人教版高中数学全套试题1-1习题课

合集下载

人教版高中数学全套试题第1章1.1.1第一课时知能优化训练

人教版高中数学全套试题第1章1.1.1第一课时知能优化训练

1.下列各组对象中不能构成集合的是()A.水浒书业的全体员工B.《优化方案》的所有书刊C.2010年考入清华大学的全体学生D.美国NBA的篮球明星解析:选D.A、B、C中的元素:员工、书刊、学生都有明确的对象,而D中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1B.2C.3 D.4解析:选B.①②正确,③④错误.3.集合A={一条边长为1,一个角为40°的等腰三角形}中有元素()A.2个B.3个C.4个D.无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合中共有________个元素.解析:由x2-5x+6=0,解得x=2或x=3.由x2-x-2=0,解得x=2或x=-1.答案:31.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形答案:A2.设集合A只含一个元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A答案:C3.给出以下四个对象,其中能构成集合的有()①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学;③2010年广州亚运会的比赛项目;④1,3,5.A.1个B.2个C.3个D.4个解析:选C.因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.4.若集合M={a,b,c},M中元素是△ABC的三边长,则△ABC一定不是() A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:选D.根据元素的互异性可知,a≠b,a≠c,b≠c.5.下列各组集合,表示相等集合的是()①M ={(3,2)},N ={(2,3)};②M ={3,2},N ={2,3};③M ={(1,2)},N ={1,2}.A .①B .②C .③D .以上都不对解析:选B.①中M 中表示点(3,2),N 中表示点(2,3),②中由元素的无序性知是相等集合,③中M 表示一个元素:点(1,2),N 中表示两个元素分别为1,2.6.若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M解析:选B.∅x =13-52=-341-5412,y =3+2π中π是无理数,而集合M 中,b ∈Q ,得x ∈M ,y ∉M .7.已知①5∈R ;②13∈Q ;③0={0};④0∉N ;⑤π∈Q ;⑥-3∈Z .其中正确的个数为________.解析:③错误,0是元素,{0}是一个集合;④0∈N ;⑤π∉Q ,①②⑥正确. 答案:38.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________. 解析:当a =2时,6-a =4∈A ;当a =4时,6-a =2∈A ;当a =6时,6-a =0∉A ,所以a =2或a =4.答案:2或49.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b的可能取值组成的集合中元素的个数为________. 解析:当a >0,b >0时,|a |a +|b |b=2; 当a ·b <0时,|a |a +|b |b=0; 当a <0且b <0时,|a |a +|b |b=-2. 所以集合中的元素为2,0,-2.即元素的个数为3.答案:310.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解:∵-3∈A ,∴-3=a -3或-3=2a -1.若-3=a -3,则a =0,此时集合A 含有两个元素-3,-1,符合题意.若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素? 解:∵12-3=2+3=2+3×1,而2,1∈Z , ∴2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值. 解:根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b 2b =2a , 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧ a =0b =0或⎩⎨⎧ a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧ a =0b =1或⎩⎨⎧a =14b =12.。

高中数学人教A版选修1-1习题:第一章常用逻辑用语1.1.2-1.1.3

高中数学人教A版选修1-1习题:第一章常用逻辑用语1.1.2-1.1.3

1.1.2四种命题1.1.3四种命题间的相互关系课时过关·能力提升基础巩固1.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.若一个数是负数,则它的平方不是正数B.若一个数的平方是正数,则它是负数C.若一个数不是负数,则它的平方不是正数D.若一个数的平方不是正数,则它不是负数.2.命题“如果x≥a2+b2,那么x≥2ab”的逆否命题是()A.如果x<a2+b2,那么x<2abB.如果x≥2ab,那么x≥a2+b2C.如果x<2ab,那么x<a2+b2D.如果x≥a2+b2,那么x<2ab3.命题“若p不正确,则q不正确”的逆命题的等价命题是()A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确,原命题的逆命题和否命题互为逆否命题,为等价关系.故只需写出原命题的否命题即可.4.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数.5.在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠⌀”的逆命题、否命题、逆否命题中结论成立的有()A.都真B.都假C.否命题真D.逆否命题真,而其否命题为“若抛物线y=ax2+bx+c的开口向上,则{x|ax2+bx+c<0}=⌀”,为假命题.6.下列四个命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若a>b,则a2>b2”的逆否命题;③“若x≤-3,则x2-x-6>0”的否命题;④“若x>2 017,则x>0”的逆命题.其中真命题的个数是()A.0B.1C.2D.37.命题“若-1<x<1,则x2<1”的逆否命题是.x2≥1,则x≤-1或x≥18.命题:“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实根”与它的逆命题、否命题、逆否命题中,真命题有个.b≤-1时,Δ=4b2-4(b2+b)=-4b>0,所以原命题为真命题;由Δ≥0,得b≤0,故其逆命题为假命题.所以这4个命题中真命题有2个.9.给出以下命题:①“若x2+y2≠0,则x,y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题.其中真命题的序号是.否命题是“若x2+y2=0,则x,y全为零”.真命题.②逆命题是“若两个多边形相似,则这两个多边形为正多边形”.假命题.③∵Δ=1+4m,当m>0时,Δ>0,∴x2+x-m=0有实根,即原命题为真.∴逆否命题为真.10.证明:若p3+q3=2,则p+q≤2.,我们考虑是否能够比较容易地证明命题的逆否命题:若p+q>2,则p3+q3≠2.:若p+q>2,则p3+q3≠2.由p+q>2,得q>2-p,根据幂函数y=x3的单调性得q3>(2-p)3,即q3>8-12p+6p2-p3.]≥2,p3+q3>8-12p+6p2=6[(p-1)2+13所以p3+q3>2.因此p3+q3≠2.这说明原命题的逆否命题为真命题,从而原命题为真命题.能力提升1.下列说法正确的是()A.若一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.若一个命题的否命题为真,则它的逆命题一定为真A中逆命题与逆否命题互为否命题,真假性没有关系;选项B中两者等价;选项C中逆否命题应是“若a,b不全为0,则a2+b2≠0”;选项D正确.2.互为逆否命题的两个命题具有相同的真假性.我们用“↔”表示同真或同假,把它叫做“连连看”.下面让我们领略“连连看”的风采:已知命题p的否命题是r,命题r的逆命题为s,命题p的逆命题是t,则下列同真同假的“连连看”中,正确的一组是()A.p↔r,s↔tB.p↔t,s↔rC.p↔s,r↔tD.p↔r,s↔rp的否命题是r,命题r的逆命题为s,所以命题p与s互为逆否命题,故有p↔s;又由于命题p的否命题是r,命题p的逆命题是t,故命题r,t也是互为逆否命题,即r↔t.3.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题的等价命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3.4.在空间中,①若四点不共面,则这四点中任意三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是.(填序号)的逆命题是:若四点中任意三点都不共线,则这四点不共面.我们用正方体AC1做模型来观察:上底面A1B1C1D1的顶点中任意三点都不共线,但A1,B1,C1,D1四点共面,所以①的逆命题不是真命题.②的逆命题是:若两条直线是异面直线,则两条直线没有公共点.由异面直线的定义可知,成异面直线的两条直线不会有公共点.所以②的逆命题是真命题.5.设有两个命题:①关于x的不等式mx2+1≥0的解集是R;②函数f(x)=log m x是减函数(m>0,且m≠1).若这两个命题中有且只有一个真命题,则m的取值范围是.1★6.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②“矩形的对角相等”的逆命题;③“若xy=0,则x,y中至少有一个为零”的否命题.其中真命题的序号是.当k>0时,Δ=4+4k>0,故方程有实根;②对角相等的四边形不一定是矩形,故②是假命题;③“若x,y中至少有一个为零,则xy=0”是真命题,所以原命题的否命题是真命题.7.判断下列命题的真假:(1)“若xy=1,则x,y互为倒数”的逆命题;(2)“四边相等的四边形是正方形”的否命题;(3)“梯形不是平行四边形”的逆否命题;(4)“若ac2>bc2,则a>b”的逆命题.若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,是真命题.(2)“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题.(3)“梯形不是平行四边形”是真命题,所以其逆否命题也是真命题.(4)“若ac2>bc2,则a>b”的逆命题是“若a>b,则ac2>bc2”,是假命题.★8.已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,若至少有一个方程有实根,求实数a的取值范围.:(1)三个方程都无实根;(2)只有一个方程有实根}至少有一个方程有实根.(3)只有两个方程有实根(4)三个方程都有实根若按分类讨论,则需分三种情况,且(2)(3)又分多种情况,显然运算量太大,若注意到(2)(3)(4)可合并为至少有一个方程有实根,利用“补集”的思想,问题即可等价转化.,则有{Δ1=(4a )2+4(4a -3)<0,Δ2=(a -1)2-4a 2<0,Δ3=(2a )2+8a <0,即{ -32<a <12,a >13或a <-1,-2<a <0.解得−32<a <−1. 故若三个方程中至少有一个方程有实根,则a 的取值范围是a ≥-1或a ≤−32.。

