近五年上海高考分类汇编——立体几何
上海市近四年(2005-)高考数学试题分类汇编——立体几何

上海市近四年(2005-2008)高考数学试题分类汇编——立体几何一.填空题:只要求直接填写结果1(2005年11)有两个相同的直三棱柱,高为a2,底面三角形的三边长分别为)0(5,4,3>a a a a 。
用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,则a 的取值范围是__________。
解答:两个相同的直三棱柱并排放拼成一个三棱柱或四棱柱,有三种情况四棱柱有一种,就是边长为a 5的边重合在一起,表面积为242a +28三棱柱有两种,边长为a 4的边重合在一起,表面积为242a +32边长为a 3的边重合在一起,表面积为242a +36两个相同的直三棱柱竖直放在一起,有一种情况表面积为122a +48最小的是一个四棱柱,这说明 201248122824222<⇒+<+a a a 3150<<⇒a 2(2006春8) 正四棱锥底面边长为4,侧棱长为3,则其体积为 .316 3(2006年10)如果一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 ;解:正方体中,一个面有四条棱与之垂直,六个面,共构成24个“正交线面对”;而正方体的六个对角截面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”;4(2007年10)在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异面直线的充分条件: .21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交)5(2008春8)已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如右图所示,则该凸多面体的体积V =16+二.选择题:每题都给出四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,6(2005春13) 已知直线n m l 、、及平面α,下列命题中的假命题是 ( ) (A )若//l m ,//m n ,则//l n . (B )若l α⊥,//n α,则l n ⊥.(C )若l m ⊥,//m n ,则l n ⊥. (D )若//l α,//n α,则//l n .[答] ( D ) 7(2006年14)若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 ( ) (A )充分非必要条件;(B )必要非充分条件;(C )充要条件;(D )非充分非必要条件;解: 充分性成立: “这四个点中有三点在同一直线上”有两种情况: 1)第四点在共线三点所在的直线上,可推出“这四个点在同一平面上”; 2)第四点不在共线三点所在的直线上,可推出“这四点在唯一的一个平面内”; 必要性不成立:“四个点在同一平面上”可能推出“两点分别在两条相交或平行直线上”; 故选(A )三.解答题:解答下列各题必须写出必要的步骤.8(2005春19) (14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.已知正三棱锥ABC P -的体积为372,侧面与底面所成的二面角的大小为 60.(1)证明:BC PA ⊥;(2)求底面中心O 到侧面的距离.[证明](1)(1)取BC 边的中点D ,连接AD 、PD ,则BC AD ⊥,BC PD ⊥,故⊥BC 平面APD . …… 4分 ∴ BC PA ⊥. …… 6分 [解](2)如图, 由(1)可知平面⊥PBC 平面APD ,则PDA ∠是侧面与底面所成二面角的平面角.过点O 作E PD OE ,⊥为垂足,则OE 就是点O 到侧面的距离.…… 9分设OE 为h ,由题意可知点O 在AD 上,∴ 60=∠PDO ,h OP 2=.h BC h OD 4,32=∴=, …… 11分∴ 2234)4(43h h S ABC ==∆, ∵ 3233823431372h h h =⋅⋅=,∴ 3=h . 即底面中心O 到侧面的距离为3.…… 14分9(2005年17)(本题满分12分)已知直四棱柱1111ABCD A BC D -中,12AA =,底面ABCD 是直角梯形,A ∠为直角,//AB CD ,4AB =,2AD =,1DC =,求异面直线1BC 与DC 所成角的大小.(结果用反三角函数值表示) [解法一]由题意AB//CD ,BA C 1∠∴是异面直线BC 1与DC 所成的角.连结AC 1与AC ,在Rt △ADC 中,可得5=AC , 又在Rt △ACC 1中,可得AC 1=3.在梯形ABCD 中,过C 作CH//AD 交AB 于H , 得13,3,2,90=∴==︒=∠CB HB CH CHB又在1CBC Rt ∆中,可得171=BC ,在.17173arccos ,171732cos ,112121211=∠∴=⋅-+=∠∆ABC BC AB AC BC AB ABC ABC 中∴异而直线BC 1与DC 所成角的大小为.17173arccos[解法二]如图,以D 为坐标原点,分别以AD 、DC 、DD 1所在直线为x 、y 、z 轴建立直角坐标系.则C 1(0,1,2),B (2,4,0) ),2,3,2(1--=∴BCBC 与设1),0,1,0(-=所成的角为θ,则,17173arccos .17173||||cos 11===θθCD BC ∴异面直线BC 1与DC 所成角的大小为.17173arccos10(2006春17) (本题满分12分)在长方体1111D C B A ABCD -中,已知3,41===DD DC DA ,求异面直线B A 1与C B 1所成角的大小(结果用反三角函数值表示). [解法一] 连接D A 1,D BA C B D A 111,//∠∴ 为异面直线B A 1与C B 1所成的角. ……4分 连接BD ,在△DB A 1中,24,511===BD D A B A , ……6分则DA B A BD D A B A D BA 112212112cos ⋅⋅-+=∠259552322525=⋅⋅-+=. ……10分 ∴ 异面直线B A 1与C B 1所成角的大小为259arccos .……12分 [解法二] 以D 为坐标原点,分别以DA 、DC 、1DD 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系. ……2分则 )0,4,0()3,4,4()0,4,4()3,0,4(11C B B A 、、、, 得 )3,0,4(),3,4,0(11--=-=B A . ……6分设A 1与B 1的夹角为θ,则259cos =θ, ……10分 ∴ B A 1与C B 1的夹角大小为259arccos, 即异面直线B A 1与C B 1所成角的大小为259arccos. ……12分 11(2006年19)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60,对角线 AC 与BD 相交PADO E于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60. (1)求四棱锥P -ABCD 的体积; (2)若E 是PB 的中点,求异面直线DE 与PA 所成角的大小(结果用 反三角函数值表示).[解](1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角, ∠PBO=60°. 在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO, 于是,PO=BOtg60°=3,而底面菱形的面积为23. ∴四棱锥P-ABCD 的体积V=31×23×3=2. (2)解法一:以O 为坐标原点,射线OB 、OC 、OP 分别为x 轴、y 轴、z 轴的正半轴建立 空间直角坐标系.在Rt △AOB 中OA=3,于是,点A 、B 、 D 、P 的坐标分别是A(0,-3,0), B (1,0,0), D (-1,0,0), P (0,0, 3).E 是PB 的中点,则E(21,0,23) 于是=(23,0, 23),=(0, 3,3).设AP DE 的夹角为θ,有cosθ=4233434923=+⋅+,θ=arccos 42, ∴异面直线DE 与PA 所成角的大小是arccos 42; 解法二:取AB 的中点F,连接EF 、DF.由E 是PB 的中点,得EF ∥PA , ∴∠FED 是异面直线DE 与PA 所成 角(或它的补角),在Rt △AOB 中AO=ABcos30°=3=OP , 于是, 在等腰Rt △POA 中,PA=6,则EF=26. 在正△ABD 和正△PBD 中,DE=DF=3,cos ∠FED=34621=DE EF=42CB1C 1B1AA∴异面直线DE 与PA 所成角的大小是arccos42. 12(2007春 16) (12分)如图,在棱长为2的正方体D C B A ABCD ''''-中,F E 、分别是B A ''和AB 的中点,求异面直线F A '与CE 所成角的大小 (结果用反三角函数值表示).[解法一] 如图建立空间直角坐标系. …… 2分 由题意可知)0,1,2(),2,1,2(),0,2,0(),2,0,2(F E C A '. )2,1,2(),2,1,0(-=-='∴CE F A . …… 6分 设直线FA '与CE 所成角为θ,则35355cos =⋅=θ. ……10分 35a r c c o s =∴θ,即异面直线F A '与CE 所成角的大小为35arccos. …… 12分 [解法二] 连接EB , …… 2分BF E A //' ,且BF E A =',FBE A '∴是平行四边形,则EB F A //', ∴ 异面直线F A '与CE 所成的角就是CE 与EB 所成的角. …… 6分 由⊥CB 平面A B AB '',得BE CB ⊥. 在Rt △CEB 中,5,2==BE CB ,则552t a n=∠C E B , …… 10分 ∴ 552arctan=∠CEB . ∴ 异面直线F A '与CE 所成角的大小为552arctan. …… 12分 13(2007年16)(本题满分12分)如图,在体积为1的直三棱柱111C B A ABC -中,1,90===∠BC AC ACB .求直线B A 1与平面C C BB 11所成角的大小(结果用反三角函数值表示).解法一: 由题意,可得体积11111122ABC V CC S CC AC BC CC ====△, ∴ 211==CC AA .连接1BC .1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角. 52211=+=BC CC BC ,51t a n 11111==∠∴BC C A BC A ,则 11BC A ∠=55arctan . 即直线B A 1与平面C C BB 11所成角的大小为55arctan .解法二: 由题意,可得 体积11111122ABC V CC S CC AC BC CC ∆====, 21=∴CC ,如图,建立空间直角坐标系. 得点(010)B ,,, 1(002)C ,,,1(102)A ,,. 则1(112)A B =--,,,平面C C BB 11的法向量为(100)n =,,.设直线B A 1与平面C C BB 11所成的角为θ,A 1与的夹角为ϕ, 则116cos 6A B n A Bnϕ==-66arcsin ,66|cos |sin ===∴θϕθ,即直线B A 1与平面C C BB 11所成角的大小为66arcsin. 14(2008春20)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某厂根据市场需求开发折叠式小凳(如图所示). 凳面为三角形的尼龙布,凳脚为三根细钢管. 考虑到钢管的受力和人的舒适度等因素,设计小凳应满足:① 凳子高度为30cm ,② 三根细钢管相交处的节点O 与凳面三角形ABC 重心的连线垂直于凳面和地面.(1)若凳面是边长为20cm 的正三角形,三只凳脚与地面所成的角均为45,确定节点O 分细钢管上下两段的比值(精确到0.01); (2)若凳面是顶角为120的等腰三角形,腰长为24cm ,节点O 分细钢管上下两段之比为2:3. 确定三根细钢管的长度(精确到0.1cm ).[解](1)设△ABC 的重心为H ,连结OH./由题意可得,3BH =. 设细钢管上下两段之比为λ. 已知凳子高度为30. 则301OH λλ=+. …… 3分 节点O 与凳面三角形ABC 重心的连线与地面垂直,且凳面与地面平行.∴ OBH ∠就是OB 与平面ABC 所成的角,亦即45OBH ∠=.303,13BH OH λλ=∴=+,解得,0.63λ=≈. …… 6分即节点O 分细钢管上下两段的比值约为0.63.(2)设120,24B AB BC ∠=∴==,AC =设△ABC 的重心为H ,则8,BH AH == …… 10分由节点O 分细钢管上下两段之比为2:3,可知12OH =.设过点A B C 、、的细钢管分别为AA BB CC '''、、,则 560.82AA CC OA ''====≈,536.12BB OB '==≈, ∴ 对应于A B C 、、三点的三根细钢管长度分别为60.8cm , 36.1cm 和60.8cm . 14分。
【备战2016】(上海版)高考数学分项汇编 专题10 立体几何(含解析)理

专题10 立体几何一.基础题组1. 【2014上海,理6】若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示).【答案】1 arccos3.【考点】圆锥的性质,圆锥的母线与底面所成的角,反三角函数.2. 【2013上海,理13】在xOy平面上,将两个半圆弧(x-1)2+y2=1(x≥1)和(x-3)2+y2=1(x≥3)、两条直线y=1和y=-1围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面面积为48π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为______.【答案】2π2+16π3. 【2012上海,理8】若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为__________.【答案】34. 【2012上海,理14】如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC +CD=2a,其中a,c为常数,则四面体ABCD的体积的最大值是__________.【答案】235. 【2011上海,理7】若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为______.【答案】36. 【2010上海,理12】如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O ,剪去AOB ∆,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A (B )、C 、D 、O 为顶点的四面体的体积为________;【点评】本题属于典型的折叠问题,解题的关键是:抓住折叠前后哪些几何元素的位置关系发生了改变,哪些位置关系没有发生改变,本题中应用正方形的性质是解题的推手.7. (2009上海,理5)如图,若正四棱柱ABCD —A 1B 1C 1D 1的底面边长为2,高为4,则异面直线BD 1与AD 所成角的大小是____________.(结果用反三角函数值表示)【答案】5arctan8. (2009上海,理8)已知三个球的半径R 1,R 2,R 3满足R 1+2R 2=3R 3,则它们的表面积S 1,S 2,S 3满足的等量关系是_____________.【答案】32132S S S =+9. (本题满分14分)(2009上海,理19)如图,在直三棱柱ABC—A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1-A1C-C1的大小.【答案】310. 【2008上海,理16】(12’)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是BC1的中点,求直线DE 与平面ABCD所成角的大小(结果用反三角函数表示11. 【2007上海,理10】平面内两直线有三种位置关系:相交,平行与重合。
