 3 颈缩阶段(局部变形阶段):变形集中在局部区 域。 4 断裂阶段:从颈缩到断裂。
拉伸试验可以得到以下强度指标和塑性指标:
拉伸条件下滑移系上分切应力的计算。
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning ™ is a trademark used herein under license.
θ-滑移面法线与拉伸轴的夹角
4 力轴作用在任意方向
二、孪晶(孪生)变形
孪生也是金属塑性变形的一种形式,一般情况下, 金属晶体优先以滑移的方式进行塑性变形,但是当滑 移难以进行时,塑性变形就会以生成孪晶的方式进行, 称为孪生。例如滑移系较少的密排六方晶格金属,当 处于硬取向时,滑移系难以开动,就常以孪生方式进 行变形。滑移系较多的fcc、bcc结构的金属一般不发 生孪生变形,但在极低的温度下变形或是形变速度极 快时,也会以孪生的方式进行塑性变形。 定义:晶体在难以进行滑移时而发生的另一种塑 性变形方式,其特点是变形以晶体整体切变的形式 进行而不是沿滑移系发生相对位移。

第八章 材料的变形和断裂

第八章 材料的变形和断裂

名词解释(1)加工硬化(变形强化):当金属外加应力超过屈服强度后,随着变形程度的增加,变形的抗力也增加,要继续变形,必须增加外力,这种现象就叫加工硬化。

(2)颈缩:当应力达到抗拉强度时,试样不在均匀伸长,而是试样局部地方截面开始变细。

(3)位错宽度:(4)孪晶变形:晶体在切应力作用下沿着一定的晶面和晶向,在一个区域内发生连续顺序的切变,变形导致这部分的晶体取向改变了。

(5)多滑移:在多个滑移系上同时或交替进行的滑移。

(6)交滑移:晶体在两个或者多个滑移面上沿同一滑移方向进行的滑移。

(7)发生多系滑移时,在两个相交滑移面上运动的位错必然会互相交截,原来一直线位错经过交截后就会出现弯折部分,如果弯折部分仍在滑移面上,就叫扭折,若弯折部分不再滑移面上,就叫割阶。

(8)派纳力:在理想晶体中位错在点阵周期场中运动时所需克服的阻力(9)纤维组织:金属经过冷变形后,等轴状晶粒沿受力方向拉长,其中的夹杂物或者第二相也随之拉长。

(10)形变织构:金属在形变时,晶体的滑移面会移动,使滑移层逐渐转向与拉力轴平行。

原来的各个晶粒是任意取向的,现在由于晶粒的转动使各个晶粒的取向趋于一致,这就形成了晶体的择优取向。

(11)回复:在加热温度较低时,由于金属中的点缺陷及位错近距离迁移而引起的晶体某些变化。

(12)再结晶:冷变形金属由拉长的变形晶粒生成无畸变的新的等轴晶粒的过程。

(13)二次再结晶:(14)热变形:金属在再结晶温度以上的加工变形。

(15)蠕变:材料在高温下的变形不仅与应力有关,而且和应力作用的时间有关。

(16)应变时效:低碳钢经过少量预变形后,如果去载后立即再行加载则不会出现明显的屈服平台;若在室温下放置一较长的时间或在低温下经过短时加热后在进行拉伸试验,则屈服点又复出现,且屈服应力提高。