高中数学(人教A版)选修1-1全册综合测试题(含详解)

高中数学(人教A版)选修1-1全册综合测试题(含详解)

综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( ) A .“p 或q ”是真命题 B .“p 且q ”是真命题 C .“綈p ”为真命题 D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件 B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同 C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +a x ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1 C.19D.12解析 由椭圆方程a =3,b =2,c =5,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2|=(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2|=162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A.答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y =f (x )的导数图像,则正确的判断是( ) ①f (x )在(-3,1)上是增函数; ②x =-1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是f (x )的极小值点. A .①②③ B .②③ C .③④D .①③④解析 从图像可知,当x ∈(-3,-1),(2,4)时,f (x )为减函数,当x ∈(-1,2),(4,+∞)时,f (x )为增函数,∴x =-1是f (x )的极小值点, x =2是f (x )的极大值点,故选B. 答案 B11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是直线l :x =a 2c (c 2=a 2+b 2)上一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是( )A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8x x 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8xx 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23), ∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________.解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1.②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1, ③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12.∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0), ∵a >0,由F ′(x )>0,得x ∈(a ,+∞),∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎨⎧ a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6](3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5. 设直线MA ,MB 的斜率分别为k 1和k 2, A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205. k 1+k 2=y 1-1x 1-4+y 2-1x 2-4=(y 1-1)(x 2-4)+(y 2-1)(x 1-4)(x 1-4)(x 2-4). 上式分子=(x 1+m -1)(x 2-4)+(x 2+m -1)·(x 1-4) =2x 1x 2+(m -5)(x 1+x 2)-8(m -1)=2(4m 2-20)5-8m (m -5)5-8(m -1)=0, 即k 1+k 2=0.所以直线MA,MB与x轴能围成等腰三角形.。