专题10 立体几何-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(原卷版)

专题10 立体几何【2021年】一、【2021·浙江高考】某几何体的三视图如图所示,则该几何体的体积是( )A. 32B. 3C. 2D.【2021·浙江高考】 如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A. 直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB. 直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC. 直线1A D 与直线1D B 相交,直线//MN 平面ABCDD. 直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【2021·浙江高考】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.二、【2021·江苏高考】已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A. 2B. 2√2C. 4D. 4√2【2021·江苏高考】在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=1,点P 满足BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗ ,其中λ∈[0,1],μ∈[0,1],则( )A. 当λ=1时,△AB 1P 的周长为定值B. 当μ=1时,三棱锥P −A 1BC 的体积为定值C. 当λ=12时,有且仅有一个点P ,使得A 1P ⊥BPD. 当μ=12时,有且仅有一个点P ,使得A 1B ⊥平面AB 1P【2021·江苏高考】如图,在三棱锥A−BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E−BC−D的大小为45°,求三棱锥A−BCD的体积.【2020年】一、【2020·北京高考】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A. 6+√3B. 6+2√3C. 12+√3D. 12+2√3【2020·北京高考】如图,在正方体ABCD−A1B1C1D1中,E为BB1的中点.(1)求证:BC1//平面AD1E;(2)求直线AA1与平面AD1E所成角的正弦值.二、【2020·浙江高考】某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A. 73B. 143C. 3D. 6【2020·浙江高考】已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是.【2020·浙江高考】如图,三棱台ABC−DEF中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC=2BC.(1)证明:EF⊥DB;(2)求DF与面DBC所成角的正弦值.三、【2020·天津高考】若棱长为2√3的正方体的顶点都在同一球面上,则该球的表面积为()A. 12πB. 24πC. 36πD. 144π【2020·天津高考】如图,在三棱柱ABC−A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=2,CC1=3,点D,E分别在棱AA1和棱CC1上,且AD=1,CE=2,M为棱A1B1的中点.(Ⅰ)求证:C1M⊥B1D;(Ⅱ)求二面角B−B1E−D的正弦值;(Ⅲ)求直线AB与平面DB1E所成角的正弦值.四、【2020·上海高考】在棱长为10的正方体ABCD−A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线交正方体于P,Q两点,则Q点所在的平面是()A. AA1B1BB. BB1C1CC. CC1D1DD. ABCD【2020·上海高考】已知ABCD是边长为1的正方形,正方形ABCD绕AB旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕AB逆时针旋转π至ABC1D1,求线段CD1与平面ABCD所成的角.2【2019年】一、【2019·北京高考(理)】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为______.【2019·北京高考(理)】已知l,m是平面α外的两条不同直线,给出下列三个论断:①l⊥m;②m//α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【2019·北京高考(理)】如图,在四棱锥P−ABCD中,PA⊥平面ABCD,AD⊥CD,AD//BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且PFPC =13.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F−AE−P的余弦值;(Ⅲ)设点G在PB上,且PGPB =23.判断直线AG是否在平面AEF内,说明理由.【2019·北京高考(文)】如图,在四棱锥P−ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF//平面PAE?说明理由.二、【2019·浙江高考】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sℎ,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A. 158B. 162C. 182D. 324【2019·浙江高考】设三棱锥V−ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点),记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P−AC−B的平面角为γ,则()A. β<γ,α<γB. β<α,β<γC. β<α,γ<αD. α<β,γ<β【2019·浙江高考】如图,已知三棱柱ABC−A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90∘,∠BAC= 30∘,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(Ⅰ)证明:EF⊥BC;(Ⅱ)求直线EF与平面A1BC所成角的余弦值.三、【2019·天津高考(理)】已知四棱锥的底面是边长为√2的正方形,侧棱长均为√5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.【2019·天津高考(理)】如图,AE⊥平面ABCD,CF//AE,AD//BC,AD⊥AB,AB=AD=1,AE=BC=2.(Ⅰ)求证:BF//平面ADE;(Ⅱ)求直线CE与平面BDE所成角的正弦值;(Ⅲ)若二面角E−BD−F的余弦值为1,求线段CF的长.3【2019·天津高考(文)】如图,在四棱锥P—ABCD,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD,CD=2,AD=3,(1)设G,H分别为PB,AC的中点,求证:GH//平面PAD;(2)求证:PA⊥平面PCD;(3)求直线AD与平面PAC所成角的正弦值.四、【2019·上海高考】已知平面α、β、γ两两垂直,直线a、b、c满足:a⊂α,b⊂β,c⊂γ,则直线a、b、c不可能满足以下哪种关系()A. 两两垂直B. 两两平行C. 两两相交D. 两两异面【2019·上海高考】如图,在正三棱锥P−ABC中,PA=PB=PC=2,AB=BC=AC=√3.(1)若PB的中点为M,BC的中点为N,求AC与MN的夹角;(2)求P−ABC的体积.【2018年】一、【2018·北京高考(理)】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A. 1B. 2C. 3D. 4【2018·北京高考(理)】如图,在三棱柱ABC−A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=√5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B−CD−C1的余弦值;(3)证明:直线FG与平面BCD相交.【2018·北京高考(文)】如图,在四棱锥P−ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF//平面PCD.二、【2018·浙江高考】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A. 2B. 4C. 6D. 8【2018·浙江高考】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则()A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【2018·浙江高考】如图,已知多面体ABC−A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.三、【2018·天津高考(理)】已知正方体ABCD−A1B1C1D1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M−EFGH的体积为.【2018·天津高考(理)】如图,AD//BC且AD=2BC,AD⊥CD,EG//AD且EG=AD,CD//FG且CD= 2FG,DG⊥平面ABCD,DA=DC=DG=2.(1)若M为CF的中点,N为EG的中点,求证:MN//平面CDE;(2)求二面角E−BC−F的正弦值;(3)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【2018·天津高考(文)】如图,已知正方体ABCD−A1B1C1D1的棱长为1,则四棱锥A1−BB1D1D的体积为.【2018·天津高考(文)】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2√ 3,∠BAD=90∘.(1)求证:AD⊥BC;(2)求异面直线BC与MD所成角的余弦值;(3)求直线CD与平面ABD所成角的正弦值.四、【2018·上海高考】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A. 4B. 8C. 12D. 16【2018·上海高考】已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的余弦值.【2017年】一、【2017·北京高考(理)】如图,在四棱锥P−ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B−PD−A的大小;(3)求直线MC与平面BDP所成角的正弦值.【2017·北京高考(文)】某三棱锥的三视图如图所示,则该三棱锥的体积为()A. 60B. 30C. 20D. 10【2017·北京高考(文)】如图,在三棱锥P−ABC中,PA⊥AB,PA⊥BC,,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:;(2)求证:平面BDE⊥平面PAC;(3)当PA//平面BDE时,求三棱锥E−BCD的体积.二、【2017·浙江高考】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()+1A. π2+3B. π2+1C. 3π2+3D. 3π2【2017·浙江高考】如图,已知正四面体D−ABC(所有棱长均相等的三棱锥),P,Q,R分别为AB,BC,CA上的点,AP=PB,分别记二面角D−PR−Q,D−PQ−R,D−QR−P的平面角为α,β,γ,则()A. γ<α<βB. α<γ<βC. α<β<γD. β<γ<α【2017·浙江高考】如图,已知四棱锥P−ABCD,△PAD是以AD为斜边的等腰直角三角形,BC//AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE//平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.三、【2017·天津高考(理)】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【2017·天津高考(理)】如图,在三棱锥P−ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN//平面BDE;(Ⅱ)求二面角C−EM−N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为√7,求线段AH的长.7【2017·天津高考(文)】如图,在四棱锥P−ABCD中,AD⊥平面PDC,AD//BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.四、 【2017·上海高考】已知球的体积为36π,则该球主视图的面积等于______ .【2017·上海高考】如图,以长方体ABCD −A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标为(4,3,2),则AC 1⃗⃗⃗⃗⃗⃗⃗ 的坐标是【2017·上海高考】如图,直三棱柱ABC −A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5.(1)求三棱柱ABC −A 1B 1C 1的体积;(2)设M 是BC 中点,求直线A 1M 与平面ABC 所成角的正切值.。
专题10 立体几何-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(解析版)

连 ,在正方体 中,
M是 的中点,所以 为 中点,
又N是 的中点,所以 ,
平面 平面 ,
所以 平面 .