(17)第二相强化:当第二相以细小弥散的微粒均匀分布于基体相中时,将会产生显著的强化作用。

(18)固溶强化:合金在形成单向固溶体后,变形时的临界切应力都高于纯金属,这叫做固溶强化。

第8章复合材料力学性能

第8章复合材料力学性能
1.76g/cm3);
➢强度高,拉伸强度为3.62GPa; ➢模量高于GF,为125GPa; ➢韧性好,断裂伸长率为2.5%; ➢缺点:表面惰性大,与树脂界面粘结性能差,抗压、抗
扭曲性能差。
14
14
基体材料
① 基体材料选择三原则:
第一,基体材料本身力学性能较好,如有较高的内聚强 度、弹性模量;与增强纤维有相适应的断裂伸长率; 第二,对增强材料有较好的润湿能力和粘结力,保证良 好的界面粘结; 第三,工艺性优良,成型和固化方法与条件简单,固化 收缩率低。
Ⅱ型CF(高强型): 强度>3GPa; 模量为230~270GPa; 断裂伸长率为0.5~1%
联碳化合物公司P-140 型CF: 模量高达966GPa
东丽公司T1000型CF: 强度达到7.05GPa; 模量为295GPa;
13
13
③ 芳纶的力学特性
➢以Kevlar-49为代表的芳纶是一种高模量有机纤维; ➢密度小(1.44g/cm3,GF为2.54g/cm3,T300为
17
17
8.2.1 纵向拉伸性能 (1)纵向拉伸应力σL 、拉伸模量EL
单向纤维复合材料纵向拉伸加载示意图和单向板纵向拉伸 简化力学模型图如下: PL = Pf + Pm
Pf 、 Pm分别为纤维(fibre)和基体(matrix)承受的载荷
18
18
当用应力表示
PL = Pf + Pm
σL AL = σf Af + σm Am
单向(纤维增强)复合材料 双向(正交纤维)复合材料 多向(纤维增强)复合材料 三向(正交纤维增强)复合材料 短纤维增强复合材料
4
4
(1)单向(纤维增强)复合材料

第8章变形与断裂(2)

第8章变形与断裂(2)
对 无 限 互 溶 的 Cu-Ni 合 金、Ag-Au合金,强化和 溶质浓度呈抛物线关系
铜镍固溶体的力学性能与成分的3关8 系
2. 固溶强化机制 根据溶质原子与位错间的交互作用,曾提出 过几种固溶强化的位错机制 溶质原子与位错的弹性交互作用
(1)点阵畸变 置换型溶质原子因为与溶剂 原子尺寸的差别,引起点阵 畸变,形成内应力场。位错 在内应力场中运动受阻
冷拉钢丝示意图
36
第七节 合金的变形与强化
合金 两种或两种以上金属与金属或金属与非 金属形成的,具有金属特性的 一、单相合金的变形与固溶强化
1. 固溶强化
与纯金属相比,固溶体的强度和硬度升高,塑 性和韧性降低的现象
37
固溶强化对具体合金, 表现规律不一样
对多数合金,溶解度有 限,强化和溶质浓度呈 线性关系
C
扭折与原位错线在同一滑移面上,可随主滑移线一道 运动,几乎不产生阻力,也可因位错线张力而消失3
B D
A 运动方向
bAB
D
bCD
C
bCD
A
割阶
C
B
割阶 与原位错线不在同一滑移面上,也常常不 是易滑移平面。位错会受到阻力
因为此割阶的滑移方向和原位错一致,所以
说明
P339最后一段
带有扭折或割阶的位错,其柏氏矢量与携带它 们的位错相同
扭折可因位错线张力而消失,但割阶不会因此 而消失
扭折可随位错线一道运动,几乎不产生阻力, 割阶与原位错不在同一滑移面上,一般只能通
过攀移随原位错一起运动,即使能随新位错一
起滑移,也增加其滑移阻力
9
10
11
2. 位错反应形成固定位错 两根位错线相遇发生反应后,可能会生成固定位 错—滑移面不是晶体滑移面的位错。固定位错自 身不能滑移运动,还会阻碍其他位错运动.