最新高中数学选修1-1(人教版 练习):第一章 常用逻辑用语 Word版含答案

最新高中数学选修1-1(人教版 练习):第一章 常用逻辑用语 Word版含答案

最新人教版数学精品教学资料第一章学业质量标准检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句中,命题的个数是导学号 03624316( C )①|x+2|;②-5∈Z;③π∉R;④{0}∈N.A.1 B.2C.3 D.4[解析]①不能判断真假,故不是命题,其他都是命题.2.命题“若x2<1,则-1<x<1”的逆否命题是导学号 03624317( D )A.若x2≥1,则x≥1,或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1[解析]“-1<x<1”的否定为“x≤-1或x≥1”,故原命题的逆否命题为:“若x≥1或x≤-1,则x2≥1”.3.有下列四个命题①“若b=3,则b2=9”的逆命题;②“全等三角形的面积相等”的否命题;③“若c≤1,则x2+2x+c=0有实根”;④“若A∪B=A,则A⊆B”的逆否命题.其中真命题的个数是导学号 03624318( A )A.1 B.2C.3 D.4[解析]“若b=3,则b2=9”的逆命题:“若b2=9,则b=3”,假;“全等三角形的面积相等”的否命题是:“不全等的三角形,面积不相等”,假;若c≤1,则方程x2+2x+c=0中,Δ=4-4c=4(1-c)≥0,故方程有实根;“若A∪B=A,则A⊆B”为假,故其逆否命题为假.4.(2017·北京文,7)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的导学号 03624319( A )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 方法1:由题意知|m |≠0,|n |≠0. 设m 与n 的夹角为θ. 若存在负数λ,使得m =λn , 则m 与n 反向共线,θ=180°, ∴m ·n =|m ||n |cos θ=-|m ||n |<0.当90°<θ<180°时,m ·n <0,此时不存在负数λ,使得m =λn . 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A .方法2:∵m =λn , ∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈(π2,π],当〈m ,n 〉∈(π2,π)时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A .5.(2017·天津文,2)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的导学号 03624320( B )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] ∵2-x ≥0,∴x ≤2.∵|x -1|≤1,∴0≤x ≤2. ∵当x ≤2时,不一定有x ≥0,当0≤x ≤2时,一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B .6.(2016·江西抚州高二检测)以下说法正确的个数是导学号 03624321( C ) (1)“b 2=ac ”是“b 为a ,c 的等比中项”的充分不必要条件; (2)“|a |>|b |”是“a 2>b 2”的充要条件;(3)“A =B ”是“tan A =tan B ”的充分不必要条件. A .0个B .1个C .2个D .3个[解析] (1)中,a =b =0时,b 2=ac ,但b 不是a ,c 的等比中项,若b 为a ,c 的等比中项,则b 2=ac ,故“b 2=ac ”是“b 为a ,c 的等比中项”的必要不充分条件;(2)中,|a |>|b |⇔a 2>b 2,故“|a |>|b |”是“a 2>b 2”的充要条件;(3)中,A =B =π2时,tan A 、tan B 无意义,当A =π3,B =4π3时,tan A =tan B ,而A ≠B ,故“A =B ”是“tan A =tan B ”的既不充分也不必要条件,故选C .7.已知命题p :∀x 1、x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则¬p 是导学号 03624322( C )A .∃x 1、x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1、x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1、x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1、x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 [解析] 根据全称命题的否定是存在性命题求解. ¬p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.8.(2016·重庆巴蜀中学高二检测)设a 、b ∈R ,那么“a b>1”是“a >b >0”的导学号 03624323( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 由a b >1⇒a b -1>0⇒a -b b >0⇒b (a -b )>0⇒a >b >0或a <b <0.故“ab>1”是“a >b >0”的必要不充分条件.9.“a <0”是“方程ax 2+2x +1=0至少有一个负数根”的导学号 03624324( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 [解析] 当a <0时,Δ=4-4a >0, ∴方程ax 2+2x +1=0有两个不等实根, 不妨设两根分别为x 1、x 2. 则x 1+x 2=-2a >0,x 1x 2=1a<0,故方程ax 2+2x +1=0有一正根一负根. 当a =0时,方程ax 2+2x +1=0有一负根为-12,∴a <0⇒方程ax 2+2x +1=0至少有一个负数根, 方程ax 2+2x +1=0至少有一个负数根⇒/a <0,故选A . 10.下列命题中是假命题...的是导学号 03624325( D ) A .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减 B .∀a >0,函数f (x )=ln 2x +ln x -a 有零点 C .∃α、β∈R ,使cos (α+β)=cos α+sin β D .∀φ∈R ,函数f (x )=sin (2x +φ)都不是偶函数[解析] ∵f (x )为幂函数,∴m -1=1,∴m =2,f (x )=x -1,∴f (x )在(0,+∞)上递减,故A 真;∵y =ln 2 x +ln x 的值域为[-14,+∞),∴对∀a >0,方程ln 2x +ln x -a=0有解,即f (x )有零点,故B 真;当α=π6,β=2π时,cos (α+β)=cos α+sin β成立,故C 真;当φ=π2时, f (x )=sin (2x +φ)=cos 2x 为偶函数,故D 为假命题.11.下列命题中的真命题是导学号 03624326( D ) A .∃x ∈[0,π2],sin x +cos x ≥2B .∀x ∈⎝ ⎛⎭⎪⎫π2,π,tan x >sin x C .∃x ∈R ,x 2+x =-1 D .