因为 不垂直 ,所以 不垂直
则 不垂直平面 ,所以选项B,D不正确;
在正方体 中, ,
平面 ,所以 ,
,所以 平面 ,
平面 ,所以 ,
且直线 是异面直线,
所以选项C错误,选项A正确.
故选:A.
本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力,属于基础题.
【2021·江苏高考】在正三棱柱 中, ,点P满足 ,其中 , ,则
A.当 时, 的周长为定值
B.当 时,三棱锥 的体积为定值
C.当 时,有且仅有一个点P,使得
而 面BCD, 面BCD, ,
面BCD, 面BCD,
, 是直角三角形,且 ,
设DF与面DBC所成角为 ,则 即为CH与面DBC的夹角,
且 ,
在 中, ,
,
.
【知识点】线面垂直的判定、直线与平面所成的角、面面垂直的性质、线面垂直的性质
【解析】本题主要考查空间直线互相垂直的判定和性质,以及直线与平面所成角的几何计算问题,考查了空间想象能力和思维能力,平面与空间互相转化是能力,几何计算能力,以及逻辑推理能力,本题属综合性较强的题.
D.当 时,有且仅有一个点P,使得 平面
【答案】BD
【知识点】圆柱、圆锥、圆台的侧面积、表面积和体积
【解析】解:对于A,当 时, ,即 ,所以 ,
故点P在线段 上,此时 的周长为 ,
当点P为 的中点时, 的周长为 ,
当点P在点 处时, 的周长为 ,
2013-2018年上海高考试题汇编-立体几何(带参考答案)

近五年上海高考试卷汇编——立体几何(2015理19)如图,在长方体1111ABCD A B C D -中,11,2,AA AB AD E F ===、分别是AB BC 、的中点,证明11A C F E 、、、四点共面,并求直线1CD 与平面11AC FE 所成的角的大小.答案:arcsin(2018春14)如图,在直三棱柱111AB A B C C -的棱所在的直线中,与直线1BC 异面的直线条数为( )(A )1(B )2 (C )3(D )4答案 C(2012理19)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥ 底面ABCD ,E是PC 的中点,已知2AB =,AD =2PA =,求:(1)三角形PCD 的面积.(2)异面直线BC 与AE 所成的角的大小.答案:(1)(2)4π(2012文19)如图,在三棱锥P ABC -中,PA ⊥ 底面ABC ,D 是PC 的中点,已知2BAC π∠=,2AB =,AC=2PA =,求:(1)三棱锥P ABC -的体积.(2)异面直线BC 与AD 所成的角的大小.(结果用反三角函数值表示)答案:(1)(2)3arccos 4(2013文10)已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则lr= .(2016理19)将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。
(1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小。
4π (2018秋17)已知圆锥的顶点为P ,底面圆心为O ,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.答案:(1)V =;(2) 关键点:方法一:建立空间直角坐标系(首选); 方法二;平移法(2017秋考17)如图,直三棱柱111C B A ABC -中,2,4,5,901===︒=∠BC AB BB ABC ; (1)求三棱柱111C B A ABC V -的体积;(2)若M 是棱AC 中点,求M B 1与平面ABC 所成角的大小;O MPBA答案:(1)20=V ;(2)5arctan;(2015理19)如图,在长方体1111ABCD A B C D -中,11,2,AA AB AD E F ===、分别是AB BC 、的中点,证明11A C F E 、、、四点共面,并求直线1CD 与平面11AC FE 所成的角的大小.答案:arcsin知识点5:垂直问题(2012理19)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥ 底面ABCD ,E是PC 的中点,已知2AB =,AD =2PA =,求:(1)三角形PCD 的面积.(2)异面直线BC 与AE 所成的角的大小.答案:(1)(2)4π(2013理19)如图,在长方体''''ABCD A B C D -中,2AB =,1AD =,'1AA =. 证明直线'BC 平行于平面'D AC ,并求直线'BC 到平面'D AC 的距离.证明:略(2013理19)如图,在长方体''''ABCD A B C D -中,2AB =,1AD =,'1AA =. 证明直线'BC 平行于平面'D AC ,并求直线'BC 到平面'D AC 的距离.答案:建立空间直角坐标系,可得的有关点的坐标为(1,0,1)A 、(1,2,1)B 、(0,2,1)C 、'(0,2,0)C 、'(0,0,0)D .设平面'D AC 的法向量为(,,)n u v w =,则'n D A ⊥,'n D C ⊥. 因为'(1,0,1)D A =,'(0,2,1)D C =,'0n D A ⋅=,'0n D C ⋅=, 所以020u w v w +=⎧⎨+=⎩,解得2u v =,2w v =-.取1v =,得平面'D AC 的一个法向量(2,1,2)n =-.因为'(1,0,1)BC =--,所以'0n BC ⋅=,所以'n BC ⊥.又'BC 不在平面'D AC 内,所以直线'BC 与平面'D AC 平行.由(1,0,0)CB =, 得点B 到平面'D AC 的距离223n CB d n⋅⨯===, 所以直线'BC到平面'D AC 的距离为23(2015理4)若正三棱柱的所有棱长均为a,且其体积为a = . 答案:4(2010理12)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于点O ,剪去AOB ,将剩余部分沿,OC OD 折叠,使,OA OB 重合,则以(),A B ,,C D O 为顶点的四面体的体积是 .(2014理19文19)底面边长为2的正三棱锥P ABC -,其表面展开图是123PP P ∆,如图,求123PP P ∆的各边长及此三棱锥的体积V .答案:在123P P P ∆中,13P A P A =,23P C PC =,所以AC 是中位线,故1224PP AC ==. 同理,234P P =,314P P =.所以123P P P ∆是等边三角形,各边长均为4.设Q 是ABC ∆的中心,则PQ ⊥平面ABC ,所以AQ =PQ ==从而,13ABC V S PQ ∆=⋅=(2010春10)各棱长为1的正四棱锥的体积V = . 答案:62 (2018秋15)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA 为底面矩形的一边,则这样的阳马的个数是( )A. 4B. 8C. 12D. 16答案:D 关键点:底面矩形是下图的四种情形,每种情形都有四种垂直于底面的侧棱,故个数为16,(2018春7)如图,在长方形1111B ABC A C D D -中,13,4,5AB BC AA ===,O 是11A C 的中点,则三棱锥11A AOB -的体积为__________.答案:5(2012文5)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为 . 答案:6π(2013文10)已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则lr= .(2009文8)若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是 . 答案:83π(2015理6)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为______. 答案:3π(2014理6文7)若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为 (结果用反三角函数值表示). 答案: 1arccos3(2012理8)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 .(2011春20)某甜品店制作一种蛋筒冰激凌,其上部分是半球形,下半部分呈圆锥形(如图),现把半径为10cm 的圆形蛋皮等分成5个扇形,用一个蛋皮围成圆锥的侧面(蛋皮的厚度忽略不计),求该蛋筒冰激凌的表面积和体积.(精确到0.01)答案:设圆锥的底面半径为r ,高为h .由题意,圆锥的侧面扇形的周长为121045ππ⋅⋅=()cm ,圆锥底面周长为2r π()cm ,则24r ππ=,2r =()cm .=()cm ,圆锥的侧面扇形的面积为11410202S ππ=⨯⨯=()2cm ,半球的面积为 2214282S ππ=⨯⨯=.该蛋筒冰激凌的表面积122887.96S S S π=+=≈()2cm ;圆锥的体积为21123Vπ=⨯⨯()3cm , 半球的体积为3214162233V ππ=⨯⨯=()3cm ,所以该蛋筒冰激凌的体积为)1216157.803V V V π=+=≈()3cm .因此该蛋筒冰激凌的表面积约为287.96cm , 体积约为357.80cm .(2018秋17)已知圆锥的顶点为P ,底面圆心为O ,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.答案:(1)V =;(2)(2017秋4)已知球的体积为36π,则该球主视图的面积等于___ 答案:9π(2009理8)已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S 满足的等量关系是 .O MPBA=(2013理13)在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω.过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π+.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 .答案: 2216ππ+(2017秋7)如图,以长方体1111D C B A ABCD -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为)2,3,4(,则1AC 的坐标为_____答案:()4,3,2-3,3,2的三角形,则该圆锥的侧面积为 . 答案:3π(2014文8)在长方体中割去两个小长方体后的几何体的三视图如右图,则切割掉的两个小45长方体的体积之和等于 答案:24(2009年高考文16)如图,已知三棱锥的底面是直角⊥,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 ( ) ()A ()B ()C ()D答案:B知识点16:截面问题(2017春15)过正方体中心的截面截正方体所得的截面中,不可能的图形是( )A 、三角形B 、长方形C 、对角线不相等的菱形D 、六边形 答案:A知识点17:球面距离(2010春21)已知地球半径约为6371千米. 上海的位置约为东经121°、北纬31°,大连的位置约为东经121°、北纬39°,里斯本的位置约为西经10°、北纬39°.(1)若飞机以平均速度720千米/小时飞行,则从上海到大连的最短飞行时间约为多少小时?(飞机飞行高度忽略不计,结果精确到0.1小时) (2)求大连与里斯本之间的球面距离.(结果精确到1千米) 答案:(1)1.2小时; (2)约为10009千米43434知识点18:和数列相关(2012理6)有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...nV V V,则12lim(...)nnV V V→∞+++=.答案:87知识点19:补形法(2011春13)有一种多面体的饰品,其表面由6个正方形和8个正三角形组成(如图),AB 与CD所成角的大小是.答案:3π提示:补充图形为正方体(2010春13)在如图所示的斜截圆柱中,已知圆柱底面的直径为40cm,母线长最短50cm,最长80cm,则斜截圆柱的侧面面积S=2cm.答案:2600πO大连上海北南极赤里斯本40c50c80c(2014春24)如图,在底面半径和高均为1的圆锥中,AB CD 、是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点. 已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点与圆锥顶点P 的距离为( )A 、1B 、2 C 、2 D 4答案:D(2012理14)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2BC =,若2AD c =,且2AB BD AC CD a +=+=,其中,a c 为常数,则四面体ABCD 的体积的最大值是 .答案:23题型:三棱锥的体积计算与椭圆试一试:已知在半径为2的球面上有A B C D 、、、四点,若2AB CD ==,则四面体ABCD 的体积的最大值为___________答案:3选题理由:本题为四面体中,已知对棱的长为,a b ,对棱的夹角为θ,对棱的距离为h ,体积为1sin 6V abh θ=的典型题 (2018春19)利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,OC AB ⊥于C ,3AB =米, 4.5OC =米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).图1 图2 图3答案:(1)14;(2)9.59 .。
十年高考分类上海高考数学试卷精校版含详解11立体几何部分