第八章材料的变形与断裂

第八章材料的变形与断裂
内应力场,位错在这内应立场中运动会受到阻力。 对一些合金还考虑弹性模量的差别。如尺寸上没有差别,溶
质原子切变模量较大,对位错有斥力,反之切变模量较小时则有 吸力。
第八章材料的变形与断裂
间隙式的溶质原子 对于间隙式的溶质原子,当其溶于体心立方中,会造成
不对称畸变。这时,溶质原子不仅和刃型位错,也和螺型位 错有强烈的交互作用,因而产生了很强的固溶强化效果。
第八章材料的变形与断裂
2)双交滑移机制 高层错能的面心立方和体心立方,变形时的 位错增殖主要是靠双交滑移。 见书上P342
第八章材料的变形与断裂
合金的变形与强化
固溶强化: 合金在形成单相固溶体后,变形时的临界切应力都高于
纯金属。
置换式的溶质原子,考虑溶质原子与溶剂原子尺寸的差别。 尺寸相差越大,溶解度越小,强化效果越大。 原子尺寸差别(或称错配)所引起的晶格畸变,会产生一
第八章材料的变形与断裂
三. 位错的增殖
1)F-R源(弗兰克-瑞德源) 塑性变形的过程中,尽管位错移出晶体产生滑移
台阶,但位错的数量(位错密度)却在不断的增加,这 是因为在外应力作用下发生塑性变形时位错会发生增 殖。
例如
第八章材料的变形与断裂
位错的增殖
利用Fnak-Read源说明增殖的过程。若滑移面上 有一段位错,CD两点钉住不可滑移,在外力作用下位 错应向右移动,这段位错将弯曲、扩张,相遇为异号 位错相消,产生一位错环,内部CD段还存在。反复可 生成一系列的位错环,扩展到晶体外的产生滑移台阶 可为柏氏矢量的整数倍。
3 消除:去应力退火。
第八章材料的变形与断裂
金属的断裂
一. 理论断裂强度 利用原子间结合力的模型可以求出金属的理论断裂强度。
第八章材料的变形与断裂
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章材料的变形与断裂
材料的变形与断裂是材料科学中的重要研究内容,对于了解材料的性
能和使用寿命具有重要意义。

材料的变形是指在外力作用下,材料的形状、尺寸或结构发生改变的过程。

而断裂则是指在外力作用下,材料由于受到
极限载荷或破坏源的影响,导致形成裂纹最终导致材料的破裂。

材料的变形可以分为弹性变形和塑性变形两种情况。

在小应力作用下,材料会发生弹性变形,即在去除外力后能够恢复其原状。

而在大应力作用下,材料会发生塑性变形,即即使去除外力,材料也无法完全恢复其原状。

材料的弹性模量是一个衡量材料抗弹性变形能力的重要参数,不同材料具
有不同的弹性模量,常见材料如金属具有较大的弹性模量,而聚合物则具
有较小的弹性模量。

材料的塑性变形是材料工程中非常重要的一个特性,塑性变形不仅与
材料的力学性能有关,还与材料的微观结构和晶格缺陷等因素有关。

材料
在塑性变形过程中会产生塑性应变和塑性应力,塑性应变是材料发生塑性
变形时所引起的应变,而塑性应力则是材料发生塑性变形时所引起的应力。

常见的材料塑性变形包括屈服、流动、硬化等过程。

材料的断裂是指在外力作用下,材料发生了破裂。

材料的断裂主要分
为两种形式:韧性断裂和脆性断裂。

韧性断裂是指材料在外力作用下具有
一定韧性,在发生破裂前能够发生大量的塑性变形。

而脆性断裂则是指材
料在外力作用下没有发生明显的塑性变形,很快发生破裂。

韧性断裂常见
于许多金属材料,而脆性断裂则常见于一些玻璃、陶瓷等材料。

材料的断裂形式可以通过断口分析来确定。

不同的断口形式对应着不
同的材料断裂机制。

常见的断裂形式有拉断、韧窝断裂、脆窝断裂等。


断是指材料发生拉伸断裂,断口两侧平整光滑,常见于高强度的金属材料。

而韧窝断裂则是指材料发生韧性断裂,断口两侧有明显的韧窝。

脆窝断裂
则是指材料发生脆性断裂,断口两侧有明显的断裂窝。

通过对断口形态的
观察可以判断材料的断裂机制和断裂韧性。

材料的变形和断裂不仅仅涉及到力学性能的研究,还和材料的制备工艺、微观结构、晶体缺陷、应力和温度等因素有关。

因此,研究材料的变
形和断裂不仅仅是理论分析,还需要有大量的实验研究。

通过对材料的变
形和断裂进行深入研究,可以提高材料的使用寿命和安全性,指导材料的
设计和选择,为材料工程提供科学依据。

相关文档
最新文档