∀x ∈R ,x 2+2x >4x -3[解析] ∵对任意x ∈R ,有sin x +cos x =2sin (x +π4)≤2,∴A 假;∵x ∈(π2,π)时,tan x <0,sin x >0,∴B 假;∵x 2+x +1=(x +12)2+34>0,∴方程x 2+x =-1无解,∴C 假;∵x 2+2x -(4x -3)=x 2-2x +3=(x -1)2+2≥2,∴对任意x ∈R ,x 2+2x -(4x -3)>0恒成立,故D 真.12.命题p :关于x 的方程x 2+ax +2=0无实根,命题q :函数f (x )=log a x 在(0,+∞)上单调递增,若“p ∧q ”为假命题,“p ∨q ”真命题,则实数a 的取值范围是导学号 03624327( A )A .(-22,1]∪[22,+∞)B .(-22,22)C .(-22,+∞)D .(-∞,22)[解析] ∵方程x 2+ax +2=0无实根, ∴△=a 2-8<0,∴-22<a <22, ∴p :-22<a <2 2.∵函数f (x )=log a x 在(0,+∞)上单调递增,∴a >1. ∴q :a >1.∵p ∧q 为假,p ∨q 为真,∴p 与q 一真一假. 当p 真q 假时,-22<a ≤1, 当p 假q 真时,a ≥2 2.综上可知,实数a 的取值范围为(-22,1]∪[22,+∞).二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上) 13.(2016·北京昌平区高二检测)若命题p :∀x ∈R ,x 2-x +14≤0,则¬p : ∃x ∈R ,x 2-x +14>0 .导学号 03624328[解析] 根据全称命题的否定是特称命题,故¬p :∃x ∈R ,x 2-x +14>0.14.给出命题:“若函数y =f (x )是指数函数,则函数y =f (x )的图象不过第四象限”.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是__1__.导学号 03624329[解析] 因为命题:“若函数y =f (x )是指数函数,则函数y =f (x )的图象不过第四象限”是真命题,其逆命题“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是指数函数”是假命题,如函数y =x +1.再由互为逆否命题真假性相同知,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是1.15.已知命题“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是 ⎝ ⎛⎭⎪⎫56,+∞ .导学号 03624330 [解析] 由题意可知,命题“∀x ∈R ,x 2-5x +152a >0”为真命题,∴(-5)2-4×152a <0,即a >56.∴实数a 的取值范围为⎝ ⎛⎭⎪⎫56,+∞.16.(2016·贵州安顺高二检测)已知命题p :∃x 0∈R ,使tan x 0=1,命题q :x 2-3x+2<0的解集是{x|1<x<2}.下列结论:①命题“p∧q”是真命题;②命题“p∧(¬q)”是假命题;③命题“(¬p)∨q”是真命题;④命题“(¬p)∨(¬q)”是假命题.其中正确的是__①②③④__.(填所有正确命题的序号)导学号 03624331[解析]命题p:∃x0∈R,使tan x0=1正确,命题q:x2-3x+2<0的解集是{x|1<x<2}也正确,所以①命题“p∧q”是真命题;②命题“p∧(¬q)”是假命题;③命题“(¬p)∨q”是真命题;④命题“(¬p)∨(¬q)”是假命题.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)判断下列语句是否为命题,若是命题,再判断是全称命题还是特称命题,并判断真假.导学号 03624332(1)有一个实数α,tan α无意义;(2)任何一条直线都有斜率吗?(3)圆的圆心到其切线的距离等于该圆的半径;(4)圆内接四边形的对角互补;(5)对数函数都是单调函数.[解析](1)特称命题.α=π2时,tan α不存在,所以,特称命题“有一个实数α,tan α无意义”是真命题.(2)不是命题.(3)虽然不含有全称量词,但该命题是全称命题.它的含义是任何一个圆的圆心到切线的距离都等于圆的半径,所以,全称命题“圆的圆心到其切线的距离等于该圆的半径”是真命题.(4)“圆内接四边形的对角互补”的实质是“所有的圆内接四边形,其对角都互补”,所以该命题是全称命题且为真命题.(5)虽然不含全称量词,但“对数函数都是单调函数”中省略了“所有的”,所以该命题是全称命题且为真命题.18.(本题满分12分)写出命题“若x2+7x-8=0,则x=-8或x=1的逆命题、否命题、逆否命题,并分别判断它们的真假.”导学号 03624333[解析]逆命题:若x=-8或x=1,则x2+7x-8=0.逆命题为真.否命题:若x2+7x-8≠0,则x≠-8且x≠1.否命题为真.逆否命题:若x≠-8且x≠1,则x2+7x-8≠0.逆否命题为真.19.(本题满分12分)已知P ={x |a -4<x <a +4},Q ={x |x 2-4x +3<0},且x ∈P 是x ∈Q 的必要条件,求实数a 的取值范围.导学号 03624334[解析] P ={x |a -4<x <a +4},Q ={x |1<x <3}. ∵x ∈P 是x ∈Q 的必要条件, ∴x ∈Q ⇒x ∈P ,即Q ⊆P .∴⎩⎪⎨⎪⎧a -4≤1a +4≥3,解得⎩⎪⎨⎪⎧a ≤5a ≥-1,∴-1≤a ≤5.20.(本题满分12分)写出下列命题的否定,并判断真假. (1)p :任意m ∈R ,关于x 的方程x 2+x -m =0必有实数根; (2)q :存在x ∈R ,使得x 2+x +1≤0.导学号 03624335[解析] (1)¬p :存在m ∈R ,使方程x 2+x -m =0无实数根.若方程x 2+x -m =0无实数根,则Δ=1+4m <0,则m <-14,所以¬p 为真.(2)¬q :所有x ∈R ,x 2+x +1>0.因为x 2+x +1=(x +12)2+34>0,所以¬q 为真.21.(本题满分12分)(2016·广东汕头高二检测)已知命题p :函数y =x 2-2x +a 在区间(1,2)上有1个零点;命题q :函数y =x 2+(2a -3)x +1与x 轴交于不同的两点.如果p ∧q 是假命题,p ∨q 是真命题,求a 的取值范围.导学号 03624336[解析] p 真:(1-2+a )(4-4+a )<0, ∴a (a -1)<0,∴0<a <1. ∴p 假:a ≤0或a ≥1.q 真:(2a -3)2-4>0∴4a 2-12a +5>0,∴a >52或a <12.q 假:12≤a ≤52.∵p ∧q 为假,p ∨q 为真,∴p 、q 一真一假. 当p 真q 假时⎩⎪⎨⎪⎧ 0<a <112≤a ≤52,∴12≤a <1.当p 假q 真时⎩⎪⎨⎪⎧a ≤0或a ≥1a >52或a <12,∴a ≤0或a >52.综上可知,a 的取值范围是a ≤0或12≤a <1或a >52.22.(本题满分12分)设命题p :(4x -3)2≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若¬p 是¬q 的必要不充分条件,求实数a 的取值范围. 导学号 03624337[解析] 由(4x -3)2≤1,得12≤x ≤1,令A ={x |12≤x ≤1}.由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1, 令B ={x |a ≤x ≤a +1}.由¬p 是¬q 的必要不充分条件,得p 是q 的充分不必要条件,即A B , ∴⎩⎪⎨⎪⎧a ≤12a +1≥1,∴0≤a ≤12.∴实数a 的取值范围是[0,12].。