十年高考分类上海高考数学试卷精校版含详解11立体几何部分一、选择题(共11小题;共55分)1. 给定空间中的直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的 A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件2. 给定空间中的直线l及平面α,条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的 A. 充要条件B. 充分非必要条件C. 必要非充分条件D. 既非充分又非必要条件3. 如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 A. B.C. D.4. 若有平面α与β,且α∩β=l,α⊥β,P∈α,P∉l,则下列命题中的假命题为 A. 过点P且垂直于α的直线平行于βB. 过点P且垂直于l的平面垂直于βC. 过点P且垂直于β的直线在α内D. 过点P且垂直于l的直线在α内5. 若空间中有两条直线,则"这两条直线为异面直线"是"这两条直线没有公共点"的 A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既非充分又非必要条件6. 已知直线l,m,n及平面α,下列命题中的假命题是 A. 若l∥m,m∥n,则l∥nB. 若l⊥α,n∥α,则l⊥nC. 若l⊥m,m∥n,则l⊥nD. 若l∥α,n∥α,则l∥n7. 若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件8. 如图,在正方体ABCD−A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线中与直线EF相交的是 A. 直线AA1B. 直线A1B1C. 直线A1D1D. 直线B1C19. 一个封闭的立方体,它的6个表面各标出A、B、C、D、E这6个字母中的1个字母,现放成下面3个不同位置,所看见的表面上的字母已标明,则字母A、B、C对面的字母分别是 A. D、E、FB. F、D、EC. E、F、DD. E、D、F10. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 A. 48B. 18C. 24D. 3611. 在下列关于直线l、m与平面α、β的命题中,真命题是 A. 若l⊂β且α⊥β,则l⊥αB. 若l⊥β且α∥β,则l⊥αC. 若l⊥β且α⊥β,则l∥αD. 若α∩β=m且l∥m,则l∥α二、填空题(共24小题;共120分)12. 若正三棱柱的所有棱长均为a,且其体积为163,则a=.13. 若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为.14. 若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积为.15. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个"正交线面对".在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的"正交线面对"的个数是.16. 如图,在正四棱柱ABCD−A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan2,则该正四棱柱的高等于.317. 若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为.18. 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.19. 如图,若正四棱柱ABCD−A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是(结果用反三角函数表示).20. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.21. 一个高为2的圆柱,底面周长为2π.该圆柱的表面积为.22. 若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是.23. 若球O1、O2表面积之比S1S2=4,则它们的半径之比R1R2=.24. 如图,若正四棱柱ABCD−A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的正切值是.25. 在正四棱锥P−ABCD中,若侧面与底面所成二面角的大小为60∘,则异面直线PA与BC所成角的正切值等于.26. 下图表示一个正方体表面的一种展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有对.27. 若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为(结果用反三角函数值表示).28. 若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为(结果用反三角函数值表示).29. 已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A、B是下底面圆周上两个不同的点,BC是母线,如图.若直线OA与BC所成角的大小为π6,则lr=.30. 在xOy平面上,将两个半圆弧x−12+y2=1x≥1和x−32+y2=1x≥3、两条直线y=1和y=−1围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为Ω,过0,y∣y∣≤1作Ω的水平截面,所得截面面积为4π 1−y2+8π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为.31. 如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于点O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A B、C、D、O为顶点的四面体的体积是.32. 有两个相同的直三棱柱,高为2,底面三角形的三边长分别为3a,4a,5a a>0.用它们拼成一a个三棱柱或四棱柱,在所有可能的情况中,全面积最小的是一个四棱柱,则a的取值范围是.33. 如图,在底面边长为2的正三棱锥V−ABC中,E是BC的中点,若△VAE的面积是1,则侧4棱VA与底面所成角的大小为(结果用反三角函数值表示).34. 如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.35. 有两个相同的直三棱柱,高为2,底面三角形的三边长分别为3a,4a,5a a>0.用它们拼成a一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,则a的取值范围是.三、解答题(共22小题;共286分)36. 如图,正三棱锥O−ABC底面边长为2,高为1,求该三棱锥的体积及表面积.37. 如图,在棱长为2的正方体ABCD−A1B1C1D1中,E是BC1的中点.求直线DE与平面ABCD所成角的正切值.38. 如图,在正四棱锥P−ABCD中,PA=2,直线PA与平面ABCD所成的角为60∘,求正四棱锥P−ABCD的体积V.π,39. 将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为23 A1B1长为π,其中B1与C在平面AA1O1O的同侧.3(1)求三棱锥C−O1A1B1的体积.(2)求异面直线B1C与AA1所成角的大小.,A1B1 40. 将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为5π6,其中B1与C在平面AA1O1O的同侧.长为π3(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.41. 如图,圆锥的顶点为P,底面圆心为O,底面的一条直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点,已知PO=2,OA=1,求三棱锥P−AOC的体积,并求异面直线PA与OE 所成角的余弦值.42. 如图,在长方体ABCD−A1B1C1D1中,AA1=1,AB=AD=2,E,F分别是棱AB,BC的中点.证明A1,C1,F,E四点共面,并求直线CD1与平面A1C1FE所成角的正弦值.43. 底面边长为2的正三棱锥P−ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.44. 如图,在长方体ABCD−AʹBʹCʹDʹ中,AB=2,AD=1,AAʹ=1,证明直线BCʹ平行于平面DʹAC,并求直线BCʹ到平面DʹAC的距离.45. 如图,在三棱锥P−ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=π,AB=2,2 AC=23,PA=2.求:(1)三棱锥P−ABC的体积;(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).46. 如图,在四棱锥P−ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点.已知AB=2,AD=22,PA=2.求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.47. 已知ABCD−A1B1C1D1是底面边长为1的正四棱柱,高AA1=2,求:(1)异面直线BD与AB1所成角的余弦值;(2)四面体AB1D1C的体积.48. 已知ABCD−A1B1C1D1是底面边长为1的正四棱柱,O1是A1C1和B1D1的交点.(1)设AB1与底面A1B1C1D1所成的角的大小为α,二面角A−B1D1−A1的大小为β.求证:tanβ=2tanα;(2)若点C到平面AB1D1的距离为4,求正四棱柱ABCD−A1B1C1D1的高.349. 已知ABCD−A1B1C1D1是底面边长为1的正四棱柱,O1为A1C1与B1D1的交点.(1)设AB1与底面A1B1C1D1所成角的大小为α,二面角A−B1D1−A1的大小为β.求证:tanβ=2tanα;,求正四棱柱ABCD−A1B1C1D1的高.(2)若点C到平面AB1D1的距离为4350. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.骨架将圆柱底面8等分,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)在灯笼内,以矩形骨架的顶点为端点,安装一些霓虹灯.当灯笼底面半径为0.3米时,求图中两根直线型霓虹灯A1B3、A3B5所在异面直线所成角的的余弦值.51. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出用于灯笼的三视图(作图时,不需考虑骨架等因素).52. 在长方体ABCD−A1B1C1D1中,点E,F分别在BB1,DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥平面AEF;(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角),则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB=4,AD=3,AA1=5时,求平面AEF与平面D1B1BD所成的角的大小.(用反三角函数值表示)53. 用一块钢锭浇铸一个厚度均匀,且全面积为2平方米的正四棱锥形有盖容器(如图),设容器的高为ℎ米,盖子边长为a米.(1)求a关于ℎ的函数解析式;(2)设容器的容积为V立方米,则当ℎ为何值时,V最大?求出V的最大值.(求解本题时,不计容器的厚度)54. 如图,在直三棱柱ABC−A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1−A1C−C1的大小.55. 在四棱锥P−ABCD中,底面是边长为2的菱形,∠DAB=60∘,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60∘.(1)求四棱锥P−ABCD的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.56. 在直三棱柱ABC−A1B1C1中,∠ABC=90∘,AB=BC=1.(1)求异面直线B1C1与AC所成的角的大小;(2)若A1C与平面ABC所成角为45∘,求三棱锥A1−ABC的体积.57. 如图,P−ABC是底面边长为1的正三棱锥,D,E,F分别为侧棱PA,PB,PC上的点,截面DEF∥底面ABC,且棱台DEF−ABC与棱锥P−ABC的棱长和相等(棱长和是指多面体中所有棱的长度之和).(1)证明:P−ABC为正四面体;PA,求二面角D−BC−A的余弦值;(2)若PD=12(3)设棱台DEF−ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF−ABC有相同的棱长和? 若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.答案第一部分1. C2. C3. B4. D5. A6. D7. A 【解析】答案 A8. D 【解析】只有B1C1与EF在同一平面内,是相交的,选项A,B,C中直线与EF都是异面直线.9. C 10. D【解析】提示:问题可以等价转化为求正方体中过顶点的直线与过顶点的四边形所在平面垂直的对数共有多少个.11. B第二部分12. 413. 33π【解析】设圆锥的底面的圆的半径为r,高为ℎ,母线为l,则由题设πrl=2π,πr2=π,则r=1,l=2.于是ℎ=2−r2=4−1=3.该圆锥的体积V=13πr2ℎ=33π.14. 3π【解析】由主视图,得该圆锥的底面圆的半径为r=1,母线l=3,则该圆锥的侧面积是S=πrl= 3π.15. 36【解析】正方体中,一个面有四条棱与之垂直,所以六个面共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.16. 22【解析】BD=32,DD1=BD⋅23=22.17. 33π【解析】由圆锥的底面面积为π,可知圆锥的底面半径为1,由圆锥的侧面积为2π,可得圆锥的母线为2,则圆锥的高为3,所以V=13×3×π×12=33π.18. 33π【解析】设圆锥底面半径为r,母线长为l,高为ℎ,则πl=2πr,12πl2=2π,解得l=2,r=1,从而ℎ=.所以该圆锥的体积V=13πr2⋅ℎ=13π×12×3=33π.19. arctan520. 24【解析】由三视图可知,切割后的两个小长方体的长、宽、高分别为2、3、2,所以体积和为22×3×2=24.21. 6π22. 8π323. 224.25. 2【解析】过点P作PO⊥平面ABCD于O,取AD的中点H,连接OH,PH,如图:要求PA与BC所成的角,即求∠PAD,由题意知,∠PHO=60∘,设HO=a,则PH=2a,AH=12AD=OH=a,故tan∠PAD=PHAH=2.26. 3【解析】提示:原正方体中四条线段AB、CD、EF和GH的位置如图所示:27. arcsin1328. arccos1329.【解析】如图,取下底面中心,记为M,连接OM、AM,则BC∥OM,所以OA与BC所成的角就是∠MOA,即∠MOA=π6,tanπ6=rl.30. 2π2+16π【解析】一个半径为1,高为2π的圆柱平放,和一个高为2,底面面积8π的长方体放在一起构成一个组合体,根据祖暅原理,这个几何体与Ω的每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积值为π⋅12⋅2π+2⋅8π=2π2+16π.31. 823【解析】由于正方形的边长为4,且AC和BD相交于点O,那么AO=CO=DO=22,且∠AOD=∠DOC=∠COB=90∘,通过折叠,可得如下图形,而且AO、CO、DO两两垂直,那么对应的四面体的体积为V=13×12×22×22×22=823.32. 0<a<153【解析】①拼成一个三棱柱时,有三种情况:将上、下底面对接,其全面积为:S1=2×12×3a×4a+3a+4a+5a×4a=12a2+48;3a边可以合在一起时,S2=24a2+36;4a边合在一起时,S3=24a2+32.②拼成一个四棱柱,有三种情况:就是分别让边长为3a,4a,5a所在的侧面重合,其上、下底面积之和都是2×2×12×3a×4a=24a2,但侧面积分别为:24a+5a×2a =36,23a+5a×2a=32,23a+4a×2a=28,显然,三个四棱柱中全面积最小的值为:S4=2×2×12×3a×4a+23a+4a×2a=24a2+28.由题意,得24a2+28<12a2+48.解得0<a<153.33. arctan14【解析】设V在底面上的射影为O,则O∈AE,且∠VAE就是侧棱VA与底面所成的角.因为底面△ABC的边长为2,所以其BC边上的高AE=3.由S△VAE=12VO⋅AE=14,解得VO=36,而AO=23AE=233,所以tan∠VAE=VOAO=14.34. 23c a2−c2−1【解析】利用椭圆的定义及割补法求体积.由AB+BD=AC+CD=2a>AD=2c,可得点B与点C都在以A、D为焦点的椭球上运动.过BC作垂直于AD的平面EBC交AD于E点,则四面体ABCD的体积为V=13AD⋅12×2 BE2−1=2c3BE2−1,要求四面体ABCD体积的最大值,即求BE的最大值.当E与AD的中点O重合,即B为椭圆短轴的端点时,BE最大,且BE=2−c2故四面体ABCD的体积的最大值为2c3a2−c2−1.35. 0,153【解析】两个相同的直三棱柱并排放拼成一个三棱柱或四棱柱,有三种情况:四棱柱有三种,边长为3a的边重合在一起,构成的四棱柱的表面积为24a2+36,边长为4a的边重合在一起,构成的四棱柱的表面积为24a2+32,边长为5a的边重合在一起,表面积为24a2+28;拼成三棱柱有一种,就是两个三棱柱的上下底面对接,此时新的三棱柱的表面积为12a2+48;若最小的是一个四棱柱,则要求24a2+28<12a2+48,解得0<a<153.第三部分36. 三棱锥O−ABC的体积是V O−ABC=1⋅S△ABC⋅1=3.设O在面ABC中的射影为Oʹ,BC的中点D,则OOʹ=1,OʹD=3 ,在Rt△OOʹD中,有OD=OOʹ2+DOʹ2=12+3=3,三棱锥O−ABC的表面积为S O−ABC=3S△OBC+S△ABC=3⋅BC⋅OD+3=33,所以,三棱锥O−ABC的体积为33,表面积为3.37. 如图:过E作EF⊥BC,交BC于F,连接DF,则EF⊥平面ABCD,所以∠EDF是直线DE与平面ABCD所成的角.由EF是△BCC1的中位线,得EF=12CC1=1.由F为BC的中点,得CF=1CB=1,在Rt△DCF中,DF=5,因为EF⊥DF,所以tan∠EDF=EFDF=55,故直线DE与平面ABCD所成角的正切值是55.38. 如图,作PO⊥平面ABCD,垂足为O,连接AO,O是正方形ABCD的中心,所以∠PAO是直线PA与平面ABCD所成的角.由题∠PAO=60∘,PA=2.所以PO=3,AO=1,AB=2,因此V=13PO⋅S ABCD=13×3×2=233.39. (1)连O1B1,则A1B1=∠A1O1B1=π3,所以△A1O1B1为正三角形,所以S△A1O1B1=34,所以V C−O1A1B1=13OO1⋅S△A1O1B1=312.(2)设点B1在下底面圆周的射影为B,连BB1,则BB1∥AA1,所以∠BB1C为直线B1C与AA1所成角(或补角).BB1=AA1,连BC,BO,OC,AB=A1B1=π3,AC=2π3,所以BC=π3,所以∠BOC=π3,所以△BOC为正三角形,所以BC=BO=1,所以tan∠BB1C=BCBB1=1,所以∠BB1C=45∘,所以直线B1C与AA1所成角大小为45∘.40. (1)由题意可知,圆柱的母线长l=1,底面半径r=1.圆柱的体积V=πr2l=π×12×1=π,圆柱的侧面积S=2πrl=2π×1×1=2π.(2)设过点B1的母线与下底面交于点B,则O1B1∥OB,所以∠COB或其补角为O1B1与OC所成的角.由A1B1长为π3,可知∠AOB=∠A1O1B1=π3,由AC长为5π6,可知∠AOC=5π6,∠COB=∠AOC−∠AOB=π2,所以异面直线O1B1与OC所成的角的大小为π2.41. V P−AOC=13×12×2=13.因为AC∥OE,所以∠PAC为异面直线PA与OE所成的角或其补角.由PO=2,OA=OC=1,得PA=PC=AC=在△PAC中,由余弦定理得cos∠PAC=1010,故异面直线PA与OE所成角的余弦值为1010.42. 如图,以D为原点建立空间直角坐标系,可得有关点的坐标为A12,0,1,C10,2,1,E2,1,0,F1,2,0,C0,2,0,D10,0,1.因为A1C1=−2,2,0,EF=−1,1,0,所以A1C1∥EF,因此直线A1C1与直线EF共面,即A1,C1,F,E四点共面.设平面A1C1FE的法向量为n=u,v,w,则n⊥EF,n⊥FC1,又EF=−1,1,0,FC1=−1,0,1,故−u+v=0,−u+w=0,解得u=v=w.取u=1,得平面A1C1FE的一个法向量n=1,1,1.又CD1=0,−2,1,故CD1⋅n ∣∣CD1∣∣∣n∣=−1515.因此直线CD1与平面A1C1FE所成角的正弦值为1515.43. 在△P1P2P3中,P1A=P3A , P2C=P3C,所以AC是△P1P2P3的中位线,故P1P2=2AC=4.同理P2P3=P3P1=4,所以△P1P2P3是等边三角形,且边长为4.设Q是△ABC的中心,则PQ⊥平面ABC,所以AQ=233,PQ= AP22=236.因此V=1S△ABC⋅PQ=22.44. 因为ABCD−AʹBʹCʹDʹ为长方体,故AB∥CʹDʹ,AB=CʹDʹ,故ABCʹDʹ为平行四边形,故BCʹ∥ADʹ,显然直线BCʹ不在平面DʹAC上,于是直线BCʹ平行于平面DʹAC;直线BCʹ到平面DʹAC的距离即为点B到平面DʹAC的距离,设为ℎ.考虑三棱锥ABCDʹ的体积,以ABC为底面,可得V=1×1×1×2×1=1.而△ADʹC中,AC=DʹC=,ADʹ=,故S△ADʹC=3 2 .所以,V=1×3×ℎ=1⇒ℎ=2,即直线BCʹ到平面DʹAC的距离为23.45. (1)S△ABC=12AB⋅AC=12×2×23=23,三棱锥P−ABC的体积为V=1S△ABC×PA=1×23×2=43.(2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.在△ADE中,DE=2,AE=,AD=2,所以cos∠ADE=22+22−22×2×2=34,所以∠ADE=arccos 3 .因此,异面直线BC与AD所成的角的大小是arccos34.46. (1)因为PA⊥底面ABCD,CD⊂平面ABCD,所以PA⊥CD.又AD⊥CD,PA∩AD=A,所以CD⊥平面PAD,从而CD⊥PD.因为在直角三角形PCD中,PD=22+222=23,CD=2,所以三角形PCD的面积为1×2×23=2 3.(2)解法一:如图所示,建立空间直角坐标系,则B2,0,0,C 2,22,0,E 1,2,1,AE=1,2,1,BC=0,22,0.设AE与BC的夹角为θ,则cosθ=AE⋅BC ∣∣AE∣∣∣∣BC∣∣=42×22=22,所以θ=π4 ,由此知,异面直线BC与AE所成的角的大小是π4.解法二:如图所示,取PB的中点F,连接EF,AF,则EF∥BC,从而∠AEF(或其补角)是异面直线BC与AE所成的角.在△AEF中,由EF=2,AF=2,AE=2,知△AEF是等腰直角三角形,所以∠AEF=π4,因此,异面直线BC与AE所成的角的大小是π4.47. (1)连接BD,AB1,B1D1,AD1,因为BD∥B1D1,AB1=AD1,所以异面直线BD与AB1所成角为∠AB1D1,记∠AB1D1=θ,AB12=AD12=22+12=5,B1D12=2,所以在△AB1D1中,由余弦定理cosθ=AB12+B1D12−AD122AB1×B1D1=1010.所以异面直线BD与AB1所成角的余弦值为1010.(2)连接AC,CB1,CD1,则所求四面体的体积V=V ABCD−A1B1C1D1−4×V C−B1C1D1=2−4×1 3=2 .48. (1)因为AA1⊥底面A1B1C1D1,所以AB1与底面A1B1C1D1所成的角为∠AB1A1,即∠AB1A1=α.因为△ABB1≌△ADD1,所以AB1=AD1,又O1为B1D1中点,所以AO1⊥B1D1,又A1O1⊥B1D1,则∠AO1A1是二面角A−B1D1−A1的平面角,即∠AO1A1=β.在Rt△AA1B1中,tanα=AA1 A1B1.在Rt△AA1O1中,tanβ=AA1 11.又A1B1=2A1O1,所以tanβ=α.(2)建立如图空间直角坐标系.设正四棱柱的高为 ℎ,底面边长为 1,则 A 0,0,ℎ ,B 1 1,0,0 ,D 1 0,1,0 ,C 1,1,ℎ ,从而AB 1 = 1,0,−ℎ ,AD 1 = 0,1,−ℎ ,AC = 1,1,0 .设平面 AB 1D 1 的一个法向量为 n = x ,y ,z ,则n ⋅AB 1 =0,n ⋅AD 1 =0,即x −ℎz =0,y −ℎz =0,取 z =1,得 n = ℎ,ℎ,1 .则点 C 到平面 AB 1D 1 的距离为d =∣∣n ⋅AC ∣∣= ℎ2+ℎ2+1=4.解得 ℎ=2.49. (1) 连接 AO 1,AA 1⊥ 底面 A 1B 1C 1D 1 于 A 1.AB 1 与底面 A 1B 1C 1D 1 所成的角为 ∠AB 1A 1,即 ∠AB 1A 1=α. 因为 AB 1=AD 1,O 1 为 B 1D 1 中点,所以 AO 1⊥B 1D 1,又 A 1O 1⊥B 1D 1,所以 ∠AO 1A 1 是二面角 A −B 1D 1−A 1 的平面角,即 ∠AO 1A 1=β. 设 AA 1=ℎ,所以tan α=AA 111=ℎ,(2) 建立如图空间直角坐标系,有 A 0,0,ℎ ,B 1 1,0,0 ,D 1 0,1,0 ,C 1,1,ℎ ,AB 1 = 1,0,−ℎ ,AD 1 = 0,1,−ℎ ,AC= 1,1,0 . 设平面 AB 1D 1 的一个法向量为 n = x ,y ,z ,则n ⊥AB 1 ,n ⊥AD 1,即n ⋅AB 1 =0,n ⋅AD 1 =0,取 z =1 得n = ℎ,ℎ,1 .所以点 C 到平面 AB 1D 1 的距离为d =∣∣n ⋅AC ∣∣= ℎ2+ℎ2+1=4, 则 ℎ=2.50. (1) 设圆柱形灯笼的母线长为 l ,则l=1.2−2r 0<r <0.6 ,S=−3π r −0.4 2+0.48π,所以当 r =0.4 时,S 取得最大值约为 1.51 平方米. (2) 当 r =0.3 时,l =0.6,建立空间直角坐标系,可得A1B3=0.3,0.3,0.6,A3B5=−0.3,0.3,0.6,设向量A1B3与A3B5的夹角为θ,则cosθ=A1B3⋅A3B5∣A1B3∣⋅∣A3B5∣=2,所以A1B3、A3B5所在异面直线所成角的余弦值为23.51. (1)圆柱体的高为1.2−2r,故S=πr2+2πr1.2−2r=π−3r2+2.4r0<r<0.6.当r=0.4时,S max=1.5080≈1.51m2.(2)当r=0.3时,l=0.6,作三视图如图.52. (1)因为CB⊥平面A1B,所以A1C在平面A1B上的射影为A1B.由A1B⊥AE,AE⊂平面A1B,得A1C⊥AE,同理可证A1C⊥AF,因为AF∩AE=A,AF⊂平面AEF,AE⊂平面AEF,所以A1C⊥平面AEF.(2)过A作BD的垂线交CD于G,因为D1D⊥AG,所以AG⊥平面D1B1BD.设AG与A1C所成的角为α,则α即为平面AEF与平面D1B1BD所成的角.由已知,计算得DG=94.如图,建立直角坐标系,则得点 A 0,0,0 ,G 94,3,0 ,A 1 0,0,5 ,C 4,3,0 ,AG = 94,3,0 ,A 1C = 4,3,−5 ,因为 AG 与 A 1C 所成的角为 α.所以 cos α=∣∣AG ⋅A 1C ∣∣∣∣AG ∣∣⋅∣∣A 1C ∣∣=12 225,α=arccos12 225.由定理知,平面 AEF 与平面 D 1B 1BD 所成角的大小为 arccos 12 225.53. (1) 设 ℎʹ 为正四棱锥的斜高. 由已知a 2+4⋅1ℎʹa =2,ℎ2+1a 2=ℎʹ2,解得 a =ℎ2+1ℎ>0 .(2) V =13ℎa 2=ℎ3 ℎ2+1ℎ>0 ,易得 V =13 ℎ+1ℎ,因为 ℎ+1ℎ≥2 ℎ⋅1ℎ=2,所以 V ≤16. 等号当且仅当 ℎ=1ℎ,即 ℎ=1 时取得.故当 ℎ=1 米时,V 有最大值,V 的最大值为 16立方米. 54. 如图,建立空间直角坐标系.则 A 2,0,0 ,C 0,2,0 ,A 1 2,0,2 ,B 1 0,0,2 ,C 1 0,2,2 . 设 AC 的中点为 M ,连接 BM .∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥ 平面 A 1C 1C ,即 BM = 1,1,0 是平面 A 1C 1C 的一个法向量. 设平面 A 1B 1C 的一个法向量是 n = x ,y ,z .因为A 1C = −2,2,−2 ,A 1B 1 = −2,0,0 ,所以n ⋅A 1B 1 =−2x =0,n ⋅A 1C =−2x +2y −2z =0,令 z =1,解得x =0,y =1.