最新人教A版高中数学选修1-1 1.3-1.4试题(含答案)

最新人教A版高中数学选修1-1 1.3-1.4试题(含答案)

高中新课标数学选修(1-1)1.3~1.4测试题一、选择题1.若命题:21()+∈Z是偶数,q n np m m-∈Z是奇数,命题:21()则下列说法正确地是()A.p q∨为真B.p q∧为真C.p⌝为真D.q⌝为假答案:A2.在下列各结论中,正确地是()①“p q∧”为真是“p q∨”为真地充分条件但不是必要条件;②“p q∧”为假是“p q∨”为假地充分条件但不是必要条件;③“p q∨”为真是“p⌝”为假地必要条件但不充分条件;④“p⌝”为真是“p q∧”为假地必要条件但不是充分条件.A.①②B.①③C.②④D.③④答案:B3.由下列命题构成地“p q∨”,“p q∧”均为真命题地是()A.:p菱形是正方形,:q正方形是菱形B.:2p是偶数,:2q不是质数C.:15p是质数,:4q是12地约数D.{}⊆,,:q a a b c:p a a b c∈,,,{}{}答案:D4.命题:p 若a b ∈R ,,则1a b +>是1a b +>地充分条件但不是必要条件,命题:q 函数12y x =--地定义域是(][)13--+U ,,∞∞,则下列命题( )A.p q ∨假 B.p q ∧真 C.p 真,q 假 D.p 假,q 真答案:D5.若命题:p x ∀∈R ,22421ax x a x ++-+≥是真命题,则实数a 地取值范围是( )A.3a -≤或2a ≥ B.2a ≥C.2a >- D.22a -<<答案:B6.若k M ∃∈,对x ∀∈R ,210kx kx --<是真命题,则k 地最大取值范围M 是( )A.40k -≤≤ B.40k -<≤C.40k -<≤ D.40k -<<答案:C二、填空题7.命题“全等三角形一定相似”地否命题是 ,命题地否定是 .答案:两个三角形或不全等,则不一定相似;两个全等三角形不一定相似8.下列三个特称命题:(1)有一个实数x ,使2440x x ++=成立;(2)存在一个平面与不平行地两条直线都垂直;(3)有些函数既是奇函数又是偶函数.其中真命题地个数为.答案:29.命题p q∧是真命题是命题p q∨是真命题地(填“充分”、“必要”或“充要”)条件.答案:充分10.命题:p x∃∈R,2250++<是(填“全称x x命题”或“特称命题”),它是命题(填“真”或“假”),它地否定命题:p⌝,它是命题(填“真”或“假”).;真答案:特称命题;假;x∀∈R,2250++≥x x11.若x∀∈R,11-++>是真命题,则实数a地取值范x x a围是.答案:(2)∞-,12.若x∀∈R,2=-是单调减函数,则a地取值范f x a()(1)x围是 .答案:(21)(12)--U ,,三、解答题13.已知命题2:10p xmx ++=有两个不相等地负根,命题2:44(2)10q x m x +-+=无实根,若p q ∨为真,p q ∧为假,求m 地取值范围.解:210x mx ++=有两个不相等地负根24020m m m ⎧->⇔⇔>⎨-<⎩,. 244(2)10x m +-+=无实根2216(2)160430m m x ⇔--<⇔-+<13m ⇔<<. 由p q ∨为真,即2m >或13m <<得1m >;p q ∧∵为假,()p q p⌝∧⇒⌝∴或q ⌝为真,p ⌝为真时,2m ≤,q ⌝为真时,1m ≤或3m ≥.p ⌝∴或q ⌝为真时,2m ≤或3m ≥.∴所求m 取值范围为{}123m m m <,或|≤≥.14.若x ∀∈R ,函数2()(1)f x m x x a =-+-地图象和x 轴恒有公共点,求实数a 地取值范围.解:(1)当0m =时,()f x x a =-与x 轴恒相交;(2)当0m ≠时,二次函数2()(1)f x m x x a =-+-地图象和x 轴恒有公共点地充要条件是14()0m m a ∆=++≥恒成立,即24410m am ∆=++≥恒成立,又24410m am ++≥是一个关于m 地二次不等式,恒成立地充要条件是2(4)160a '∆=-≤,解得11a -≤≤.综上,当0m =时,a ∈R ;当0m ≠,[]11a ∈-,.15.有甲、乙、丙、丁四位歌手参加比赛,其中有一位获奖,有人走访了四位歌手,甲说:“我获奖了”,乙说:“甲未获奖,乙也未获奖”,丙说:“是甲或乙获匀”,丁说:“是乙获奖”,四位歌手地话中有两句是对地,请问哪位歌手获奖.甲获奖或乙获奖.解:①乙说地与甲、丙、丁说地相矛盾,故乙地话是错误地;②若两句正确地话是甲说地和丙说地,则应是甲获奖,正好对应于丁说地错,故此种情况为甲获奖;③若两句正确地话是甲说地和丁说地,两句话矛盾;④若两句正确地话是丙说地和丁说地,则为乙获奖,对应甲说地错,故此种情况乙获奖.由以上分析知可能是甲获奖或乙获奖.。

人教A版高中数学必修1全册练习题

人教A版高中数学必修1全册练习题

人教A版高中数学必修1全册练习题高中数学必修1练习题集第一章、集合与函数概念1.1.1集合的含义与表示例1.用符号和填空。

⑴设集合A是正整数的集合,则0_______A,________A,______A;⑵设集合B是小于的所有实数的集合,则2______B,1+______B;⑶设A为所有亚洲国家组成的集合,则中国_____A,美国_____A,印度_____A,英国____A例2.判断下列说法是否正确,并说明理由。

⑴某个单位里的年轻人组成一个集合;⑵1,,,,这些数组成的集合有五个元素;⑶由a,b,c组成的集合与b,a,c组成的集合是同一个集合。

例3.用列举法表示下列集合:⑴小于10的所有自然数组成的集合A;⑵方程x=x的所有实根组成的集合B;⑶由1~20中的所有质数组成的集合C。

例4.用列举法和描述法表示方程组的解集。

典型例题精析题型一集合中元素的确定性例1.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;⑤的近似值得全体,其中能构成集合的组数是()A.2B.3C.4D.5题型二集合中元素的互异性与无序性例2.已知x{1,0,x},求实数x的值。

题型三元素与集合的关系问题1.判断某个元素是否在集合内例3.设集合A={x∣x=2k,kZ},B={x∣x=2k+1,kZ}。

若aA,bB,试判断a+b与A,B的关系。

2.求集合中的元素例4.数集A满足条件,若aA,则A,(a≠1),若A,求集合中的其他元素。

3.利用元素个数求参数取值问题例5.已知集合A={x∣ax+2x+1=0,aR},⑴若A中只有一个元素,求a的取值。

⑵若A中至多有一个元素,求a的取值范围。

题型四列举法表示集合例6.用列举法表示下列集合⑴A={x∣≤2,xZ};⑵B={x∣=0}⑶M={x+y=4,xN,yN}.题型五描述法表示集合例7.⑴已知集合M={xN∣Z},求M;⑵已知集合C={Z∣xN},求C.例8.用描述发表示图(图-8)中阴影部分(含边界)的点的坐标的集合。