所以n = 0,1,1 .设法向量 n 与 BM 的夹角为 φ,二面角 B 1−A 1C −C 1 的大小为 θ,显然 θ 为锐角. 因为cos θ=∣cos φ∣=∣∣n ⋅BM ∣∣∣n ∣⋅∣∣BM ∣∣=12,解得θ=π.所以,二面角 B 1−A 1C −C 1 的大小为 π3.55. (1) 在四棱锥 P −ABCD 中,因为 PO ⊥ 平面 ABCD , ∠PBO 是 PB 与平面 ABCD 所成的角,∠PBO =60∘. 在 Rt △AOB 中 BO =AB sin30∘=1,由 PO ⊥BO , 于是,PO =BO tan60∘= 3,而底面菱形的面积为 2 3. 故四棱锥 P −ABCD 的体积 V =13×2 3× 3=2.(2) 解法一:以 O 为坐标原点,射线 OB 、 OC 、 OP 分别为 x 轴、 y 轴、 z 轴的正半轴建立空间直角坐标系.在 Rt △AOB 中 OA = A 、 B 、 D 、 P 的坐标分别是 A 0,− 0 、 B 1,0,0 、 D −1,0,0 、 P 0,0, 3 . E 是 PB 的中点,则 E 12,0,32,于是 DE = 32,0,32,AP = 0, 3, 3 .设 DE与 AP 的夹角为 θ,有 cos θ=324+4⋅ 3+3=24. 所以,异面直线 DE 与 PA 所成角的余弦值为 24. 解法二:取 AB 的中点 F ,连接 EF 、 DF .由E是PB的中点,得EF∥PA,∴∠FED是异面直线DE与PA所成角(或它的补角).在Rt△AOB中AO=AB cos30∘=3=OP,于是,在等腰Rt△POA中,PA=EF=62.在正△ABD和正△PBD中,DE=DF=3,所以cos∠FED=12EFDE=643=24,故异面直线DE与PA所成角的余弦值为24.56. (1)∵BC∥B1C1,∴∠ACB为异面直线B1C1与AC所成角(或它的补角),∵∠ABC=90∘,AB=BC=1,∴∠ACB=45∘,∴异面直线B1C1与AC所成角为45∘.(2)∵AA1⊥平面ABC,∴∠ACA1是A1C与平面ABC所成的角,∠A1CA=45∘,∵∠ABC=90∘,AB=BC=1,AC=2,∴AA1=2,∴三棱锥A1−ABC的体积V=13S△ABC×AA1=26.57. (1)∵棱台DEF−ABC与棱锥P−ABC的棱长和相等,∴DE+EF+FD=PD+PE+PF.又∵截面DEF∥底面ABC,∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60∘,∴P−ABC是正四面体.(2)取BC的中点M,连接PM,DM,AM.∵BC⊥PM,BC⊥AM,∴BC⊥平面PAM,BC⊥DM,则∠DMA为二面角D−BC−A的平面角.由(1)知,P−ABC的各棱长均为1,∴PM=AM=32,由D是PA的中点,得sin∠DMA=ADAM =33,∴二面角D−BC−A的余弦值为63.(3)存在满足条件的直平行六面体.棱台DEF−ABC的棱长和为定值6,体积为V.设直平行六面体的棱长均为12,底面相邻两边夹角为α,则该六面体棱长和为6,体积为18sinα=V.∵正四面体P−ABC的体积是212,故构造棱长均为12,底面相邻两边夹角的正弦值为8V的直平行六面体即满足要求.。
近五年(2017-2021)高考数学真题分类汇编11 立体几何

近五年(2017-2021)高考数学真题分类汇编十一、立体几何一、多选题1.(2021·全国高考真题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P二、单选题2.(2021·浙江高考真题)如图已知正方体1111ABCD A BC D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDDB C .直线1A D 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDDB 3.(2021·浙江高考真题)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .2D .4.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A .12BC .4D 5.(2021·全国高考真题(文))在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A .B .C .D .6.(2021·全国高考真题(理))在正方体1111ABCD A BC D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π67.(2021·全国高考真题)圆锥的母线长为( )A .2B .C .4D .8.(2020·天津高考真题)若棱长为面积为( )A .12πB .24πC .36πD .144π 9.(2020·北京高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .6B .6+C .12D .12+10.(2020·浙江高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .611.(2020·海南高考真题)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°12.(2020·全国高考真题(文))下图为某几何体的三视图,则该几何体的表面积是( )A .B .C .D .13.(2020·全国高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 14.(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .14B .12C .14D .1215.(2020·全国高考真题(理))已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .216.(2020·全国高考真题(理))如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 17.(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .32418.(2019·全国高考真题(理))如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线19.(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .3220.(2019·浙江高考真题)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<21.(2019·全国高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 22.(2019·全国高考真题(文))设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面23.(2019·上海高考真题)已知平面αβγ、、两两垂直,直线a b c 、、满足:,,a b c αβγ⊆⊆⊆,则直线a b c 、、不可能满足以下哪种关系A .两两垂直B .两两平行C .两两相交D .两两异面 24.(2018·浙江高考真题)已知直线,m n 和平面α,n ⊂α,则“//m n ”是“//m α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件25.(2018·上海高考真题)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .1626.(2018·浙江高考真题)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤ 27.(2018·全国高考真题(文))在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为A .8B .C .D .28.(2018·北京高考真题(理))某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1 B.2C.3 D.429.(2018·全国高考真题(文))某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.B.C.3D.2,,,是同一个半径为4的球的球面上四点,30.(2018·全国高考真题(理))设A B C D体积的最大值为ABC为等边三角形且其面积为D ABCA.B.C.D.31.(2018·全国高考真题(理))中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .32.(2018·浙江高考真题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .8 33.(2018·全国高考真题(文))在正方体1111ABCD A BC D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2BCD .2 34.(2018·全国高考真题(文))已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π35.(2018·全国高考真题(理))在长方体1111ABCD A BC D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为A .15BCD .2 36.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A B C D 37.(2017·全国高考真题(文))如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面 MNQ 不平行的是( )A .B .C .D .未命名未命名三、解答题38.(2021·全国高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.39.(2021·全国高考真题(文))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.40.(2021·浙江高考真题)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.41.(2021·全国高考真题(文))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.42.(2021·全国高考真题(理))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 43.(2021·全国高考真题(理))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.44.(2020·海南高考真题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB PB 与平面QCD 所成角的正弦值.45.(2020·天津高考真题)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.46.(2020·北京高考真题)如图,在正方体1111ABCD A BC D -中, E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.47.(2020·浙江高考真题)如图,三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.48.(2020·海南高考真题)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.49.(2020·江苏高考真题)在三棱锥A—BCD中,已知CB=CD BD=2,O为BD 的中点,AO⊥平面BCD,AO=2,E为AC的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.50.(2020·江苏高考真题)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F 分别是AC,B1C的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.51.(2020·全国高考真题(理))如图,在长方体1111ABCD A BC D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A--的正弦值. 52.(2020·全国高考真题(文))如图,在长方体1111ABCD A BC D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.53.(2020·全国高考真题(文))如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC 是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面P AB⊥平面P AC;(2)设DO,求三棱锥P−ABC的体积. 54.(2020·全国高考真题(理))如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为=.ABC是底面的内接正三角形,P为DO上一点,PO=.底面直径,AE AD(1)证明:PA⊥平面PBC;--的余弦值.(2)求二面角B PC E55.(2020·全国高考真题(文))如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π3,求四棱锥B–EB1C1F的体积.56.(2020·全国高考真题(理))如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.57.(2019·江苏高考真题)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC 的中点,AB=BC.求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .58.(2019·天津高考真题(理))如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 59.(2019·全国高考真题(理))图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B−CG−A 的大小.60.(2019·全国高考真题(文))如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.61.(2019·全国高考真题(理))如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.62.(2019·上海高考真题)如图,在正三棱锥P ABC -中,2,PA PB PC AB BC AC ======(1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角;(2)求P ABC -的体积.63.(2018·上海高考真题)已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.64.(2018·江苏高考真题)在平行六面体1111ABCD A BC D -中,1AA AB =,111AB B C ⊥. 求证:(1)11//AB A B C 平面;(2)111ABB A A BC ⊥平面平面.65.(2018·江苏高考真题)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.66.(2018·全国高考真题(文))如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.67.(2018·北京高考真题(理))如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11AC ,1BB 的中点,AB=BC AC =1AA =2.(1)求证:AC ⊥平面BEF ;(2)求二面角B−CD −C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.68.(2018·北京高考真题(文))如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .69.(2018·全国高考真题(理))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.70.(2018·全国高考真题(理))如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.71.(2018·浙江高考真题)如图,已知多面体ABC-A 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.72.(2018·全国高考真题(文))如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.73.(2018·全国高考真题(文))如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.74.(2017·山东高考真题(文))由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:1AO ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.四、填空题75.(2021·全国高考真题(理))以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).76.(2021·全国高考真题(文))已知一个圆锥的底面半径为6,其体积为30 则该圆锥的侧面积为________.77.(2020·海南高考真题)已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________78.(2020·海南高考真题)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以D BCC1B1的交线长为________.179.(2020·江苏高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是____cm.80.(2020·全国高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.81.(2020·全国高考真题(理))设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝82.(2019·江苏高考真题)如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.83.(2019·北京高考真题(理))某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.84.(2019·北京高考真题(理))已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.85.(2019·全国高考真题(理))学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A BC D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB=BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .86.(2019·天津高考真题(文)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.87.(2019·全国高考真题(文))已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________. 88.(2018·江苏高考真题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.89.(2018·全国高考真题(文))已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30,若SAB 的面积为8,则该圆锥的体积为__________.90.(2018·全国高考真题(理))已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB 的面积为面积为__________.91.(2018·天津高考真题(理))已知正方体1111ABCD A BC D -的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M EFGH 的体积为__________.五、双空题92.(2019·全国高考真题(文))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.近五年(2017-2021)高考数学真题分类汇编十一、立体几何(答案解析)1.BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB BC λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1A ⎫⎪⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫ ⎪⎝⎭,则11A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫=- ⎪ ⎪⎝⎭,11,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确. 故选:BD .【小结】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.2.A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A BC D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A BC D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【小结】关键点小结:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系. 3.A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A BC D -,其高为1,底面为等腰梯形ABCD ,1=,故111113122ABCD A B C D V -=⨯=, 故选:A.4.A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=则ABC ,又球的半径为1, 设O 到平面ABC 的距离为d ,则2d ==所以11111332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=. 故选:A.【小结】关键小结:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.D【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.【解析】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D6.D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D7.B【分析】 设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=l =故选:B.8.C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【小结】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.9.D【分析】首先确定几何体的结构特征,然后求解其表面积即可.【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【小结】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.10.A【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为: 11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A【小结】本小题主要考查根据三视图计算几何体的体积,属于基础题.11.B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B【小结】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.12.C【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C.【小结】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.13.A【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【小结】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 14.C【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.。
(完整版)历年上海高考题(立体几何)

17.(2017-21-17)如图,直三棱柱ABC-A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. (1)求三棱柱ABC-A 1B 1C 1的体积;(2)设M 是BC 中点,求直线A 1M 与平面ABC 所成角的大小.17.【解析】(1)∵直三棱柱ABC-A 1B 1C 1的底面为直角三角形, 两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5.∴三棱柱ABC ﹣A 1B 1C 1的体积V=S △ABC ·AA 1=12AB ·AC ·AA 1=12×4×2×5=20.(2)连接AM.∵直三棱柱ABC-A 1B 1C 1, ∴AA 1⊥底面ABC.∴∠AMA 1是直线A 1M 与平面ABC 所成角. ∵△ABC 是直角三角形,两直角边AB 和AC 的长分别为4和2,点M 是BC 的中点,∴AM=12BC=12×42+22= 5.由AA 1⊥底面ABC ,可得AA 1⊥AM,∴tan ∠A 1MA=AA 1AM =55= 5.∴直线A 1M 与平面ABC 所成角的大小为arctan 5.19.(2016•23-19)将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC 长为π,A 1B 1长为,其中B 1与C 在平面AA 1O 1O 的同侧.(1)求三棱锥C ﹣O 1A 1B 1的体积;(2)求异面直线B 1C 与AA 1所成的角的大小.【考点】异面直线及其所成的角.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】(1)连结O1B1,推导出△O1A1B1为正三角形,从而=,由此能求出三棱锥C﹣O1A1B1的体积.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∠BB1C为直线B1C与AA1所成角(或补角),由此能求出直线B1C与AA1所成角大小.【解答】解:(1)连结O1B1,则∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴=,==.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∴∠BB1C为直线B1C与AA1所成角(或补角),BB1=AA1=1,连结BC、BO、OC,∠AOB=∠A1O1B1=,,∴∠BOC=,∴△BOC为正三角形,∴BC=BO=1,∴tan∠BB1C=45°,∴直线B1C与AA1所成角大小为45°.