人教版高中数学全套试题1-1-2第1课时

1.1.2程序框图与算法的基本逻辑结构第1课时程序框图、顺序结构双基达标(限时20分钟)1.下列图形符属于判断框的是().解析判断框用菱形表示,且图中有两个退出点.答案 C2.下列关于程序框图的说法正确的有().①用程序框图表示算法直观、形象,容易理解;②程序框图能清楚地展现算法的逻辑结构,也就是通常所说的一图胜万言;③在程序框图中,起止框是任何流程不可少的;④输入和输出框可用在算法中任何需要输入、输出的位置.A.1个B.2个C.3个D.4个答案 D3.(2012·东营高一检测)给出下列程序框图:若输出的结果为2,则①处的执行框内应填的是().A.x=2 B.b=2 C.x=1 D.a=5解析因结果是b=2,∴2=a-3,即a=5.当2x +3=5时,得x =1. 答案 C4.下面程序框图表示的算法的运行结果是________.解析 由题意P =5+6+72=9,S =9×4×3×2=63=6 6.答案 6 65.写出如下程序框图的运行结果.S =________.若R =8,则a =________. 答案 2.5 46.已知一个直角三角形的两条直角边边长分别为a ,b ,设计一个算法,求三角形的面积,并画出相应的程序框图. 解 算法如下:第一步:输入两直角边的边长a ,b ; 第二步:计算S =12ab ;第三步:输出S . 程序框图:综合提高(限时25分钟)7.如图所示的程序框图表示的算法意义是( ).A .边长为3,4,5的直角三角形面积B .边长为3,4,5的直角三角形内切圆面积C .边长为3,4,5的直角三角形外接圆面积D .以3,4,5为弦的圆面积解析 由直角三角形内切圆半径r =a +b -c2,故选B.答案 B8.一个完整的程序框图至少包含( ).A .起、止框和输入、输出框B .起、止框和处理框C .起、止框和判断框D .起、止框、处理框和输入、输出框解析 一个完整的程序框图至少需包括起、止框和输入、输出框. 答案 A9.根据下边的程序框图所表示的算法,输出的结果是________.解析该算法的第1步分别将X,Y,Z赋于1,2,3三个数,第2步使X取Y的值,即X 取值变成2,第3步使Y取X的值,即Y的值也是2,第4步让Z取Y的值,即Z取值也是2,从而第5步输出时,Z的值是2.答案 210.(2012·苏州高一检测)阅读如图的程序框图,若输入的a、b、c分别是21、32、75,则输出的a、b、c分别是________.解析输入a=21,b=32,c=75,则x=21,a=75,c=32,b=21,则输出a=75,b=21,c=32.答案75,21,3211.写出求A(x1,y1),B(x2,y2)两点之间距离的算法,并画出程序框图.解算法如下:第一步,给两点的坐标赋值x1=?,y1=?,x2=?,y2=?;第二步,计算Δx=x2-x1,Δy=y2-y1;第三步,计算d=(Δx)2+(Δy)2;第四步,输出两点间的距离d.程序框图如图所示.12.(创新拓展)某市劳动保障部门规定:某工种在法定工作时间内,工资为每小时8元,加班工资为每小时12元.已知某人在一周内工作60小时,其中加班20小时,他每周收入的10%要交纳税金.请设计一个算法,计算此人这周所得的净收入,并画出相应的程序框图.解此人一周在法定工作时间内工作40小时,加班20小时,他一周内的净收入等于(40×8+20×12)×(1-10%)元.算法如下:第一步,令T=40,t=20.第二步,计算S=(8×T+12×t)×(1-10%).第三步,输出S.程序框图如图.。

【创新设计】高中数学(人教版必修二)配套练习:第1章习题课(含答案解析)

习题课 空间几何体【课时目标】 熟练掌握空间几何体的结构,熟练掌握空间几何体的结构,以三视图为载体,以三视图为载体,以三视图为载体,进一步巩固几何体的体进一步巩固几何体的体积与表面积计算.积与表面积计算.1.圆柱、圆锥、圆台的侧面展开图及侧面面积公式..圆柱、圆锥、圆台的侧面展开图及侧面面积公式.2.空间几何体的表面积和体积公式..空间几何体的表面积和体积公式.名称名称 几何体几何体 表面积表面积 体积体积柱体柱体 (棱柱和圆柱)S表面积=S 侧+2S 底V =________锥体锥体 (棱锥和圆锥) S 表面积=S 侧+S 底 V =________台体台体(棱台和圆台)S 表面积=S 侧+S 上+S 下 V =_________ ____________ 球S =________V =43πR 3一、选择题一、选择题1.圆柱的轴截面是正方形,面积是S ,则它的侧面积是( ) A .1πS B .πS C .2πS D .4πS 2.若某空间几何体的三视图如图所示,则该几何体的体积是( )A .12B .23C .1D .2 3.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )4.一个几何体的三视图如图,该几何体的表面积为( )A .280B .292C .360D .372 5.棱长为a 的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( )A .a 33B .a 34C .a 36D .a 312 6.已知一个球与一个正三棱柱的三个侧面和两个底面相切,已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是若这个球的体积是32π3,则这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3二、填空题二、填空题7.一个几何体的三视图如图所示,则这个几何体的体积为________.8.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________cm 3.9.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm .三、解答题三、解答题10.如下的三个图中,如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,上面的是一个长方体截去一个角所得多面体的直观图,上面的是一个长方体截去一个角所得多面体的直观图,它的正视它的正视图和侧视图在下面画出(单位:cm).(1)按照画三视图的要求画出该多面体的俯视图;按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;按照给出的尺寸,求该多面体的体积;11.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).能力提升12.设某几何体的三视图如下(尺寸的长度单位为m).则该几何体的体积为________m 3.13.如图所示,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1= 2,P 是BC 1上一动点,则CP +P A 1的最小值是___________.1.空间几何体是高考必考的知识点之一,重点考查空间几何体的三视图和体积、表面积的计算,尤其是给定三视图求空间几何体的体积或表面积,更是近几年高考的热点.其中组合体的体积和表面积有加强的趋势,但难度也不会太大,解决这类问题的关键是充分发挥空间想象能力,由三视图得到正确立体图,进行准确计算.充分发挥空间想象能力,由三视图得到正确立体图,进行准确计算.2.“展”是化折为直,化曲为平,把立体几何问题转化为平面几何问题,多用于研究线面关系,求多面体和旋转体表面的两点间的距离最值等等.面关系,求多面体和旋转体表面的两点间的距离最值等等.习题课习题课 空间几何体空间几何体 答案答案知识梳理知识梳理1.2πrl πr πrl l π(r +r′)l2.Sh 13Sh 13(S 上+S 下+S 上S 下)h 4πR 2作业设计作业设计1.B [设圆柱底面半径为r ,则S =4r 2, S 侧=2πr·2r =4πr 2=πS .]2.C [由三视图可知,该空间几何体是底面为直角三角形的直三棱柱,三棱柱的底面直角三角形的直角边长分别为1和2,三棱柱的高为2,所以该几何体的体积V =12×1×2×2=1.]3.C [当俯视图为A 中正方形时,几何体为边长为1的正方体,体积为1;当俯视图为B 中圆时,几何体为底面半径为12,高为1的圆柱,体积为π4;当俯视图为C 中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为12;当俯视图为D 中扇形时,几何体为圆柱的14,且体积为π4.]4.C [由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体.体.∵下面长方体的表面积为8×8×10×10×10×22+2×2×8×8×8×22+10×10×2×2×2×22=232,上面长方体的表面积为8×8×6×6×6×22+2×2×8×8×8×22+2×2×6×6×6×22=152,又∵长方体表面积重叠一部分,∴几何体的表面积为232+152-2×2×6×6×6×22=360.]5.C [连接正方体各面中心构成的八面体由两个棱长为22a 的正四棱锥组成,正四棱锥的高为a 2,则八面体的体积为V =2×13×(22a)2·a 2=a 36.]6.D [由43πR 3=32π3,得R =2. ∴正三棱柱的高h =4.设其底面边长为a , 则13·32a =2,∴a =43. ∴V =34(43)2·4=483.] 7.103解析解析 该几何体是上面是底面边长为2的正四棱锥,下面是底面边长为1、高为2的正四棱柱的组合体,其体积为四棱柱的组合体,其体积为V =1×1×1×1×1×22+13×22×1=103. 8.144解析解析 此几何体为正四棱台与正四棱柱的组合体,而V 正四棱台=13(82+42+82×42)×)×33=112,V 正四棱柱=4×4×4×4×4×22=32,故V =112+32=144. 9.4解析解析 设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r .解得r =4. 10.解.解 (1)如图所示.如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=4×4×4×4×4×66-13×èæøö12×2×2×22×2=2843 (cm 3). 11.解.解 由题意可知矩形的高即圆柱的母线长为9.6-8×8×2r 2r 8=1.2-2r ,∴塑料片面积S=πr 2+2πr(1.2-2r)=πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r)=-3π(r -0.4)2+0.48π.∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×2×00.3=0.6(米).制作灯笼的三视图如图.图.12.4解析解析 由三视图可知原几何体是一个三棱锥,且三棱锥的高为2,底面三角形的一边长为4,且该边上的高为3,故所求三棱锥的体积为V =13×12×3×3×4×4×4×22=4 m 3.13.5 2解析解析将△BCC 1沿BC 1线折到面A 1C 1B 上,如图.上,如图.连接A 1C 即为CP +P A 1的最小值,过点C 作CD ⊥C 1D 于D 点,△BCC 1为等腰直角三角形,角形,∴CD =1,C 1D =1,A 1D =A 1C 1+C 1D =7. ∴A 1C =A 1D 2+CD 2=49+1=5 2.。