【点评】本题考查三棱锥的体积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.19、(2015.上海)如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1近五年上海高考汇编——立体几何一、填空题1.(2009年高考5)如图,若正四棱柱1111-ABCD A B C D 的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是_____ ___.(结果用反三角函数值表示)答案:arctan 52.(2009年高考理科8)已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S 满足的等量关系是_____ ___. 答案:12323S S S +=3.(2009年高考文科6)若球12,O O 的面积之比124S S =,则它们的半径之比12RR =___ ____. 答案:24.(2009年高考文科8)若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是____ ____. 答案:83π5.(2010年高考理科12)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于点O ,剪去AOB V ,将剩余部分沿,OC OD 折叠,使,OA OB 重合,则以(),A B ,,C D O 为顶点的四面体的体积是_____ ___.答案:826.(2010年高考文科6)已知四棱锥P ABCD -的底面是边长为6的正方体,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱锥的体积是_____ ___.2答案:967.(2011年高考理科7)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为_____ __. 答案:33π 8.(2011年高考文科7)若一个圆锥的主视图是边长为3,3,2的三角形,则该圆锥的侧面积为_____ ____. 答案:3π9.(2012年高考理科6)有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++=_____ ____.答案:8710.(2012年高考理科8)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为_____ ____. 答案:33π 11.(2012年高考理科14)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2BC =,若2AD c =,且2AB BD AC CD a +=+=,其中,a c 为常数,则四面体ABCD 的体积的最大值是_____ ____.答案:22213c a c -- 12.(2012年高考文科5)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为_____ ____. 答案:6π13.(2013年高考理科13)在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω.过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为_____ ____.3答案:2216ππ+14.(2013年高考文科10)已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则l r =_____ ____.3二、选择题1.(2009年高考文科16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 ( )Oxyz443(D)(C)(B)(A)54433444答案:B三、解答题1.(2009年高考理科19)如图,在直三棱柱ABC A B C '''-中,2AA BC AB '===,AB BC ⊥,求二面角B A C C '''--的大小4答案:如图,建立空间直角坐标系则 A ()2,0,0,C ()0,2,0,A 1()2,0,2,B 1()0,0,2,C 1()0,2,2, 设AC 的中点为M ,Q BM ⊥AC ,BM ⊥CC 1,∴ BM ⊥平面AC 1C ,即BM u u u u r=()1,1,0是平面AC 1C 的一个法向量。
设平面A 1B 1C 的一个法向量是n r =(),,x y z ,1AC u u u r =()2,2,2--,11A B u u u u r =()2,0,0-,∴n r ⋅11A B u u u u r=2x -=0,∴n r ⋅1AC u u u r =2220x y z -+-=,1z =, 解得0,1x y ==。
∴n r =()0,1,1,设法向量n r 与BM u u u u r的夹角为ϕ,二面角111B AC C --θθ的大小为,显然为锐角1111cos cos .23.3n BM n BM B AC C πθθπ⋅=ϕ==⋅∴--u u r u u u u r Q r u u u u r ,解的=二面角的大小为2.(2010年高考理科21)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.骨架将圆柱底面8等分.再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(精确到0.01平方米);(2)在灯笼内,以矩形骨架的顶点为端点,安装一些霓虹灯.当灯笼底面半径为0.3米时,求图中两根直线型霓虹灯1335,A B A B 所在异面直线所成角的大小(结果用反三角函数值表示).答案:(1) 设圆柱形灯笼的母线长为l ,则l =1.2-2r (0<r <0.6),S =-3π(r -0.4)2+0.48π,A 1 A 2A 3 A 4A 5A 6A 7A 8B 1B 2B 3B 4B 5B 6 B 7B 85所以当r=0.4时,S 取得最大值约为1.51平方米;(2) 当r =0.3时,l =0.6,建立空间直角坐标系,可得13(0.3,0.3,0.6)A B =-u u u u r ,35(0.3,0.3,0.6)A B =--u u u u u r,设向量13A B u u u u r 与35A B u u u u u r 的夹角为θ,则133513352cos 3||||A B A B A B A B θ⋅==⋅u u u u r u u u u u ru u u ur u u u u u r , 所以A 1B 3、A 3B 5所在异面直线所成角的大小为2arccos 3.3.(2010年高考文科20)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1) 当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米);(2) 若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).答案:(1) 设圆柱形灯笼的母线长为l ,则l =1.2-2r (0<r <0.6),S =-3π(r -0.4)2+0.48π,所以当r =0.4时,S 取得最大值约为1.51平方米; (2) 当r =0.3时,l =0.6,作三视图略.4.(2011年高考理科21)已知1111ABCD A B C D -是底面边长为1的正四棱柱,1O 为11A C 与11B D 的交点. (1)设1AB 与底面1111A B C D 所成角的大小为α,二面角111A B D A --的大小为β求证:tan 2tan βα=;(2)若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A B C D -的高6答案:解:设正四棱柱的高为h⑴ 连1AO ,1AA ⊥底面1111A B C D 于1A ,∴ 1AB 与底面1111A B C D 所成的角为11AB A ∠,即11AB A α∠= ∵ 11AB AD =,1O 为11B D 中点,∴111AO B D ⊥,又1111A O B D ⊥, ∴ 11AO A ∠是二面角111A B D A --的平面角,即11AO A β∠= ∴ 111tan AA h A B α==,111tan 22AA h AO βα===. ⑵ 建立如图空间直角坐标系,有11(0,0,),(1,0,0),(0,1,0),(1,1,)A h B D C hz yxA 1B 1C 1D 1A BCDO 111(1,0,),(0,1,),(1,1,0)AB h AD h AC =-=-=u u u u r u u u u r u u u r,设平面11AB D 的一个法向量为(,,)n x y z =r ,∵ 11110n AB n AB n AD n AD ⎧⎧⊥⋅=⎪⎪⇔⎨⎨⊥⋅=⎪⎪⎩⎩r u u u r r u u u rr u u u u r r u u u ur ,取1z =得(,,1)n h h =r ∴ 点C 到平面11AB D 的距离为22||43||1n AC d n h h ⋅===++r u u u r r ,则2h =5.(2011年高考文科20)已知1111ABCD A B C D -是底面边长为1的正四棱柱,高12AA = (1)求异面直线BD 与1AB 所成角的大小(结果用反三角函数值表示); (2)求四面体11AB D C 的体积7答案:⑴ 连1111,,,BD AB B D AD ,∵ 1111//,BD B D AB AD =,∴ 异面直线BD 与1AB 所成角为11AB D ∠,记11AB D θ∠=,222111111110cos 210AB B D AD AB B D θ+-==⨯ ∴ 异面直线BD 与1AB 所成角为10arccos10. ⑵ 连11,,AC CB CD ,则所求四面体的体积11111111242433ABCD A B C D C B C D V V V --=-⨯=-⨯=6.(2012年高考理科19)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,已知2AB =,22AD =2PA =,求: (1)三角形PCD 的面积(2)异面直线BC 与AE 所成的角的大小.答案:(1)因为P A ⊥底面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,所以CD ⊥平面P AD , 从而CD ⊥PD . 因为PD=32)22(222=+,CD =2,DCBA D 1C 1B A 18所以三角形PCD 的面积为3232221=⨯⨯. (2)[解法一]如图所示,建立空间直角坐标系,则B (2, 0, 0),C (2, 22,0),E (1,2, 1), )1,2,1(=AE ,)0,22,0(=BC .设AE 与BC 的夹角为θ,则222224||||cos ===⨯⋅BC AE BCAE θ,θ=4π.由此可知,异面直线BC 与AE 所成的角的大小是4π [解法二]取PB 中点F ,连接EF 、AF ,则EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与AE 所成的角在AEF ∆中,由EF =2、AF =2、AE =2,知AEF ∆是等腰直角三角形,所以∠AEF =4π. 因此异面直线BC 与AE 所成的角的大小是4π7.(2012年高考文科19)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,23AC =2PA =,求:(1)三棱锥P ABC -的体积(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示)A BCPEA BCDPE xyD9答案:(1)3232221=⨯⨯=∆ABC S ,三棱锥P -ABC 的体积为3343131232=⨯⨯=⨯=∆PA S V ABC .(2)取PB 的中点E ,连接DE 、AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角. 在三角形ADE 中,DE=2,AE=2,AD=2,4322222222cos ==∠⨯⨯-+ADE ,所以∠ADE =43arccos . 因此,异面直线BC 与AD 所成的角的大小是43arccos .8.(2013年高考理科19)如图,在长方体''''ABCD A B C D -中,2AB =,1AD =,'1AA =. 证明直线'BC 平行于平面'D AC ,并求直线'BC 到平面'D AC 的距离答案:建立空间直角坐标系,可得的有关点的坐标为(1,0,1)A 、(1,2,1)B 、(0,2,1)C 、'(0,2,0)C 、'(0,0,0)D .设平面'D AC 的法向量为(,,)n u v w =r,则'n D A ⊥r u u u u r ,'n D C ⊥r u u u u r .因为'(1,0,1)D A =u u u u r ,'(0,2,1)D C =u u u u r ,'0n D A ⋅=r u u u u r,'0n D C ⋅=r u u u u r ,所以020u w v w +=⎧⎨+=⎩,解得2u v =,2w v =-.取1v =,PA BCDE10得平面'D AC 的一个法向量(2,1,2)n =-r .因为'(1,0,1)BC =--u u u u r ,所以'0n BC ⋅=r u u u u r ,所以'n BC ⊥r u u u u r .又'BC 不在平面'D AC 内,所以直线'BC 与平面'D AC 平行.由(1,0,0)CB =u u u r,得点B 到平面'D AC 的距离2222110(20)2321(2)n CB d n ⋅⨯+⨯+-⨯===++-r u u u ru u r ,所以直线'BC 到平面'D AC 的距离为239.(2013高考文科19)如图,正三棱锥O ABC -的底面边长为2,高为1,求该三棱锥的体积及表面积答案:由已知条件可知,正三棱锥O ABC -的底面△ABC 是边长为2的正三角形,经计算得底面△ABC 3.所以三棱锥的体积为133133=. 设'O 是正三角形ABC 的中心.由正三棱锥的性质可知,'OO 垂直于平面ABC . 延长'AO 交BC 于D ,得3AD =3'3O D =. 又因为'1OO =,所以正三棱锥的斜高33OD =. 故侧面积为123632⨯=33 3,表面积为3。