人教版A版高中数学选修1-1课后习题解答

高中数学选修1-1课后习题答案第一章 常用逻辑用语1.1 命题及其关系练习(P4)1、2220,1;(2)1,20x x x x x x +-===+-=例:(1)若则若则.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两腰上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题. 逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题. 逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:命题的逆否命题是:若1a b -=,则22243a b a b -+--22243a b a b -+--()()2()23a b a b a b b =+-+---当1a b -=时22310a b b a b =++--=--=原式所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是命题; (2)是命题; (3)不是命题; (4)不是命题.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题. 否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等. 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形两腰相等,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径. 可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2 充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1). 3(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、(1)若两个角是对顶角,则两个角相等.(2)若两个角相等则这两个角是对顶角.(3)若两直线平行,则同位角相等.2、(1)假; (2)真; (3)真.3、(1)充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=.2222222222222202220a b c ab ac bc a ab b b bc c c ac a ++---=∴-++-++-+=则2所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++ 1.3 简单的逻辑联结词练习(P17)1、(1)真; (2)假.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(3)1≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4 全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0;(3)2,10x R x x ∀∈-+>; (4)任意四边形的对角线不互相垂直.习题1.4 B 组(P26)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和都不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P28)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等. 逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、(1)若两个角是对顶角,则两个角相等.(2)若两个角相等则这两个角是对顶角.(3)若两直线平行,则同位角相等.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)00(,){(,),x y x y x y ∃∈是整数},00243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}.6、(1)32≠; (2)54≤; (3)00,0x R x ∃∈≤;(4)存在一个正方形,它不是平行四边形第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin ab cA B C ==.第二章圆锥曲线与方程2.1 椭圆2.2双曲线2.3 抛物线第二章复习参考题第三章导数及其应用3.1 变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生在中的优化问题举例第三章复习参考题A组(P117)。

高中数学必修一课后习题答案(人教版),高中数学必修1试题及答案解析

当 时,集合 ,而 ,则 ,或 ,
得 ,或 ,
综上得:实数 的值为 ,或 .
5.解:集合 ,即 ;
集合 ,即 ;
集合 ;
则 .
6.解:(1)要使原式有意义,则 ,即 ,
得函数的定义域为 ;
(2)要使原式有意义,则 ,即 ,且 ,
得函数的定义域为 .
7.解:(1)因为 ,
所以 ,得 ,
即 ;
(2)因为 ,
2.解:图象如下
是递增区间, 是递减区间, 是递增区间, 是递减区间.
3.解:该函数在 上是减函数,在 上是增函数,在 上是减函数,在 上是增函数.
4.证明:设 ,且 ,因为 ,即 ,所以函数 在 上是减函数.
5.最小值.
练习(第36页)
1.解:(1)对于函数 ,其定义域为 ,因为对定义域内
每一个 都有 ,
所以 ,
即 .
8.证明:(1)因为 ,
所以 ,
即 ;
(2)因为 ,
所以 ,
即 .
9.解:该二次函数的对称轴为 ,
函数 在 上具有单调性,
则 ,或 ,得 ,或 ,
即实数 的取值范围为 ,或 .
10.解:(1)令 ,而 ,
即函数 是偶函数;
(2)函数 的图象关于 轴对称;
(3)函数 在 上是减函数;
(4)函数 在 上是增函数.
是奇函数,其图象是关于原点对称的.
习题1.3(第39页)
1.解:(1)
函数在 上递减;函数在 上递增;
(2)
函数在 上递增;函数在 上递减.
2.证明:(1)设 ,而 ,
由 ,得 ,
即 ,所以函数 在 上是减函数;
(2)设 ,而 ,
由 ,得 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题课 正弦定理与余弦定理
双基达标
(限时20分钟)
1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是
( ).
A .等腰直角三角形
B .直角三角形
C .等腰三角形
D .等边三角形
解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B . 答案 C
2.在△ABC 中,若a 2=bc ,则角A 是
( ).
A .锐角
B .钝角
C .直角
D .60°
解析 cos A =b 2+c 2-a 2
2bc =
b 2+
c 2
-bc 2bc

⎝⎛⎭
⎫b -c 22+3c 2
42bc
>0,∴0°<A <90°.
答案 A
3.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于 ( ).
A.21
B.106
C.69
D.154
解析 设BC =a ,则BM =MC =a
2.
在△ABM 中,
AB 2=BM 2+AM 2-2BM ·AM cos ∠AMB , 即72=14a 2+42-2×a
2×4·cos ∠AMB ①
在△ACM 中,
AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC 即62=42+14a 2+2×4×a
2·cos ∠AMB ②
①+②得:72+62=42+42+1
2a 2,
∴a =106. 答案 B
4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为
________.
解析 ∵a 2+c 2-b 2=3ac ,
∴cos B =a 2+c 2-b 22ac =3ac 2ac =32,∴B =π
6.
答案 π
6
5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.
解析 由sin B +cos B =2sin ⎝⎛⎭⎫B +π
4=2得 sin ⎝⎛⎭⎫B +π4=1,∴B =π
4. 由正弦定理a sin A =b sin B 得
sin A =a sin B
b =
2sin π
42=12
, ∴A =π6或56
π.
∵a <b ,∴A <B ,A =π
6.
答案 π6
6.在△ABC 中,内角A 、B 、C 成等差数列,其对边a ,b ,c 满足2b 2=3ac ,求A . 解 由A 、B 、C 成等差数列及A +B +C =180°得B =60°,A +C =120°. 由2b 2=3ac 及正弦定理得 2sin 2B =3sin A sin C , 故sin A sin C =12
.
cos(A +C )=cos A cos C -sin A sin C =cos A cos C -1
2,
即cos A cos C -12=-1
2,
cos A cos C =0, cos A =0或cos C =0, 所以A =90°,或A =30°.
综合提高 (限时25分钟)
7.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为
( ).
A.43 B .8-4 3 C .1
D.23
解析 由(a +b )2-c 2=4得(a 2+b 2-c 2)+2ab =4.① ∵a 2+b 2-c 2=2ab cos C ,故方程①化为2ab (1+cos C )=4. ∴ab =2
1+cos C .
又∵C =60°,∴ab =4
3.
答案 A
8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是
( ).
A.⎝⎛⎦⎤0,π6
B.⎣⎡⎭⎫
π6,π C.⎝⎛⎦
⎤0,π3
D.⎣⎡⎭⎫π3,π
解析 在△ABC 中,由正弦定理得sin A =
a 2R ,sin B =
b 2R ,sin C =c
2R
(其中R 为△ABC 外接圆的半径),由sin 2A ≤sin 2B +sin 2C -sin B sin C 可得a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,∴cos A =b 2+c 2-a 22bc ≥12,∴0<A ≤π
3.
答案 C
9.△ABC 中,若a cos A 2=b cos B 2=c
cos
C 2,则△ABC 的形状是________.
解析 ∵a =2R sin A ,b =2R sin B ,c =2R sin C , ∴sin A cos A 2=sin B cos B 2=sin C cos C 2,∴sin A 2=sin B 2=sin C
2,
又∵A +B +C =π,∴A 2+B 2+C 2=π2.
∴A 2=B 2=C 2,∴A =B =C =π3. 答案 等边三角形
10.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a b =6cos C ,则tan C tan A +tan C tan B 的
值是________.
解析 由b a +a
b =6cos C ,得b 2+a 2=6ab cos C .
化简整理得2(a 2+b 2)=3c 2,将tan C tan A +tan C
tan B
切化弦,
得sin C cos C ·⎝⎛⎭⎫cos A sin A +cos B sin B =sin C cos C ·sin (A +B )
sin A sin B
=sin C cos C ·sin C sin A sin B =sin 2C cos C sin A sin B . 根据正、余定理得sin 2C
cos C sin A sin B =
c 2
ab ·
a 2+
b 2-
c 22ab
=2c 2a 2+b 2-c 2=2c 2
32c 2-c 2
=4. 答案 4
11.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知m =⎝⎛⎭⎫cos 3A 2
,sin 3A
2,n =⎝⎛⎭⎫cos A 2
,sin A 2,且满足|m +n |= 3.
(1)求角A 的大小;
(2)若|AC →|+|AB →|=3|BC →
|,试判断△ABC 的形状. 解 (1)由|m +n |=3,得m 2+n 2+2m·n =3, 即1+1+2⎝⎛⎭⎫cos 3A 2cos A 2+sin 3A 2sin A
2=3, ∴2+2cos A =3.
∴cos A =12.∵0<A <π,∴A =π
3
.
(2)∵|AC →|+|AB →|=3|BC →
|,∴b +c =3a , ∴sin B +sin C =3sin A , ∴sin B +sin ⎝⎛⎭⎫2π3-B =3×32, 即
32sin B +12cos B =3
2
, ∴sin ⎝⎛⎭⎫B +π6=32
. ∵0<B <2π3,∴π6<B +π6<5π6,
∴B +π6=π3或2π3,故B =π6或π
2.
当B =π6时,C =π2;当B =π2时,C =π6.
故△ABC 是直角三角形.
12.(创新拓展)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =
34. (1)求
1tan A +1tan C
的值; (2)设BA →·BC →=32,求a +c 的值.
解 (1)由cos B =3
4,
得sin B =
1-⎝⎛⎭⎫342=74.
由b 2=ac 及正弦定理得sin 2B =sin A sin C . 于是1tan A +1tan C =cos A sin A +cos C
sin C
=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2B
=sin B sin 2B =1sin B =47
7
. (2)由BA →·BC →=32得ca ·cos B =32,
由cos B =3
4,可得ca =2,
即b 2=2.
由余弦定理b 2=a 2+c 2-2ac ·cos B , 得a 2+c 2=b 2+2ac ·cos B =5, ∴(a +c )2=a 2+c 2+2ac =5+4=9, ∴a +c =3.。

相关文档
最新文档